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Abstract. We considered the point source identification problems for heat equations
from noisy observation data taken at the minimum number of spatially fixed measure-
ment points. We aim to identify the unknown number of sources and their locations
along with their strengths. In our previous work, we proved that minimum measure-
ment points needed under the noise-free setting. In this paper, we extend the proof
to cover the noisy cases over a border class of source functions. We show that if the
regularization parameter is chosen properly, the problem can be transformed into a
poles identification problem. A reconstruction scheme is proposed on the basis of the
developed theoretical results. Numerical demonstrations in 2D and 3D conclude the
paper.
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1 Introduction

Inverse source identification problems are important in many branches of engineering
sciences. For examples, an accurate estimation of a pollution source in a river [7], a de-
termination of magnitude of groundwater pollution sources [15] are crucial to environ-
mental protection. Other examples can be found in [20, 21] and the references therein.
In general, a complete recovery of the unknown source is not attainable from practically
restricted boundary measurements. The inverse source problem becomes solvable if cer-
tain a priori knowledge is assumed. Inverse problems are in nature unstable because the
unknown solutions/ parameters have to be determined from indirect observable data

∗Corresponding author. Email addresses: lling@hkbu.edu.hk (Ling), take@ms.u-tokyo.ac.jp (Takeuchi)

http://www.global-sci.com/ 897 c©2009 Global-Science Press



898 L. Ling and T. Takeuchi / Commun. Comput. Phys., 5 (2009), pp. 897-913

which contain measurement errors. The major difficulty in establishing any numerical
algorithm for approximating the solution is the severe ill-posedness of the problem and
the ill-conditioning of the resultant discretized matrix.

The heat conduction process is irreducible in time, while the temperature profile be-
comes rapidly smoother in time. This means that the characteristic of the solution may
not be affected by the observed data. To the knowledge of the authors, the mathemati-
cal analysis and efficient algorithms for inverse heat problems are still very limited. For
instance, the uniqueness and conditional stability results for heat source identification
problem can be found in [3, 4, 26]. Studies on stationary point source problem can be
found in [2, 5, 16]. Some reconstruction schemes can be found in [22, 24, 28, 29].

In order to solve an inverse problem of any kind, it is well-known that more input data
usually results in better estimation. In practise, it is not always possible to install a large
amount of measuring instruments. Our interest is therefore investing on the minimum
number of measurement points needed for the point sources identifications problems for
heat equations. We first consider the problem of identifying, from data obtained by a
single measurement point b

‖u(t,b)−uδ(t)‖L2(0,T)≤δ, (1.1)

the source function of the following heat equation

{
∂tu(x,t)=∆u(x,t)+ f (x), x∈Rd, t>0,

u(x,0)=0, x∈Rd,
(1.2)

where the source function f is assumed to be a linear combination of dirac-delta function,

f (x)=
N

∑
ℓ=1

σℓδ(x−aℓ). (1.3)

In [17], we show that (1.2) is equivalent to the one with time dependent source function
h(t) f (x) using the Volterra equation of the second kind. Moreover, we analyzed the
above problem without noise in two-dimension with the dirac-delta function δ(·) in (1.3)
approximated by some radially symmetric functions in the Schwartz space S (R2) of
rapidly decreasing functions. Furthermore, we assumed all strengths are unitary, e.g.
σℓ=1 for all ℓ in (1.3). We showed that one measurement point is sufficient to identify the
number of sources and three measurement points are sufficient to determine all unknown
source positions.

In this paper, the same results are shown to hold under a general setting: besides
of the number of sources N and their locations aℓ, the strength σℓ (ℓ = 1,··· ,N) is now
considered as considered as unknown. Moreover, the analysis of this paper takes noise
into account. The work in this paper can be applied to the formulation in [17] when
dirac-delta function δ(·) is replaced by ρ∈S (Rd).

