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1 Introduction

This paper reviews some velocity-based moving mesh numerical methods for nonlinear
time-dependent partial differential equations (PDEs). Numerous physical and biological
applications of mathematics are governed by these PDEs which often exhibit complex
behaviour that is difficult to predict in advance. For example, problems may be posed on
moving domains which are determined implicitly by the solution of the equations.

Many PDE problems possess analytic properties, for example the invariance of cer-
tain integrals or the existence of solutions with a specific structure. The construction of
numerical approximations which preserve such properties is one of the aims of geomet-
ric integration [28–30]. Where such a priori knowledge concerning the qualitative nature
of the solution is available this may be used to guide effective computational schemes.

We shall be concerned with moving mesh numerical methods, which have the ability
to adjust to the evolution of the solution (in order to track implicit moving boundaries
and singularities for example), as well as to resolve sharp features and respect global
properties. Such methods are therefore an attractive choice for problems of this type. The
argument is reinforced in the case of scale-invariant problems for which both dependent
and independent variables are strongly coupled. Fixed meshes are unable to replicate
scale-invariance because they are time-independent. The coupling of independent and
dependent variables is a recurrent theme in this paper and is used later on to motivate
the development of a solution-adaptive moving mesh finite element method based on
conservation.

Velocity-based moving mesh methods (also known as Lagrangian methods or in a wider
context Arbitrary Lagrangian Eulerian (ALE) methods) rely on the construction of suitable
velocities at points of the moving domain at each instant of time, as opposed to the con-
struction of time-dependent mappings from a fixed computational domain to the moving
domain [30, 35, 134]. The latter construction can be rather cumbersome in more than one
dimension, and in any case the mappings need to be converted into velocities for incor-
poration into a time-dependent PDE. A velocity-based description, on the other hand,
requires no formal reference to the computational domain and has the advantage that
the velocity is available directly for incorporation into the time-dependent PDE. The evo-
lution of the Lagrangian coordinate x̂(t) at time t follows from the velocity v(t,x) by
integrating the ODE

dx̂(t)

dt
=v(t,x̂(t)), (1.1)

where x̂(t) coincides instantaneously with the Eulerian coordinate x at the initial time.

The layout of the paper is as follows. In the next section (Section 2) we review time-
dependent PDEs stated in both differential and integral form. Initially a fixed frame
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of reference is considered which allows a simple discussion of some structural aspects
of time-dependent PDEs, including scale invariance and similarity. We then generalize
these aspects to PDEs in a moving framework. Although the paper is primarily con-
cerned with differential equations the emphasis here is on integral forms which are closer
to the physics and lead naturally to finite element formulations. The discussion includes
weak formulations of the equations, of direct relevance to the finite element methods that
are considered later.

Section 3 focuses on the history of the construction of mesh velocities that have been
incorporated into these moving forms. A short survey is given which starts by consider-
ing Lagrangian methods in fluid dynamics, and then moves on to ALE techniques and
other more mathematically (rather than physically) based drivers for the mesh velocities.
This section includes a discussion of the geometric conservation law, which is a source
for the moving mesh conservation method considered later in the paper.

Subsequent sections give details of a local, or distributed, conservation method
which has been shown to be highly effective in obtaining approximate solutions of time-
dependent PDE problems in multidimensions, particularly those with implicit moving
boundaries. The first of these sections (Section 4) describes the basis of the conserva-
tion method for mass-conserving problems and includes details of the multidimensional
moving mesh finite element method for such problems with examples. Section 5 general-
izes the technique to non mass-conserving problems, whilst Section 6 presents a number
of extensions and applications of the method. The paper concludes with a brief summary.

2 Time-dependent PDEs

This introduction contains background material on the structure of PDEs relevant to later
sections of the paper.

2.1 PDEs and balance laws in a fixed frame

In a fixed frame of reference a generic form of scalar time-dependent PDE for the depen-
dent variable u(t,x) is

ut =Lu, (2.1)

where t is time, x is the space variable, and L is a purely spatial operator, nonlinear in
general. Problems governed by the PDE (2.1) may be posed on either fixed or moving
domains with appropriate initial and boundary conditions. The number and character
of the boundary conditions relate to the order and type of the operators involved and
the behaviour (fixed or moving) of the boundary. In a moving boundary problem an
additional boundary condition is normally required.

