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FINITE VOLUME SCHEME FOR MULTIPLE FRAGMENTATION

EQUATIONS

RAJESH KUMAR∗ AND JITENDRA KUMAR

Abstract. In this paper we study a finite volume approximation for the conservative formulation
of multiple fragmentation models. We investigate the convergence of the numerical solutions
towards a weak solution of the continuous problem by considering locally bounded kernels. The
proof is based on the Dunford-Pettis theorem by using the weak L

1 compactness method. The
analysis of the method allows us to prove the convergence of the discretized approximated solution
towards a weak solution to the continuous problem in a weighted L

1 space.
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1. Introduction

The equations we consider in this paper describe the time evolution of the par-
ticle size distribution (PSD) under multiple fragmentation or breakage process. In
the simplest equations, each particle is identified by its size, i.e. volume or mass.
In multiple breakage, a big particle breaks into two or many fragments. Examples
of applications of such models arise in many engineering applications, including
aerosol physics, the coalescence and breakup of liquid drops, high shear granu-
lation, crystallization, atmospheric science, highly demanding nano-particles and
pharmaceutical industries, see Sommer et al. [16], Gokhale et al. [6] and references
therein. Binary breakage is not adequate for some of these applications, therefore,
multiple fragmentation is preferred.

The temporal change of the particle number density, f(t, x) ≥ 0, of particles
of volume x ∈ R>0 at time t ∈ R>0 in a spatially homogeneous physical system
undergoing a breakage process is described by the following well known population
balance equation (PBE), see [18]

∂f(t, x)

∂t
=

∫ ∞

x

b(x, y)S(y)f(t, y) dy − S(x)f(t, x),(1)

with initial data

f(0, x) = f in(x) ≥ 0, x ∈]0,∞[.(2)

The positive term on the right-hand side describes the creation of particles of size
x when a particle of size y breaks. The negative term explains the disappearance of
particles of size x into smaller pieces. These terms are known to be the birth and the
death term, respectively. The selection rate S(y) gives the rate at which particles
of size y are selected to break. The breakage function b(x, y) for a given y > 0
gives the size distribution of particle sizes x ∈ [0, y[ resulting from the breakage of
a particle of size y. For the particular case of b(x, y) = 2/y, the multiple breakage
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turns into the binary breakage PBE. The breakage function satisfies the following
important properties

∫ x

0

b(u, x)du = N̄(x),

∫ x

0

ub(u, x)du = x.(3)

The function N̄(x), which may be infinite, denotes the number of fragments ob-
tained from the breakage of a particle of size x. The second integral shows that the
total mass created from the breakage of a particle of size x is again x.

Besides the information given by the evolution of the particle number density
distribution, some integral properties like moments are also of great interest in
particulate systems. The jth moment of the particle size distribution is defined as

µj(t) =

∫ ∞

0

xjf(t, x)dx.(4)

The first two moments are of special interest. The zeroth (j = 0) and first (j = 1)
moments are proportional to the total number and total mass of particles respec-
tively. Furthermore, the second moment is proportional to the light scattered by
particles in the Rayleigh limit [9, p. 1325], [15, p. 267] in some applications. One
can easily show that the zeroth moment increases by breakage process while the
total mass stays constant. For the total mass conservation, the integral equality

∫ ∞

0

xf(t, x) dx =

∫ ∞

0

xf in(x) dx, t ≥ 0,

holds.

Several researchers showed the existence of weak solutions for the aggregation-
breakage equations with non-increasing mass for a large class of aggregation and
fragmentation kernels, see Laurençot [10, 11] and the references therein. Some
authors also explained the relationship between discrete and continuous models.
For instance, Ziff and McGrady [17] found this relationship for constant and sum
breakage kernels while Laurençot and Mischler [11] gave results for the aggregation-
breakage models under more general assumptions on the kernels, i.e. for bilinear
growth. In the literature, there are various ways to approximate the continuous
aggregation-breakage equations including deterministic method [4, 13] and Monte
Carlo method [3, 7].