Let b be a measurement point in Rd. Our problem here is to identify the number of
sources N, the source strengths σℓ and the locations aℓ from the noisy data uδ(t) at the
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measurement point b∈Rd under some a priori assumptions of the source locations aℓ. In
particular, since N is finite, we assume that the locations aℓ are all contained in a given
bounded region Ω. We also assume that the measurement point b is located outside of
Ω. For simplicity, we begin with only one measurement point. Then, we will see that
multiple measurement points are needed to achieve our goal.

For the stationary problem

△u(x)=
N

∑
ℓ=1

σℓδ(x−aℓ)

in a bounded domain Ω⊂C with Neumann condition ∂νu|∂Ω = g, the source term N and
{σℓ,aℓ} can be determined by the relations

cn =
N

∑
ℓ=1

σℓan
ℓ , (1.4)

for each non-negative integer n where cn can be computed from measurement data [10].
The equation (1.4) can be solved by some poles identification algorithms [19]. For other
stationary inverse source problems, the readers are referred to [1, 5, 10, 14, 16].

We aim to derive a similar relation to (1.4) asymptotically for our nonstationary prob-
lem. Instead of the source locations, our equation will contain the measurement-to-source
distances rℓ :=‖b−aℓ‖ between a spatially fixed measurement point b and the unknown
source locations. In Section 2, we formulate our inverse source problem as a minimiza-
tion problem and show the existence and uniqueness of its solution. Next, we show that
the solution to the minimization problems will converge to the form of (1.4) in Section 3.
In Section 4, the developed theories are transformed into numerical algorithm. Moreover,
we re-derive the collocation method proposed in [17] in Section 5 with some necessary
assumptions that we omitted previously. Finally, in Section 6, some numerical results are
shown.

2 Existence and uniqueness

Without loss of generality, we may assume that rℓ :=‖b−aℓ‖∈ [R1,R2] with

R1 = inf
x∈Ω

‖b−x‖, R2 =sup
x∈Ω

‖b−x‖.

Define a partition Sm := {sk| k = 1,··· ,m} of [R1,R2] for m∈N such that gap(Sm)→ 0 as
m→∞, where

gap(Sm)= sup
2≤k≤m

|sk−sk−1|.

A solution of (1.2) which decays at infinity is given by

u(x, t)=
N

∑
ℓ=1

∫ t

0
σℓ

1

(4πτ)
d
2

exp

(
−‖x−aℓ‖2

4τ

)
dτ. (2.1)
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Motivated by (2.1), we define an operator Km :Rm→ L2(0,T) by

Km(λ)(t)= ∑
{k|sk∈Sm}

λk

∫ t

0

1

(4πτ)
d
2

exp

(
− s2

k

4τ

)
dτ, λ∈R

m. (2.2)

For any given positive number α>0, we define a functional on Rm by

J(λ) :=‖Km(λ)(t)−uδ(t)‖2
L2(0,T)+α

m

∑
k=1

|λk|, (2.3)

where uδ(t) is the measurement data satisfying (1.1). We consider the minimization prob-
lem

inf
λ∈Rm

J(λ). (2.4)

We solve the minimization problem (2.4), which is a nonlinear optimization problem,
with respect to λ. Let ∂J(λ) denote the generalized Jacobian of J at λ∈Rm, see [13, 25].

Lemma 2.1. For λ∈Rm, the following statements are equivalent:

(i) 0∈∂J(λ).

(ii) There exists a unique vector ξ∈Rm such that





K∗
mKm(λ)−K∗

muδ+αξ =0,

ξk =
λk+ξk

max{1,|λk +ξk|}
, k=1,··· ,m.

(2.5)

Proof. Denotes the set of points at which J is differentiable by DJ . Whenever the par-
tial derivatives exist at point x, we write ∇J(x) for the usual m×m Jacobian of partial
derivatives. From [9, 13, 25], we have a relation

∂J(λ)=co

{
lim

x→λ,x∈DJ

∇J(x)

}
.

Here, co{A} is the convex hull of a set A. Then we have

∂J(λ)=co

{
K∗

mKm(λ)−K∗
muδ+α lim

x→λ,x∈DJ

∇|x|
}

=K∗
mKm(λ)−K∗

muδ+α
{
(ξ1,ξ2,··· ,ξm)T ∈R

m : λkξk = |λk|, |ξk |≤1
}

.