We shall also be concerned with integral forms of (2.1), which are closer to the physics
through their direct expression of conservation properties, as well as leading naturally to
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finite element formulations. Eq. (2.1) has the integral form

d

dt

∫

Ω
udx=

∫

Ω
Ludx (2.2)

over any region Ω.
In particular, many partial differential equations governing applications are derived

from integral balance laws. A typical balance law expresses the balance between the rate
of increase of the integral of the function u over an arbitrary volume Ω,

∫

Ω
udx, (2.3)

henceforth known as the mass (by analogy with the case where u is a density), and the
flux F(u,Dαu) across the boundary ∂Ω of Ω (where Dα denotes derivatives of u up to
some order α) and is given by

d

dt

∫

Ω
udx=−

∮

∂Ω
F·n̂dΓ, (2.4)

where n̂ is the unit outward normal to the boundary. By the Divergence Theorem equa-
tion (2.4) can be written as

d

dt

∫

Ω
udx=−

∫

Ω
∇·Fdx. (2.5)

For fixed Ω this leads to the integral form
∫

Ω

{
ut+∇·F

}
dx=0, (2.6)

and, since Ω is arbitrary, u satisfies the PDE

ut+∇·F=0 (2.7)

pointwise. The physical origin of the PDE (2.7) is nevertheless the balance law (2.4).
Before putting PDEs into a moving framework we consider the application of scale-

invariance and similarity to PDEs in a fixed frame.

2.2 Scale-invariance and similarity

Information about the structure of PDEs and their solutions is reflected in their scale-
invariance and similarity properties. Because scale-invariance depends on the simulta-
neous variation of independent and dependent variables the numerical simulation of the
PDEs demands (and motivates) the use of solution-adaptive moving meshes [31].

Recall that a time-dependent PDE problem in d dimensions with spatial coordinates
xν (ν=1,2,··· ,d) is scale-invariant if there exists a scaling parameter λ and scaling indices
βν,γ such that the scalings

t→λt, xν→λβν xν, u→λγu (2.8)
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leave the problem invariant.
For such problems there exist (scale-invariant) similarity variables,

ξν =
xν

tβν
, η =

u

tγ
, (2.9)

which specify a time-dependent similarity transformation between a fixed domain with
coordinates ξν and a moving domain with coordinates xν(t). The velocity effecting the
transformation has components

vν =
dxν

dt
= βνtβν−1ξν =

βνxν

t
. (2.10)

A relationship between the similarity variables (2.9) of the form

η = f (ξ), i.e., u(t,x)= tγ f (ξ), (2.11)

where ξ={ξν}, plays a special role for which u is said to be self-similar. Substituting (2.11)
into (2.1) the function f must satisfy the reduced-order differential equation,

γ f (ξ)−∑
ν

βνξν
∂ f

∂ξν
(ξ)= t1−γL

{
tγ f (ξ)

}
(2.12)

(which is time-independent owing to the scaling properties). Self-similar scaling solu-
tions of the form (2.11) exhibit a scaling symmetry because the number of independent
variables is reduced by one.

In particular, for mass-conserving problems,

γ+∑
ν

βν =0 (2.13)

as a result of the integral (2.3) being independent of time.
In one space dimension the self-similar solution (2.11) takes the form

u(t,x)= tγ f (ξ), (2.14)

where ξ = x/tβ and f satisfies the ODE

γ f (ξ)−βξ f ′(ξ)= t1−γL
{

tγ f (ξ)
}

. (2.15)

A particular property of self-similar solutions for mass-conserving problems (for which
(2.13) holds) is the invariance of the integral (2.11) via

∫

Ω(t)
udx= tγ

∫

Ω(t)
f (ξ)dx, (2.16)

in which Ω(t) moves with the similarity velocity with components (2.10). This follows
from substituting xν = tβν ξν into (2.16), noting that Ω(t) is mapped onto a fixed region,
and using (2.13).
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Barenblatt [14, 15] has pointed out that self-similar solutions of PDEs often describe
the intermediate asymptotics of a solution, that is the behaviour of the solution, away from
the boundaries, after the transient effects of initial conditions have died away. They may
also characterize singular behaviour such as the occurrence of blow-up, as well as the
motion of interfaces. These features motivate numerical methods which are able to accu-
rately follow such solutions, such as the conservation method described later in Section
4.