Recently, Bourgade and Filbet [1] have used a finite volume approximation for
the binary aggregation-breakage equation. They gave the convergence result of the
numerical solutions towards a weak solution of the continuous equation by consider-
ing locally bounded kernels. However, their study is restricted to the case of binary
breakage. As mentioned above, the case of multiple breakage is of great importance
in several applications, especially in high shear granulation. Therefore the aim of
this work is to provide a finite volume approximation of the multiple breakage PBE
and to investigate its convergence. Though the central idea of this extension is
based on the work of Bourgade and Filbet [1], the finite volume approximation and
its convergence presented in this work differ due to appearance of completely new
kinetics parameters (b and S) in the case of multiple breakage. Following the idea
of Bourgade and Filbet, the proof is based on the Dunford-Pettis theorem by using
the weak L1 compactness method and the La Vallée Poussin theorem. We prove
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the convergence of the discretized approximated solution towards a weak solution
to the continuous problem in the weighted L1 space X+ given by

X+ =
{
f ∈ L1(R>0) ∩ L1(R>0, x dx) : f ≥ 0, ‖f‖ < ∞

}

where‖f‖ =
∫∞

0
(1+x)|f(x)|dx, for the non-negative initial condition f in ∈ X+ and

R>0 =]0,∞[. Here the notation L1(R>0, x dx) stands for the space of the Lebesgue
measurable real valued functions on R>0 which are integrable with respect to the
measure x dx.

The outline of the paper is as follows. The conservative formulation of the contin-
uous multiple breakage equation, which is needed for further analysis, is discussed
in the next section. Section 3 gives the numerical approximation of this equation.
Further in Section 4 we discuss the convergence of the approximated solution using
weak compactness. Finally, conclusions are made.

2. Conservative formulation

As mentioned earlier, mass is a conserved quantity in the fragmentation phe-
nomena. Therefore, one can also rewrite the equation in a conservative form of
mass density xf(t, x) as

x∂f(t, x)

∂t
=

∂F(f)

∂x
(x), (t, x) ∈ R

2
>0 =]0,∞[2(5)

where the continuous flux is given as

F(f)(x) :=

∫ ∞

x

∫ x

0

ub(u, v)S(v)f(t, v)dudv, x ∈ R>0.

The proof relies on applying the Leibnitz integration rule and by using the mass
conserving property (3) as

x∂f(t, x)

∂t
=

∫ ∞

x

∂

∂x

∫ x

0

ub(u, v)S(v)f(t, v) du dv −

∫ x

0

ub(u, x)S(x)f(t, x) du

=

∫ ∞

x

xb(x, v)S(v)f(t, v) dv − S(x)f(t, x)

∫ x

0

ub(u, x) du

=x

∫ ∞

x

b(x, v)S(v)f(t, v) dv − S(x)f(t, x)x.(6)

Given f in ∈ X+, we consider the initial condition

f(0, x) = f in(x), x ∈ R>0.

We now present a numerical scheme to solve the equation (5). For this a finite
volume discretization is taken with respect to the volume variable x while an explicit
Euler method is used to discretize the time variable t. For the analysis, we have
assumed that the multiplicative kernel (product of breakage and selection functions)
is locally bounded, i.e. b S ∈ L∞

loc(R>0×R>0). It should be mentioned that the case
of binary aggregation can be added here in the same way as discussed by Bourgade
and Filbet [1]. The analysis will follow analogously by adding the conservative
aggregation flux taken from [1] to our numerical breakage flux.
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3. Numerical approximation

The discretization we propose here is to give a mass conservative truncation for
the breakage operator: Given a positive real R, it is defined as

FR
c (f)(x) :=

∫ R

x

∫ x

0

ub(u, v)S(v)f(t, v)dudv.

Therefore, a conservative formulation for multiple breakage is given by







x∂f
∂t =

∂FR
c (f)
∂x (x), (t, x) ∈ R>0×]0, R];

f(0, x) = f in(x), x ∈]0, R].

(7)

Mass conservation can easily be seen by integrating equation (7) with respect to x
from 0 to R.

Now, for the volume discretization of equation (7), let h ∈]0, 1[, Ih a positive
integer such that (xi−1/2)i∈{0,...,Ih} is a mesh of ]0, R] with the properties

x−1/2 = 0, xIh+1/2 = R, xi = (xi−1/2 + xi+1/2)/2, ∆xi = xi+1/2 − xi−1/2 ≤ h

and Λh
i =]xi−1/2, xi+1/2] for i ≥ 0. For the time discretization, let us assume that

∆t denotes the time step such that N∆t = T for a large positive integer N and
[0, T ] is the time domain where we study the equation. We define the time interval

τn = [tn, tn+1[

with tn = n∆t, n ≥ 0.

Now we introduce the finite volume method for the equation. We consider the
approximation of f(t, x) for t ∈ τn and x ∈ Λh

i as fn
i for each integer i ∈ {0, . . . , Ih}

and each n ∈ {0, . . . , N−1}. For the time being we discretize the selection function
S(x) and the breakage function b(u, x) in such a way that S(x) ≈ Sh(x) = Si and
b(u, x) ≈ bh(u, x) = bj,i for x ∈ Λh

i and u ∈ Λh
j .