Similar approaches with slackness conditions have been successfully applied to other
problems, see [11, 12].
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Using the fact that λkξk = |λk| and |ξk|≤1 are equivalent to

ξk =
λk+ξk

max{1,|λk +ξk|}
,

we can express ∂J(λ) as

∂J(λ)=K∗
mKm(λ)−K∗

muδ+α

{
(ξ1,ξ2,··· ,ξm)T ∈R

m : ξk =
λk+ξk

max{1,|λk +ξk|}

}
.

The equivalence is now obvious. �

Since the functional J is strictly convex on Rm, it contains the unique minimizer λ̂ =

λα,m,δ ∈ Rm. In this case, the condition 0 ∈ ∂J(λ̂) becomes the necessary and sufficient

condition that the λ̂ is the minimizer of J, see [9, 13, 25]. Hence, from Lemma 2.1, to seek
the minimizer λ̂ of J becomes the task of finding the unique pair (λ̂, ξ̂)∈Rm×Rm that
satisfies the nonlinear system (ii) in Lemma 2.1. This is the same as to find the unique
zero point of a function F :R2m →R2m defined by

F(λ,ξ) :=




K∗
mKm(λ)−K∗

muδ+αξ

ξ1−
λ1+ξ1

max{1,|λ1+ξ1|}
...

ξm−
λm+ξm

max{1,|λm +ξm|}




.

A method to find the zero point of the function F is given in Section 4.

3 Convergence

In this section, by applying some proper choices of the parameter α = α(δ) in the func-
tional defined by (2.3) and the denseness of the partition (proportional to m) with respect
to the given noise level δ>0, we show the unknown coefficients λ̂k in the operator Km in
(2.2) will lead to the desired moment equations

m(δ)

∑
k=1

λ̂ksn
k →

N

∑
ℓ=1

σℓ‖b−aℓ‖n as δ→0, (3.1)

for any real number n (instead of the desired n∈N). Below states our main theorem.

Theorem 3.1. If α=α(δ) and m=m(δ) are chosen so that h2
m(δ)+δ2 =O(α(δ)) where

hm(δ) := max
2≤k≤m(δ)

‖vk−vk−1‖L2(0,T),



902 L. Ling and T. Takeuchi / Commun. Comput. Phys., 5 (2009), pp. 897-913

then we have

lim
δ→0

m(δ)

∑
k=1

λ̂kg(sk)=
N

∑
ℓ=1

σℓg(rℓ),

for all g∈C∞(R+). In particular, if we take g(r)= rn , we have

lim
δ→0

m(δ)

∑
k=1

λ̂ksn
k =

N

∑
ℓ=1

σℓrn
ℓ
, for all n∈R.

To prove (3.1) and Theorem 3.1, we need the following notations and lemma.

Let limδ→0α(δ)=0 and limδ→0 m(δ)=∞. Let λ̂=λα,m,δ∈Rm be the unique minimizer
of (2.4). We define the functions

vk(t) :=
∫ t

0

1

(4πτ)
d
2

exp

(
− s2

k

4τ

)
dτ,

for sk ∈Sm, so that the operator in (2.2) can be written as Km(λ)(t)= ∑
m
k=1λkvk(t). More-

over, for each m ∈ N, we define a candidate to infλ∈Rm J(λ) by using the coefficients
ηm ∈Rm defined as

ηm =(ηm
1 ,··· ,ηm

m)=
N

∑
ℓ=1

σℓek(ℓ)∈R
m,

where e1,··· ,em are the standard vectors in Rm and k(ℓ)=argmin1≤k≤m |sk−rℓ|, ℓ=1,··· ,N.
The corresponding approximation to u(t,b) is of the form

um(t) :=
m

∑
k=1

ηm
k vk(t).