2.2.1 The porous medium equation

An example of a scale-invariant problem is the porous medium equation (PME),

ut =∇·
(
un∇u

)
(2.17)

(n ≥ 1) in d dimensions, with the boundary condition u = 0 on the moving boundary
(for which the total mass (2.3) is preserved — see below). For this problem it is readily
verified that the scaling indices in (2.8) are given by

βν = β=
1

(2+dn)
∀ ν, ∑

ν

β=−γ=
d

(2+dn)
, (2.18)

from (2.17) and (2.13). The similarity variables (2.9) are

ξν =
xν

t1/(2+dn)
, η =

u

t−d/(2+dn)
, (2.19)

and a self-similar source solution exists of the form [3, 142]

u(t,x)= At
− d

(2+dn)

{
1−∑

ν

ξ2
ν

} 1
n

+
, (2.20)

where A is a constant, the suffix + in (2.20) indicating the positive part. The moving
boundary corresponds to |ξ|= 1 (where u = 0). The velocity effecting similarity, from
(2.10), has components

vν = βtβ−1ξν. (2.21)

Such solutions are globally attracting [3, 30, 31, 142].

2.3 PDEs and integral forms in a moving frame

We now consider forms of time-dependent partial differential equations in a moving
frame of reference.

When the boundary ∂Ω(t) of a region Ω(t) moves with a normal velocity v·n̂, say,
where n̂ is the outward unit normal, an additional flux is induced across the boundary. To
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see this analytically, differentiate the integral (2.3) with respect to t in the moving frame
of reference using the Reynolds Transport Theorem (see e.g., [150]) which gives

d

dt

∫

Ω(t)
udx=

∫

Ω(t)
utdx+

∮

∂Ω(t)
uv·n̂dΓ, (2.22)

where the final term is the additional flux. Using the Divergence Theorem

d

dt

∫

Ω(t)
udx−

∫

Ω(t)
∇·(uv)dx=

∫

Ω(t)
utdx, (2.23)

where v is any sufficiently smooth velocity field that is consistent with the normal bound-
ary velocity (cf. (2.2)). Substituting for ut from the PDE (2.1), Eq. (2.22) can be written

d

dt

∫

Ω(t)
udx−

∮

∂Ω(t)
uv·n̂dΓ=

∫

Ω(t)
Ludx (2.24)

(cf. (2.2)) and (2.23) as

d

dt

∫

Ω(t)
udx−

∫

Ω(t)
∇·(uv)dx=

∫

Ω(t)
Ludx. (2.25)

In the case of the PME (2.17), where Lu=∇(un∇u), in a domain R(t) with zero Dirichlet
boundary conditions, Eq. (2.24) leads to

d

dt

∫

R(t)
udx=

∮

∂R(t)

{
un∇u+uv

}
·n̂dΓ=0 (2.26)

from which it follows that the total mass
∫

R(t)
udx (2.27)

is conserved in time.
A separate way of introducing the velocity v into the PDE (2.1) is to use the chain rule

for differentiation in the form
du

dt
=ut+v·∇u, (2.28)

where du/dt is the rate of change of u in the moving frame. This leads to the so-called
quasi-Lagrangian form of the PDE (2.1),

du

dt
−v·∇u=Lu, (2.29)

which is widely used to modify the PDE in conjunction with time-dependent map-
pings [30, 74, 105]. However, Eq. (2.29) is not consistent with the integral form (2.23)
in general and lacks local mass conservation.

In the same way as in Section 2.2 it can be shown that these PDEs and integral forms
in the moving framework are scale-invariant whenever those in the corresponding fixed
frame are scale-invariant.



516 M. J. Baines, M. E. Hubbard and P. K. Jimack / Commun. Comput. Phys., 10 (2011), pp. 509-576

2.4 Weak forms

We now consider weak forms of (2.23) and (2.29) which form the basis of finite element
numerical methods. A weak form of Eq. (2.23) can be obtained by considering a weighted
form of the mass integral (2.3). Given a domain R(t) and a test function w, define the
weighted integral ∫

R(t)
wudx, (2.30)

where it is assumed that w,u are square-integrable functions. Applying the Reynolds
Transport Theorem (2.22) to the function wu we obtain

d

dt

∫

R(t)
wudx=

∫

R(t)
(wu)tdx+

∮

∂R(t)
wuv·n̂dΓ, (2.31)

where the boundary ∂R(t) moves with a velocity v. Then, using the Divergence Theorem
equation (2.31) becomes

d

dt

∫

R(t)
wudx=

∫

R(t)

{
(wu)t+∇·(wuv)

}
dx, (2.32)

where v is again any sufficiently smooth velocity field that is consistent with the normal
velocity of the boundary.