Integrating equation (7) with respect to x and t over a cell in space Λh
i and time

τn respectively gives

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂(xf(t, x))

∂t
dx dt =

∫ tn+1

tn

∫ xi+1/2

xi−1/2

∂FR
c (f)

∂x
(x)dx dt.

This further implies that

∫ xi+1/2

xi−1/2

(xf(tn+1, x)− xf(tn, x))dx =

∫ tn+1

tn

FR
c (f(t, xi+1/2))−FR

c (f(t, xi−1/2))dt.

Finally we obtain the following discretization for the multiple breakage equation

xif
n+1
i = xif

n
i +

∆t

∆xi

(

Fn
i+1/2 −Fn

i−1/2

)

(8)
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where Fn
i+1/2 is the numerical flux which is an approximation of the continuous flux

function FR
c (f)(x). It is defined as

FR
c (f)(xi+1/2) =

∫ R

xi+1/2

∫ xi+1/2

0

ub(u, v)S(v)fn(v)du dv

=

Ih
∑

j=i+1

∫

Λh
j

S(v)fn(v)

i∑

k=0

∫

Λh
k

ub(u, v)du dv

≈
Ih
∑

j=i+1

i∑

k=0

xkSjbk,jf
n
j ∆xj∆xk = Fn

i+1/2.(9)

The initial condition is taken as

f in
i =

1

△xi

∫

Λh
i

f in(x)dx, i ∈ {0, . . . , Ih}.

The breakage fluxes at the boundaries x−1/2 and xIh+1/2 are

Fn
−1/2 = Fn

Ih+1/2 = 0.(10)

For time we use the explicit Euler discretization while for the volume variable a
finite volume approach is considered, see LeVeque [14] and Eymard et al. [5]. Let
us denote the characteristic function χA(x) of a set A such that χA(x) = 1 if x ∈ A
or 0 elsewhere. Then we define a function fh on [0, T ]×]0, R] as

fh(t, x) =

N−1∑

n=0

Ih∑

i=0

fn
i χΛh

i
(x)χτn(t).(11)

This implies that the function fh depends on the time and volume steps and note
that

fh(0, ·) =
Ih∑

i=0

f in
i χΛh

i
(·)

converges strongly to f in in L1]0, R] as h → 0. We also define the breakage and
selection functions in discrete form as

bh(u, v) =
Ih∑

j=0

Ih∑

i=0

bi,jχΛh
i
(u)χΛh

j
(v) where bi,j =

1

∆xi∆xj

∫

Λh
j

∫

Λh
i

b(u, v)dudv

(12)

and

Sh(v) =

Ih∑

i=0

SiχΛh
i
(v) where Si =

1

∆xi

∫

Λh
i

S(v)dv.(13)

Such discretization ensures that ‖bh−b‖L1(]0,R]×]0,R]) → 0 and ‖Sh−S‖L1(]0,R]) → 0
as h → 0.

4. Convergence of solutions

In the following we state our main theorem for the convergence of approximated
solutions towards a weak solution of the equation (7).
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Theorem 4.1. Let the breakage function b and the selection function S be such
that bS ∈ L∞

loc
(R>0 × R>0) and f in ∈ X+. We also assume that there exists a

constant θ > 0 such that the time step ∆t satisfies the stability condition

C(T,R)∆t ≤ θ < 1,(14)

where

C(T,R) := ‖bS‖L∞R.(15)

Then up to the extraction of a subsequence,

fh → f in L∞(0, T ;L1 ]0, R]),

where f is the weak solution to (7) on [0, T ] with initial data f in. Precisely, the
function f ≥ 0 satisfies

∫ T

0

∫ R

0

xf(t, x)
∂ϕ

∂t
(t, x)dx dt +

∫ R

0

xf in(x)ϕ(0, x)dx =

∫ T

0

∫ R

0

FR
c (t, x)

∂ϕ

∂x
(t, x)dx dt

(16)

for all continuously differentiable functions ϕ compactly supported in [0, T [×[0, R].

It is clear from this theorem that our main aim is to show that the sequence
of functions (fh)h∈N converges weakly to a function f in L1]0, R] as h and ∆t
go to zero. The proof relies on the following Dunford-Pettis theorem [2] which
gives a necessary and sufficient condition for compactness with respect to the weak
convergence in L1.