Let us define a subspace of C∞(R) by

K=Span
{

e−
x2

4t : t∈ (0,T)
}

,

that is the closure under L∞(R) of the space spanned by all Gaussian functions centering
at the origin with different shape parameters t. The time interval for observation [0,T]
does not play any role in the theorems below. In fact, we can choose any observation time
interval [tmin,tmax]. Hereafter, we denote (0,∞) by R+.

Lemma 3.1. Let ϕ∈C0(R+), then ϕ∈K. In particular, ϕ(x2)∈K.

Proof. We choose {γj}j∈N such that γ1 <γ2 < ··· with 0<
1

4T <γ1 and ∑
∞
j=1

1
γj

=∞.

By the Müntz theorem [18] (also see [8] for recent references), we know that

Span{yγ1 ,yγ2 ,···} is dense in C[0,1]. We are interested in φ∈C[0,1] and ϕ∈C0(R+) such
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that φ(0) = 0 and φ(y) = ϕ
(

log 1
y

)
for y∈ [0,1]. For any ε > 0, there exists M∈N and a

finite sequence αε
j ∈R, depending on ϕ and ε, such that

sup
0<y≤1

∣∣∣∣∣φ(y)−
M

∑
j=1

αε
j yγj

∣∣∣∣∣= sup
0<y≤1

∣∣∣∣∣ϕ
(

log
1

y

)
−

M

∑
j=1

αε
j yγj

∣∣∣∣∣<ǫ.

For any y∈ (0,1], by taking x= log 1
y ∈R+ we have

sup
x∈R+

∣∣∣∣∣ϕ(x)−
M

∑
j=1

αε
j e
−γjx

∣∣∣∣∣< ε.

For all ϕ∈ C0(R+), we have ϕ(x)∈K. Putting x2 = log 1
y results in the particular case.

Note that the initial measurement time t=0 is not crucial in the proof above, i.e., one can
take t∈ (t1, t2) as well. �

Proof of Theorem 3.1. It is sufficient to prove the first equality for arbitrary sequence

{δp} such that limp→∞ δp =0. We set λ̂p :=λα(δp),m(δp),δp .
First, observe that

J(ηm(δp))=‖Km(δp)(ηm(δp))−uδp‖2
L2(0,T)+α(δp)

m(δp)

∑
k=1

|ηm(δp)

k |

≤‖Km(δp)(ηm(δp))−u‖2
L2(0,T)+‖u−uδp‖2

L2(0,T)+α(δp)
m(δp)

∑
k=1

|ηm(δp)

k |

≤h2
m(δp)

m(δp)

∑
k=1

|σk|+δ2
p+α(δp)

m(δp)

∑
k=1

|ηm(δp)

k |.

Since J(λ̂p)≤ J(ηm(δp)), we have

‖Km(δp)(λ̂p)(t)−u(b,t)‖L2(0,T)

≤
√

J(λ̂p)+δp≤
√

J(ηm(δp))+δp

≤


h2

m(δp)

m(δp)

∑
k=1

|σk|+δ2
p+α(δp)

m(δp)

∑
k=1

|ηm(δp)

k |




1
2

+δp. (3.2)

Moreover, we have

m(δp)

∑
k=1

|(λ̂p)k|≤
J(ηm(δp))

α(δ)
≤

h2
m(δp)

(∑
m(δp)

k=1 |σk|)2+δ2
p

α(δ)
+

m(δp)

∑
k=1

|σk|≤C, (3.3)
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where C indicates a generic constant hereafter.
For p∈N, we define µp∈H−1(R) by

µp =
m(δp)

∑
k=1

(λ̂p)kδ(x−sk).

By (3.3), the norm of ‖µp‖H−1(R) is bounded by

‖µp‖2
H−1(R) =

∫

R
|F [µp](ξ)|2(1+ξ2)−1dξ

=
∫

R

∣∣∣
m(δp)

∑
k=1

(λ̂p)ke−iξsk

∣∣∣
2
(1+ξ2)−1dξ

≤C




m(δp)

∑
k=1

|(λ̂p)k|




2

≤C.