Now suppose that the points of R(t) move with the velocity v and that the test func-
tion w is frozen in R(t), so that w is convected with the velocity v in the sense that

wt+v·∇w=0. (2.33)

Eq. (2.32) then reduces to

d

dt

∫

R(t)
wudx=

∫

R(t)
w
{

ut+∇·(uv)
}

dx (2.34)

for all square-integrable functions w that are convected with the velocity v, giving a weak
form of the Reynolds Transport Theorem (2.22). Using the PDE (2.1), Eq. (2.34) yields the
integral weak form

d

dt

∫

R(t)
wudx=

∫

R(t)
w
{
Lu+∇·(uv)

}
dx (2.35)

of the PDE (cf. (2.25)).
A separate weak differential form of the PDE in a frame moving in the velocity field v

may be derived directly from (2.29) via the chain rule as
∫

R(t)
w
{du

dt
−v·∇u

}
dx=

∫

R(t)
wLudx, (2.36)

where du/dt is the derivative of u in the moving frame. Note once again that this form is
not elementwise mass-conserving nor consistent with (2.35).

It can be shown that as long as the test functions w are scale-invariant these weak
forms in the moving framework are scale-invariant whenever those in the corresponding
fixed frame are scale-invariant.
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3 Velocity-based moving mesh methods

Each of the moving PDE forms described above requires a definition of the velocity field
v(t,x). We now give a short review of some of the ways of constructing this velocity that
have appeared in the literature, and how they have been incorporated into moving mesh
numerical methods.

In velocity-based moving mesh methods each node is assigned a velocity by which it
moves. This velocity may be defined in a variety of ways, and many constructions have
appeared in the literature, some mathematically based and some based on physical analo-
gies. The mathematical approaches often use residual minimization, error estimates, or
geometric considerations, whereas physical approaches usually rely on Lagrangian fluid
dynamics or mechanical analogies. Mesh movement may also be induced entirely by the
normal velocities of the boundaries.

In this section a number of velocity-based methods are described, beginning with
schemes related to fluid dynamics (Section 3.1) and continuing with those relying on
the so-called ALE (Arbitrary Lagrangian-Eulerian) formulation. Many ALE schemes use
velocities generated by mechanical analogies and these are discussed in Section 3.2.

Turning to mathematically motivated constructions we describe in Section 3.3 the
Moving Finite Element Method, which was the first method to determine the mesh and
the solution simultaneously. Next the Deformation Method, based on differential ge-
ometry, is described in Section 3.4. Then the role of the Geometric Conservation Law is
discussed in Section 3.5, and finally the Conservation Method is introduced in Section 3.6
prior to its detailed exposition in later sections.

3.1 Fluid dynamics

In classical theoretical fluid dynamics the motion of fluids may be described by taking
either the Lagrangian or Eulerian point of view. In the Lagrangian description, each
moving fluid particle (with its attributes) is followed individually and is identified by its
initial position, whereas in the Eulerian description variables such as density and velocity
are evaluated at fixed locations.

A link between the two is provided by the Reynolds Transport Theorem (2.22) in the
form

d

dt

∫

Ω(t)
ρdx=

∫

Ω(t)
ρtdx+

∮

∂Ω(t)
ρu ·n̂dΓ=

∫

Ω(t)

{
ρt+∇·(ρu)

}
dΩ (3.1)

for a general moving region Ω(t), where ρ is the fluid density and u is the fluid velocity.
In the Lagrangian description, conservation of mass is expressed as

∫

Ω(t)
ρdx=constant in time, (3.2)

whilst in the Eulerian description the mass conservation equation is

ρt+∇·(ρu)=0. (3.3)
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The equivalence of the two is inherent in (3.1), remembering that this equation holds for
all Ω(t).

