Cited by
- BibTex
- RIS
- TXT
Homoclinic snake always refers to the branches of homoclinic orbits near a heteroclinic cycle connecting a hyperbolic or non-hyperbolic equilibrium and a periodic orbit in a reversible variational system. In this paper, the normal form of a Swift-Hohenberg equation with two different symmetry-breaking terms (non-reversible term and non-$k$-symmetry term) are investigated by using multiple scale method, and their bifurcation diagrams are initially studied by numerical simulations. Typically, we predict numerically the existence of so-called round-snakes and round-isolas upon particular two symmetric-breaking perturbations.
}, issn = {}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/aam/20565.html} }Homoclinic snake always refers to the branches of homoclinic orbits near a heteroclinic cycle connecting a hyperbolic or non-hyperbolic equilibrium and a periodic orbit in a reversible variational system. In this paper, the normal form of a Swift-Hohenberg equation with two different symmetry-breaking terms (non-reversible term and non-$k$-symmetry term) are investigated by using multiple scale method, and their bifurcation diagrams are initially studied by numerical simulations. Typically, we predict numerically the existence of so-called round-snakes and round-isolas upon particular two symmetric-breaking perturbations.