Theorem 4.2. [2, Theorem 3.2] Let |Ω| < ∞ and fh : Ω 7→ R be a sequence in
L1(Ω). Suppose that the sequence {fh} satisfies

• {fh} is equibounded in L1(Ω), i.e.

sup ‖fh‖L1(Ω) < ∞(17)

• {fh} is equiintegrable, iff
∫

Ω

Φ(|fh|)dx < ∞(18)

for some increasing function Φ : [0,∞[ 7→ [0,∞[ satisfying

lim
r→∞

Φ(r)

r
→ ∞.

Then fh lies in a weakly compact set in L1(Ω) which implies that there exists a
subsequence of fh that converges weakly in L1(Ω).

Therefore, in order to prove the Theorem 4.1, we must show the equiboundedness
and the equiintegrability of the family fh in L1 as in (17) and (18), respectively.
In the following proposition, we prove the non-negativity and equiboundedness of
the function fh. For this we use a mid-point approximation of a point x by Xh(x),
i.e. Xh(x) = xi for x ∈ Λh

i .

Proposition 4.3. Let us assume that the time step ∆t satisfies (14). Then fh is
a non-negative function satisfying the mass conservation

∫ R

0

Xh(x)fh(t, x)dx =

∫ R

0

Xh(x)fh(s, x)dx, 0 ≤ s ≤ t ≤ T
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and for all t ∈ [0, T ],
∫ R

0

fh(t, x)dx ≤ ‖f in‖L1 eR‖bS‖L∞ t.(19)

Proof. We prove the non-negativity and equiboundedness of fh by using induction.
We know that at t = 0, fh(0) ≥ 0 and belongs to L1]0, R]. Assume next that the
function fh(tn) ≥ 0 and

∫ R

0

fh(tn, x)dx ≤ ‖f in‖L1 eR‖bS‖L∞ tn .(20)

Now we will prove that fh(tn+1) ≥ 0. We do this first for the cell at the boundary
which has the index i = 0. Note that by (9) we have Fn

i±1/2 ≥ 0. Therefore, in this

case from the equation (8) and by using the flux Fn
−1/2 = 0, we get

x0f
n+1
0 = x0f

n
0 +

∆t

∆x0
Fn

1/2 ≥ x0f
n
0 .

Hence we obtain fn+1
0 ≥ 0. Now for i ≥ 1,

xif
n+1
i = xif

n
i +

∆t

∆xi

(

Fn
i+1/2 −Fn

i−1/2

)

.

From the equation (9) and the non-negativity of fh(tn), we calculate

Fn
i+1/2 − Fn

i−1/2

∆xi
=

1

∆xi

[ Ih
∑

j=i+1

i∑

k=0

xkSjbk,jf
n
j ∆xj∆xk −

Ih
∑

j=i

i−1∑

k=0

xkSjbk,jf
n
j ∆xj∆xk

]

=
1

∆xi

[

−

i−1∑

k=0

xkSibk,if
n
i ∆xi∆xk +

Ih
∑

j=i+1

xiSjbi,jf
n
j ∆xj∆xi

]

≥−

i−1∑

k=0

xkSibk,if
n
i ∆xk.(21)

Since k < i implies that xk < xi, we further simplify (21) into

Fn
i+1/2 −Fn

i−1/2

∆xi
≥−

i−1∑

k=0

xiSibk,if
n
i ∆xk

≥−

Ih
∑

k=0

(Sibk,i∆xk)xif
n
i .

Therefore, we estimate that

xif
n+1
i ≥

(

1−∆t

Ih∑

k=0

Sibk,i∆xk

)

xif
n
i .

Finally, using the stability condition (14) on the time step ∆t and the L1 estimate
(20) give

fh(tn+1) ≥ 0.

Next, the total mass conservation follows by summing (8) with respect to i and
using (10)

Ih∑

i=0

∆xixif
n+1
i =

Ih∑

i=0

∆xixif
n
i +∆t

Ih
∑

i=0

(

Fn
i+1/2 −Fn

i−1/2

)

=

Ih∑

i=0

∆xixif
n
i .
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Now, we prove that fh(tn+1) enjoys a similar estimate as (20). Multiplying equation
(8) by ∆xi/xi and taking summation over i yield

Ih∑

i=0

∆xif
n+1
i =

Ih∑

i=0

∆xif
n
i +∆t

Ih∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
.

Analogously as for (21) we may estimate

Ih∑

i=0

Fn
i+1/2 −Fn

i−1/2

xi
≤

Ih∑

i=0

∆xi

Ih∑

j=i+1

∆xjSjbi,jf
n
j(22)

and therefore

Ih∑

i=0

∆xif
n+1
i ≤ (1 +R‖bS‖L∞∆t)

Ih∑

i=0

∆xif
n
i .