Hence, we can take a subsequence {µp1
} of {µp} that converges ∗-weakly in H−1(R) to

an element µ∗ whose support is contained in Ω. Therefore we have

lim
p1→∞

〈µp1
,ϕ〉= 〈µ∗,ϕ〉 for all ϕ∈H1(R). (3.4)

Here, 〈·,·〉 denotes the duality bracket on H−1(R)×H1(R) defined by

〈 f ,ϕ〉 :=
∫

R

F( f )(ξ)F(ϕ)(ξ)dξ for f ∈H−1(R), ϕ∈H1(R),

where F( f ) and F(ϕ) are the Fourier transforms of f and ϕ, respectively.

If we take ϕt(x)= e−x2/4t(4πt)−d/2 for any t>0 in (3.4), we have

lim
p1→∞

〈
µp1

,ϕt

〉
= 〈µ∗,ϕt〉. (3.5)

On the other hand, for all t>0,
∣∣〈µp1

,ϕt

〉∣∣ is bounded by

∣∣〈µp1
,ϕt

〉∣∣=

∣∣∣∣∣∣

m(δp1
)

∑
k=1

(λ̂p1)k
1

(4πt)
d
2

exp

(
− s2

k

4t

)∣∣∣∣∣∣

≤ e−s2
1/4t

(4πt)
d
2

m(δp1
)

∑
k=1

|λ̂p1

k |≤C, (3.6)

with a constant C>0. Hence, by (3.5) and (3.6), we have

lim
p1→∞

∫ t

0

〈
µp1

,ϕs

〉
ds=

∫ t

0
〈µ∗,ϕs〉ds, (3.7)
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for all t>0.

On the other hand, from (3.2), by taking the subsequence {µp2}p2 of {µp1
}p1

, we have

lim
p2→∞

∫ t

0

〈
µp2 ,ϕs

〉
ds= lim

p2→∞
Km(δp2

)(λ̂p2)(t)

=u(b,t)=
∫ t

0
〈 f ,ϕs〉 ds, (3.8)

for almost every t∈ [0,T]. From (3.7) and (3.8),we have

∫ t

0
〈µ∗,ϕs〉 ds=

∫ t

0
〈 f ,ϕs〉 ds, (3.9)

for almost every t∈ [0,T]. Since both functions are smooth with respect to t>0, by apply-
ing unique continuation theorem, we conclude that (3.9) holds for all t>0. Now, we can
differentiate both side of (3.9) and we have

〈µ∗,ψt〉= 〈 f ,ψt〉, for all t∈ [0,T], (3.10)

where ψt(x)=exp(− x2

4t ).

Next, we show that µ∗ can be extended uniquely to the functional µ̃∗ ∈C(R)∗. For
any compact set K⊂R and ϕ∈C∞

K (R), by (3.4), we have

〈µ∗,ϕ〉= lim
p2→∞

〈µp2 ,ϕ〉

= lim
p2→∞

∣∣∣∣∣∣

m(δp2
)

∑
k=1

(λ̂p2)k ϕ(yk)

∣∣∣∣∣∣

≤ lim
p2→∞

m(δp2
)

∑
k=1

∣∣∣(λ̂p2)k

∣∣∣‖ϕ‖∞ ≤C‖ϕ‖∞.

Hence, we can conclude that µ∗ can be extended uniquely to the functional µ̃∗∈C0(R)∗.

Furthermore, µ̃∗ has compact support because µ∗ has compact support. We come to
the conclusion that µ̃∗∈C(R)∗. Thus, from (3.10), we have

µ̃∗(ψt)= 〈µ∗,ψt〉= 〈 f ,ψt〉.

On the other hand, we know that f ∈C(R)∗ and 〈 f ,ψt〉= f (ψt). Hence, we have

µ̃∗(ψt)= f (ψt). (3.11)

Let θ(x)∈C∞
0 (R+) be a continuous function such that θ = 1 on [R1,R2] and θ = 0 on

[0,R1/2]. Let g(r)∈C∞(R+). From Lemma 3.1, the function θ(|x|)g(|x|) belongs to K;
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hence, it can be approximated by a finite sum of the form ∑ajψtj
, tj ∈ [0,T] in L∞(R).

