Lyapunov Center Theorem of Infinite Dimensional Hamiltonian Systems
DOI:
10.4208/ata.OA-SU9
Anal. Theory Appl., 36 (2020), pp. 295-325.
Published online: 2020-09
[An open-access article; the PDF is free to any online user.]
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{ATA-36-295,
author = {Xu , Junxiang and Li , Qi},
title = {Lyapunov Center Theorem of Infinite Dimensional Hamiltonian Systems},
journal = {Analysis in Theory and Applications},
year = {2020},
volume = {36},
number = {3},
pages = {295--325},
abstract = {
In this paper we reformulate a Lyapunov center theorem of infinite dimensional Hamiltonian systems arising from PDEs. The proof is based on a modified KAM iteration for periodic case.
}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.OA-SU9}, url = {http://global-sci.org/intro/article_detail/ata/18288.html} }
TY - JOUR
T1 - Lyapunov Center Theorem of Infinite Dimensional Hamiltonian Systems
AU - Xu , Junxiang
AU - Li , Qi
JO - Analysis in Theory and Applications
VL - 3
SP - 295
EP - 325
PY - 2020
DA - 2020/09
SN - 36
DO - http://doi.org/10.4208/ata.OA-SU9
UR - https://global-sci.org/intro/article_detail/ata/18288.html
KW - Hamiltonian systems, KAM iteration, small divisors, lower dimensional tori.
AB -
In this paper we reformulate a Lyapunov center theorem of infinite dimensional Hamiltonian systems arising from PDEs. The proof is based on a modified KAM iteration for periodic case.
Junxiang Xu & Qi Li. (2020). Lyapunov Center Theorem of Infinite Dimensional Hamiltonian Systems.
Analysis in Theory and Applications. 36 (3).
295-325.
doi:10.4208/ata.OA-SU9
Copy to clipboard