Finally, using (20) at step n and the inequality 1 + x < exp(x) for all x > 0 gives

Ih∑

i=0

∆xif
n+1
i ≤ ‖f in‖L1eR‖bS‖L∞tn+1

and therefore the result (19) follows. �

Next we will prove the equiintegrability for the function fh. The following prop-
erty on convex functions, as stated in the La Vallée Poussin theorem [8, Proposition
I.1.1], and Lemma 4.4 are used to show this result. Since f in ∈ L1 ]0, R], hence by
the La Vallée Poussin theorem, there exists a convex function Φ ≥ 0, continuously
differentiable on R>0 with Φ(0) = 0, Φ

′

(0) = 1 such that Φ
′

is concave,

Φ(r)

r
→ ∞, as r → ∞

and
∫ R

0

Φ(f in)(x)dx < +∞.(23)

Lemma 4.4. [12, Lemma B.1.] Let Φ ∈ C1(R>0) be convex such that Φ
′

is concave,

Φ(0) = 0,Φ
′

(0) = 1 and Φ(r)/r → ∞ as r → ∞. Then for all (x, y) ∈ R>0 × R>0,

xΦ
′

(y) ≤ Φ(x) + Φ(y).

Now, we are in a position to prove the equiintegrability in the following.

Proposition 4.5. Let f in ≥ 0 ∈ L1]0, R] and let fh be defined for all h and
∆t by (8) where ∆t satisfies (14). Then the family (fh)(h,∆t) is weakly relatively

sequentially compact in L1(]0, T [×]0, R]).

Proof. Our aim is to get a similar estimate as (23) for the function fh. We know
that the integral of Φ(fh) is related to the sequence fn

i through

∫ T

0

∫ R

0

Φ(fh(t, x))dx dt =

N−1∑

n=0

Ih∑

i=0

∫

τn

∫

Λh
i

Φ

(N−1∑

k=0

Ih∑

j=0

fk
j χΛh

j
(x)χτk (t)

)

dx dt

=

N−1∑

n=0

Ih∑

i=0

∆t∆xiΦ(f
n
i ).



278 R. KUMAR AND J. KUMAR

Since Φ is a convex function, we can estimate

(
fn+1
i − fn

i

)
Φ

′

(fn+1
i ) ≥ Φ(fn+1

i )− Φ(fn
i ).

Hence, multiplying this equation by ∆xi and taking summation over i on both sides
we get

Ih
∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )
]
≤

Ih
∑

i=0

∆xi

[

(fn+1
i − fn

i )Φ
′

(fn+1
i )

]

.

By using the discrete equation (8), it can be rewritten as

Ih
∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )
]
≤

Ih
∑

i=0

∆t

xi

(

Fn
i+1/2 −Fn

i−1/2

)

Φ
′

(fn+1
i ).

Since Φ is a convex function, its derivative is non-decreasing. Therefore, Φ
′

(0) = 1

implies that Φ
′

(x) > 0 for x ≥ 0. Further simplification as in (22) gives

Ih
∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )
]
≤

Ih
∑

i=0

∆t

xi

Ih
∑

j=i+1

xiSjbi,jf
n
j ∆xj∆xiΦ

′

(fn+1
i )

≤‖bS‖L∞∆t

Ih
∑

i=0

Ih
∑

j=i+1

∆xj∆xif
n
j Φ

′

(fn+1
i ).

Using the property xΦ
′

(y) ≤ Φ(x) + Φ(y) from Lemma 4.4, it reduces to

Ih
∑

i=0

∆xi

[
Φ(fn+1

i )− Φ(fn
i )
]
≤‖bS‖L∞∆t

Ih
∑

i=0

∆xi

Ih
∑

j=i+1

∆xj

(
Φ(fn

j ) + Φ(fn+1
i )

)

≤(‖bS‖L∞∆tR)





Ih
∑

j=0

∆xjΦ(f
n
j ) +

Ih
∑

i=0

∆xiΦ(f
n+1
i )



 .

Changing the index from j to i for the first term on the right-hand side and taking
‖bS‖L∞R = C(T,R), we obtain

(1−∆tC(T,R))

Ih
∑

i=0

∆xiΦ(f
n+1
i ) ≤(1 + ∆tC(T,R))

Ih
∑

i=0

∆xiΦ(f
n
i ).