Therefore, from (3.11) and the fact that µ̃∗, f ∈C(R)∗, we have

µ̃∗ (θ(|x|)g(|x|)) = f (θ(|x|)g(|x|)) .

Noting that θ(|x|)g(|x|)∈C∞
0 (R), we have

〈µ∗,θ(|x|)g(|x|)〉= 〈 f ,θ(|x|)g(|x|)〉.

By taking ϕ(x)= θ(|x|)g(|x|) in (3.4), we obtain

lim
p2→∞

m(δp2
)

∑
k=1

(λ̂p2)kg(sk)= lim
p2→∞

〈µp2 ,ϕ〉= 〈µ∗,ϕ〉

= 〈 f ,ϕ〉=
N

∑
ℓ=1

σℓg(rℓ).

Thus, an arbitrary subsequence 〈µp1
,ϕ〉 of 〈µp,ϕ〉 contains a subsequence 〈µp2 ,ϕ〉 that is

convergent to the unique limit ∑
N
ℓ=1σℓg(rℓ). Consequently, the original sequence 〈µp,ϕ〉

itself converges to ∑
N
ℓ=1σℓg(rℓ). The proof is therefore completed. �

4 Numerical procedures

The numerical procedure contains three parts: (I) to solve the minimization problem (2.5)
for the unknown coefficients, (II) to determine the total number of point sources, strength,
and, measurement-to-source distances, and (III) to determine the source locations.

(I: for each measurement point) To derive a numerical procedure from the nonlinear
system (2.5) and to obtain the minimizer λ̂, we consider a nonsmooth version of Newton’s
method

(
λn+1

ξn+1

)
=

(
λn

ξn

)
−Vn

−1F(λn,ξn), (4.1)

where Vn∈∂F(λn,ξn) is given by

Vn =

[
K∗

mKm α Im×m

−Θ Im×m−Θ

]
,

and

Θ=diag(θ1,··· ,θm), θk :=





0 if |λk+ξk|>1,
0.5 if |λk+ξk|=1,
1 if |λk+ξk|<1.

Since F is Lipschiz and semismooth [23] in Rm×Rm and any V∈∂F(λ,ξ),(λ,ξ)∈Rm×Rm

is nonsingular, the iteration (4.1) converges globally to the unique solution of F(λ,ξ)=0
[23, Theorem 3.3]. Therefore, we have proven the following:
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Corollary 4.1. Let (λ̂, ξ̂) be the unique solution of F(λ,ξ)=0. Then λ̂ is the unique minimizer
of J defined by (2.3).

In the next section, we show how this nonlinear procedure can be reduced to a linear
collocation system, as we proposed in [17], so that one could avoid numerical integration
and nonlinearity.

(II: for each measurement point) Once the system of nonlinear equations in (I) is
solved, the constants cn can be approximated by

(
m

∑
k=1

λ̂js
n
j

)
→ cn :=

N

∑
ℓ=1

σℓr
n
ℓ
, n∈N, under the assumption of Theorem 3.1 (4.2)

to which the pole identification algorithm [6] can be applied.

The pole identification algorithm has to be run for each measurement point. More-
over, the problem here is nonlinear and ill-posed in nature. The method is very sensitive
to the error in measurements and may result in complex solutions when the noise level
is large. In such cases, we conclude that our proposed algorithm fails to produce any
estimations. As one may imagine, the total number of unknown sources cannot be large.
In the next section, some numerical identifications are demonstrated.

(III: using all information) The final step is to locate the actual source locations aj

from the measurement-to-source distances. The number of required measurement points
for unique determination of source locations depends on the dimension d. Each identifi-
cation of measurement-to-source distance provides a sphere Sd−1∈Rd. In the case of R2,
at least three measurement points are needed [17]. In general, one can easily see that at
least d+1 measurement points are required for solving problems in Rd.

In R2, once we have determined the radius rj,ℓ (j = 1,2,3,ℓ = 1,··· ,N) between all
three measurement points and the unknown source locations, we employ an algorithm
by Vakulenko [27] to find the intersections of circles. Due to the presence of numerical
errors, we do not expect the three circles intersect at exact one point.

If all radius are overestimated, there will be a nonempty intersection. If one or more
radius are underestimated, there will be no intersection at all. In such cases, we gradually
increase all radius until we obtain a nonempty intersection. The estimated error is the sum
of

1. the radius of the smallest circle that contains the intersection, and

2. the change to rjℓ in order to get nonempty intersection.

In total, there are N3 combinations. Under the condition that each rjℓ can only be used
once, the N estimations with minimum estimated errors are chosen to be the estimated
source locations to the N unknown source locations. The center of such smallest circle
that contains the intersection is the corresponding estimation of source location.
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5 Collocation method

To derive the direct collocation method proposed in [17] from the nonlinear system (2.5),
we need to apply two extra approximations. First, the nonlinear system (2.5) has to be
linearized. Next, the Gram matrix in (2.5) is approximated by the normal equation of
some overdetermined collocation systems.

For a large number of partition points m and data with small noise level δ≪ 1, we
may assume that the parameter α≪1. Hence, the nonlinear system (2.5) corresponding
to each measurement point b can be linearized to obtain

K∗
mKm(λ̂)=K∗

muδ. (5.1)

Because of these assumptions, the linear algorithm proposed in [17] works very well with
noise-free data. Let

Yk(·,t)=
∫ t

0

∫

R2

1

4πτ
exp

(
−‖·−z‖2

4τ

)
ρ(z−yk)dzdτ,

and the kj-th component of the m×m square matrix M∗M is given by

[K∗
mKm]kj =

∫ T

0
Yk(b,t)Yj(b,t)dt, (5.2)

whereas the k-th component of M∗u is given by

[K∗
mu]k =

∫ T

0
Yk(b,t)u(b,t)dt. (5.3)

Solving (5.1) for the minimizer λ̂ of (2.4), we obtain in a set of moment equations as in
(3.1) for a single measurement point.

Further simplification is possible. Suppose we partition the time interval [0,T] equally
by Q points

tmin = t0 < ···< tq = tmax,

where ∆t := tj−tj−1 for j = 1,··· ,q. If we approximate (5.2) and (5.3) by some numerical
integration schemes, then the linear system (5.1) can be approximated by

ATWAλ̂= ATWu, (5.4)

where A is a q×m matrix with entries

[A]jk = Yk(b,tj) j=1,··· ,q, k=1,··· ,m,

and the components of u are given by

uj = u(b,tj) j=1,··· ,q.
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Here, W =diag(wj) is to be determined by the choice of numerical integration scheme. It
is well-known that the solution to (5.4) is equivalent to the least squares solution to

W1/2 Aλ̂=W1/2u. (5.5)

Although different numerical schemes result in different non-singular square diagonal
weight matrices W, the system (5.5) is equivalent to

Aλ̂=u (5.6)

up to some constant factors. The overdetermined system (5.6) is the same linear system
derived in [17] for obtaining unknown coefficients under the noise-free setting.

6 Numerical demonstrations

Here, we give an example in two-dimension and three-dimension respectively. Our
methodology reduces the problem in Rd to one-dimension with respect to the measurement-
to-source distances. The only complication arise is in procedure (III) in which one has to
investigate the intersections of spheres Sd−1⊂Rd.

6.1 Example in two-dimension

We take our source points to be {aℓ}3
ℓ=1 = {[.4, 0] ,[−.26, .25] ,[.13, −.65]}⊂R2 with unit

strength, i.e, σℓ = 1 for ℓ= 1,2,3. For the sake of Procedure (I), we distribute a 250-point
partition into Ω that is the unit circle. Three measurement points are chosen. The maxi-
mum errors in measurement-to-source distances and maximum errors in source strength
are reported in Table 1.