Equivalently, it can be rewritten as

(1−∆tC(T,R))

Ih
∑

i=0

∆xi(Φ(f
n+1
i )− Φ(fn

i )) ≤2∆tC(T,R)

Ih
∑

i=0

∆xiΦ(f
n
i ).(24)

This gives using λ = 2C(T,R)
1−∆tC(T,R) > 0

Ih
∑

i=0

∆xiΦ(f
n+1
i ) ≤(1 + λ∆t)

Ih
∑

i=0

∆xiΦ(f
n
i )
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for any n. Hence, we achieve the result that

Ih
∑

i=0

∆xiΦ(f
n
i ) ≤(1 + λ∆t)n

Ih
∑

i=0

∆xiΦ(f
0
i )

≤ exp(λ∆tn)

Ih
∑

i=0

∆xiΦ(f
0
i ).

For time t ∈ τn = [tn, tn+1[ the above expression becomes

∫ R

0

Φ(fh(t, x))dx ≤ exp(λt)

Ih
∑

i=0

∆xiΦ(f
in
i )

≤ exp(λt)

Ih
∑

i=0

∆xiΦ

(

1

∆xi

∫

Λh
i

f in(x)dx

)

.

We apply Jensen’s inequality to get

∫ R

0

Φ(fh(t, x))dx ≤ exp(λt)

Ih
∑

i=0

∆xi/∆xi

∫

Λh
i

Φ(f in(x))dx.

Equivalently, we have
∫ R

0

Φ(fh(t, x))dx ≤ exp

(
2C(T,R)t

1−∆tC(T,R)

)∫ R

0

Φ(f in(x))dx.

As we know from (14) that 1−∆tC(T,R) ≥ 1− θ. This implies that
∫ R

0

Φ(fh(t, x))dx ≤ exp

(
2C(T,R)t

1− θ

)∫ R

0

Φ(f in(x))dx, for all t ∈ [0, T [

and it concludes the proof. �

Hence, the sequence (fh)h∈N is weakly compact in L1 due to the Dunford-Pettis
theorem. Here, the exponent is uniformly bounded with respect to h and ∆t as long
as the time step restriction (14) holds. This implies that there exists a subsequence
of (fh)h∈N and a function f ∈ L1(]0, T [×]0, R]) such that fh ⇀ f as h → 0.

So far we have seen that the sequence fn
i is built from the numerical scheme as

a sequence of step functions fh depending on the mesh size h and the time step
∆t. We have already seen the weak compactness of this sequence. Now in order
to prove Theorem 4.1, it remains to show that the discrete breakage flux converges
weakly towards the continuous flux when it is written in terms of the function fh.
This is done in Lemma 4.7 later.

We use the following point approximations for further analysis. First we define
the midpoint approximation as

Xh : x ∈]0, R[→ Xh(x) =

Ih∑

i=0

xiχΛh
i
(x).

Then right and left endpoint approximations are taken respectively as

Ξh : x ∈]0, R[→ Ξh(x) =

Ih∑

i=0

xi+1/2χΛh
i
(x),
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and

ξh : x ∈]0, R[→ ξh(x) =

Ih∑

i=0

xi−1/2χΛh
i
(x).

It should be mentioned that the approximations (Xh)h, (Ξ
h)h and (ξh)h converge

pointwise, i.e. for all x ∈]0, R[,

Xh(x) → x, Ξh(x) → x and ξh(x) → x

as h → 0. We also use the following classical lemma to prove the convergence of
the numerical flux towards the continuous flux. The proof of this lemma is based
on the Dunford-Pettis and Egorov theorems.

Lemma 4.6. [12, Lemma A.2] Let Ω be an open subset of Rm and let there exist a
constant k > 0 and two sequences (vn)n∈N and (wn)n∈N such that (vn) ∈ L1(Ω), v ∈
L1(Ω) and

vn ⇀ v, weakly in L1(Ω), as n → ∞,

(wn) ∈ L∞(Ω), w ∈ L∞(Ω), and for all n ∈ N, |wn| ≤ k with

wn → w, almost everywhere (a.e.) in Ω, as n → ∞.

Then

lim
n→∞

‖vn(wn − w)‖L1(Ω) = 0

and

vn wn ⇀ vw, weakly in L1(Ω), as n → ∞.

Consider the definitions of fh, bh and Sh given by (11), (12) and (13) respectively.
The following lemma state the convergence result of the numerical flux towards the
continuous flux.

Lemma 4.7. Let us define the approximation of the fragmentation terms as

Fh(t, x) =

∫ R

0

∫ R

0

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)X
h(u)bh(u, v)Sh(v)fh(t, v)dudv.