Table 1: Maximum errors of estimated measurement-to-source distances and source strength.

b1 b2 b3

Distance 0.0001 0.0015 0.0045
Strength 0.0004 0.0035 1.0004

In Fig. 1, the resulting circles are shown. The exact source locations are identified
as the intersection of three circles; they are indicated by ©. For the first two measure-
ment points b1 = [1,0] and b2 = [−

√
2,
√

2], three distinct circles are associated with each
measurement points.

For the measurement point at b3=[−1,0], there are only two associated circles. This is
due to the fact that two source points are showing very similar distances to the measure-
ment point b3. In Table 1, the corresponding error in source strength is 1.0004 indicating
the same fact. In fact, our algorithm identifies that the strength associated with that par-
ticular measurement-to-source distance is 2.
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Figure 1: Demonstration of source location identification– © indicates the correct identification, whereas �

indicates a false positive.

By the construction of this example, we see a false positive source location in Fig. 1
indicated by �. This is a coincidence because of the geometry of the source points and
measurement points. One could, of course, add another measurement point to elimi-
nate this false identification of source location. Other methods, like our previously pro-
posed iterative scheme [16], can be applied to improve the accuracy of source location
and strength estimation (if one can provide some initial guesses on the source locations).
Furthermore, such method can be used to identify false positive location–the estimated
strength will be zero or insignificant compared with the others.

In Fig. 2, we show the estimations of the source-to-measurement distance under dif-
ferent levels of additive random noise. Due to the ill-posed nature and nonlinearity of
the problem, the algorithm is rather sensitive to noise. If the error in the moment equa-
tion becomes an obstacle in Procedure (I), the pole identification algorithm may fail to
identify the unknowns. In particular, for large noise level δ, the pole identification algo-
rithm returns complex numbers as outputs. Since the distance rℓ and strength σℓ must be
real numbers, the method fails in due course. Improving the numerical stability of these
procedures is left for future study.

6.2 Example in three-dimension

Both our theory and numerical results suggest that dimension does not have a strong
effect on the moment equations in Theorem 3.1. The measurement points are place at ±ej

for j=1,2,3 where ej is the standard vector. The one- and two-source cases, respectively,
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Figure 2: Demonstration of numerical accuracy to the approximation of measurement-to-source distances under
the presence of noise.

with source locations

{aℓ}ℓ=1 ={[0.5, 0.4, 0.1]},

and

{aℓ}2
ℓ=1 ={[0.4, 0, 0], [−0.26, 0.13, 0.13]},

are tested. The results are shown in Table 2. It is clear that the number of unknown source
points can affect the accuracy. Comparatively, the geometry of source points and mea-
surement points have some minor influence on the source locations identifying problem.
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Table 2: 3D Example: Maximum errors of estimated measurement-to-source distances and source strength.

b= +î −î + ĵ − ĵ +k̂ −k̂

One Source

Distance 2.4e-8 1.6e-9 3.2e-12 2.3e-9 2.3e-9 1.9e-10
Strength 1.0e-10 1.6e-11 8.4e-15 2.3e-11 1.7e-11 1.5e-12

Two Sources

Distance 1.8e-6 1.8e-4 5.0e-6 1.3e-5 5.2e-4 5.3e-5
Strength 3.4e-6 3.9e-4 5.7e-5 2.7e-4 6.0e-3 1.1e-3

7 Conclusion

In this paper, we consider the identification of unknown point source in heat equations.
With noisy data, we prove that the distances between the measurement points and all
the unknown source locations satisfy a sequence of moment equations as the noise level
tends to zero. Moreover, we build the connection of the work in this paper to our previ-
ously proposed linear scheme based on the general settings in this work which explains
why the previous method does not work under noisy date. The theoretical results are
transformed into a completed numerical scheme, which consists of three separated al-
gorithms. Numerical demonstrations suggest that the proposed method in this paper is
capable of identifying the unknown source function based on the information from as
few as three measurement points. Due to the nonlinearity and complexity of the method,
the accuracy may not be acceptable in certain cases. However, our method does success-
fully provide the initial guess and extra information to some efficient linear solvers for
accuracy refinement. We aim to use these results as numerical verifications to the theory
on the minimum measurement points needed for the point heat sources identification
problems.
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