There exists a subsequence of (fh)h∈N, such that

Fh ⇀ FR
c in L1(]0, T [×]0, R]) as h → 0.

Before proving this lemma, it is worth to mention that actually the Fh(t, x)
coincide with Fn

i whenever t ∈ τn and x ∈ Λh
i . It can be seen easily that for x ∈ Λh

i

Fh(t, x) =

∫ R

xi+1/2

∫ xi+1/2

0

Xh(u)bh(u, v)Sh(v)fh(t, v)dudv

=

Ih∑

j=i+1

∫

Λh
j

i∑

k=0

∫

Λh
k

[

Xh(u)

( Ih∑

ℓ=0

Ih∑

m=0

bm,ℓχΛh
m
(u)χΛh

ℓ
(v)

)( Ih∑

ℓ=0

SℓχΛh
ℓ
(v)

)

·

( Ih∑

ℓ=0

fn
ℓ χΛh

ℓ
(v)

)]

dudv

=
Ih∑

j=i+1

i∑

k=0

∫

Λh
j

∫

Λh
k

xkbk,jSjf
n
j dudv = Fn

i+1/2.
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Proof. [Lemma 4.7]
We know that for all (t, x) ∈]0, T [×]0, R] and for u ∈]0, R] almost everywhere that
the sequence

Xh(·)bh(·, v)Sh(v) ∈ L∞]0, R] for almost all v ∈]0, R].

It is uniformly bounded and

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)X
h(u)bh(u, v)Sh(v) → χ[0,x](u)χ[x,R](v)ub(u, v)S(v)

pointwise almost everywhere as h → 0. We also know that fh ⇀ f in L1]0, R].
Hence, applying Lemma 4.6 yields

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)X
h(u)bh(u, v)Sh(v)fh(t, v) ⇀ χ[0,x](u)χ[x,R](v)ub(u, v)S(v)f(t, v)

in L1]0, R]. Therefore, we have

∫ R

0

χ[0,Ξh(x)](u)χ[Ξh(x),R](v)X
h(u)bh(u, v)Sh(v)fh(t, v)dv →

∫ R

0

χ[0,x](u)χ[x,R](v)ub(u, v)S(v)f(t, v)dv.(25)

This implies that (25) holds for each t, x and almost every u. Finally, by applying
dominated convergence theorem we get

Fh(t, x) → FR
c (t, x)

for every (t, x) ∈]0, T [×]0, R]. As Fh is bounded, this pointwise convergence implies
weak convergence for Fh. �

Now we have gathered all the results needed to prove Theorem 4.1. The proof
is given below. For this, let us consider a test function ϕ ∈ C1([0, T [×[0, R]) which
is compactly supported. For ∆t small enough, the support of ϕ with respect to t
satisfies Supptϕ ⊂ [0, tN−1]. Define the finite volume (in time) and left endpoint
(in space) approximation of ϕ on τn × Λh

i by

ϕn
i =

1

∆t

∫ tn+1

tn

ϕ(t, xi−1/2)dt.

Multiplying (8) by ϕn
i and summing over n ∈ {0, ..., N − 1} as well as i ∈ {0, ..., Ih}

give

N−1∑

n=0

Ih∑

i=0

[

∆xixi(f
n+1
i − fn

i )ϕ
n
i −∆t

(

Fn
i+1/2 −Fn

i−1/2

)

ϕn
i

]

= 0.

If we open the summation for both i and n, discrete integration by parts yields

N−1∑
n=0

Ih∑
i=0

∆xixif
n+1
i (ϕn+1

i − ϕ
n
i ) +

Ih∑
i=0

∆xixif
in
i ϕ

0
i −

N−1∑
n=0

Ih−1∑
i=0

∆tF
n
i+1/2(ϕ

n
i+1 − ϕ

n
i ) = 0.

(26)
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Now, we evaluate the first two terms on the left-hand side by writing them in terms
of the function fh as

N−1∑

n=0

Ih∑

i=0

∆xixif
n+1
i (ϕn+1

i − ϕn
i ) +

Ih∑

i=0

∆xixif
in
i ϕ0

i =

N−1∑

n=0

Ih∑

i=0

∫

τn+1

∫

Λh
i

Xh(x)fh(t, x)
ϕ(t, ξh(x)) − ϕ(t−∆t, ξh(x))

∆t
dxdt

+

Ih∑

i=0

∫

Λh
i

Xh(x)fh(0, x)
1

∆t

∫ ∆t

0

ϕ(t, ξh(x))dtdx.

Further it can be written as

N−1∑

n=0

Ih∑

i=0

∆xixif
n+1
i (ϕn+1

i − ϕn
i ) +

Ih∑

i=0

∆xixif
in
i ϕ0

i =

∫ T

∆t

∫ R

0

Xh(x)fh(t, x)
ϕ(t, ξh(x)) − ϕ(t−∆t, ξh(x))

∆t
dxdt

+

∫ R

0

Xh(x)fh(0, x)
1

∆t

∫ ∆t

0

ϕ(t, ξh(x))dtdx.

Since, ϕ ∈ C1([0, T [×[0, R]) with compact support and the derivative of ϕ is
bounded, we have

1

∆t

∫ ∆t

0

ϕ(t, ξh(x))dt → ϕ(0, x)

uniformly with respect to t, x as max{h,∆t} goes to 0. Moreover, we know that
Xh(x) converges pointwise in [0, R] and fh(0, x) → f in in L1]0, R]. Thus we achieve
by using Lemma 4.6

∫ R

0

Xh(x)fh(0, x)
1

∆t

∫ ∆t

0

ϕ(t, ξh(x))dtdx →

∫ R

0

xf in(x)ϕ(0, x)dx

as max{h,∆t} goes to 0.

Now, using Taylor expansion of the smooth function ϕ yields

ϕ(t, ξh(x)) − ϕ(t−∆t, ξh(x))

∆t

=
ϕ(t, x) + (x− ξh(x))∂ϕ∂x − ϕ(t, x) + ∆t∂ϕ∂t − (x− ξh(x))∂ϕ∂x +O(h∆t)

∆t
.

It implies that

ϕ(t, ξh(x)) − ϕ(t−∆t, ξh(x))

∆t
→

∂ϕ

∂t
(t, x)

uniformly as max{h,∆t} goes to 0. Applying Lemma 4.6, together with Proposition
4.5, ensures that for max{h,∆t} goes to 0

∫ T

0

∫ R

0

X
h(x)fh(t, x)

ϕ(t, ξh(x))− ϕ(t−∆t, ξh(x))

∆t
dx dt →

∫ T

0

∫ R

0

xf(t, x)
∂ϕ

∂t
(t, x)dx dt.
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Hence, we obtain
∫ T

∆t

∫ R

0

Xh(x)fh(t, x)
ϕ(t, ξh(x)) − ϕ(t−∆t, ξh(x))

∆t
︸ ︷︷ ︸

A

dx dt

=

∫ T

0

∫ R

0

Adxdt −

∫ ∆t

0

∫ R

0

Adxdt →

∫ T

0

∫ R

0

xf(t, x)
∂ϕ

∂t
(t, x)dx dt

as max{h,∆t} → 0. Finally, writing the remaining third term of the equation (26)
in terms of Fh gives

N−1∑

n=0

Ih−1∑

i=0

∆tFn
i+1/2(ϕ

n
i+1 − ϕn

i )

=
N−1∑

n=0

Ih−1∑

i=0

∫

τn

∫

Λh
i

Fn
i+1/2

1

∆xi

[
ϕ(t, xi+1/2)− ϕ(t, xi−1/2)

]
dxdt

=

∫ T

0

∫ R−∆x
Ih

0

Fh(t, x)
∂ϕ

∂x
(t, x)dxdt.

By using the weak convergence for the flux from Lemma 4.7, i.e. Fh ⇀ FR
c in

L1(]0, T [×]0, R]), we determine

∫ T

0

∫ R−∆x
Ih

0

Fh(t, x)
∂ϕ

∂x
(t, x)dxdt =

(
∫ T

0

∫ R

0

−

∫ T

0

∫

∆x
Ih

)

Fh(t, x)
∂ϕ

∂x
(t, x)dxdt

→

∫ T

0

∫ R

0

FR
c

∂ϕ

∂x
(t, x)dxdt, as h → 0.

Therefore, the corresponding terms in (16) are obtained.

5. Conclusions

In this article a mass conservative formulation of the multiple breakage PBE
was considered. We then demonstrated the convergence of finite volume approx-
imations towards a weak solution to the continuous multiple breakage equations.
This investigation was done in L1 space by using the Dunford-Pettis and La Vallée
Poussin theorem which required to show the equiboundedness and equiintegrability
of the numerical solution. The analysis was performed by assuming certain growth
condition, i.e. locally bounded, on the product of breakage and selection functions.
The stability was also discussed under some CFL condition on time step. In the
future it would be interesting to see how one can enlarge the class of breakage
kernels.
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