In more recent times, computational fluid dynamics (CFD) has sought to describe
the motion of fluids numerically by both approaches. The most common approach has
been through discretizations of the Eulerian description where the equations of motion
are discretized on a fixed mesh. Use of the Lagrangian description has been rarer and
largely confined to problems where surfaces and interfaces are of primary importance,
e.g., [108,118,147]. The natural discretization in the Lagrangian approach is to follow the
velocities of the fluid particles using a moving mesh but compromises have usually had
to be made, the main difficulty being the tendency of the mesh to tangle and lose its char-
acter. For example, Harlen et al. [2, 70] apply a Lagrangian approach to the solution of
convection equations arising in the simulation of viscoelastic flows. Although the nodes
of the finite element mesh are transported with the fluid particles, the mesh itself is recon-
nected after each time-step in order to maintain the Delaunay property [27]. These and
other considerations have prompted the use of the so-called ALE (Arbitrary Lagrangian
Eulerian) methods (see Section 3.2 below), where local modifications of the Lagrangian
velocities are made as the computation develops [17, 36]. This framework can be used
with any imposed velocity and is of central relevance to velocity-based approaches.

For first order scalar PDEs, the Lagrangian approach is evident in characteristic meth-
ods (see [59, 64]) and their discretizations. Indeed, wide classes of fixed mesh methods
(e.g., Godunov methods [136, 137] and Semi-Lagrangian methods [44, 45, 130]) use the
ideas of characteristics, accompanied by projections.

The success of CFD has largely been achieved on fixed meshes, and indeed the same
can be said for the numerical solutions of PDEs in general. Nevertheless, Lagrangian
moving mesh methods have a substantial role to play in obtaining high resolution so-
lutions of problems with implicit moving boundaries or singularities, and in mimicking
scale-invariance properties.

3.2 ALE (Arbitrary Lagrangian Eulerian) methods

The ALE equation in the form (2.23) allows the solution u of a PDE to be obtained in a
frame moving with any given velocity. This equation is widely used in the computation
of fluid-structure interaction problems, for example in [71,83,97,122]. The specific mech-
anism for constructing the mesh velocities varies significantly from treating the mesh as
though it is a physical material with its own constitutive law [83] through to defining the
mesh motion purely with the goal of optimizing geometric qualities of the mesh [122].

Another popular technique for imposing a mesh velocity, used for fluid-structure in-
teraction problems in [71], and for free-surface problems in [61,95], for example, is based
upon Scriven’s method of spines [82, 121]. Here the mesh movement is constrained by a
number of parameters (one for each spine used), thus reducing the computational over-
head in exchange for restricting the generality of the approach. More general ALE forms
have also been widely used for free-surface problems, based upon maintaining mesh
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quality [115,116], Laplacian smoothing [129] or pseudo-solid deformation [33,144]. Other
applications which have benefited from successful ALE algorithms include phase-change
problems [123], viscous sintering [84, 94, 151] and the interaction of free surfaces with
solid boundaries [4, 133, 145].

Note that not all ALE methods need to be applied to, or driven by, fluid flow prob-
lems. Indeed, the latter part of this paper is devoted to a more general family of methods.
Before introducing this approach, however, we discuss some other recent techniques that
have been used for generating mesh velocities.

3.3 Moving finite elements

Where there is no specific physical motivation for assigning a velocity to each node of the
finite element mesh, (unlike Lagrangian-based methods for equations of fluid flow, for
example), some other mechanism for determining an appropriate mesh velocity field is
required. A well-known approach is the moving finite element (MFE) method of Miller
and Miller [104] and Miller [100]. This technique is a natural extension of the classical
method of lines (MOL) scheme for the Galerkin finite element method on a fixed grid.
On a fixed mesh, for a piecewise trial solution of the form

U(x,t)=∑Uj(t)Wj(x), (3.4)

where the Wj(x) are test functions, the MOL seeks to minimize the L2 norm of the residual

Ut−LU =∑
dUj

dt
Wj(x)−LU (3.5)

of (2.1) with respect to each unknown, dUi/dt, resulting in a system of ordinary differen-
tial equations (ODEs) for each Ui.

In the MFE method this idea is generalized using piecewise trial solutions of the form

Û(t)=U(x̂(t),t)=∑Ûj(t)Wj(x̂(t)), (3.6)

where x̂(t) is the piecewise linear interpolant of the mesh vertex locations, {X̂i(t)}, say,
and the Wj(x) are piecewise linear basis functions. The method then seeks to minimize
the L2 norm of the residual (3.5), but this time with respect to the velocity of each node of
the mesh, dX̂i/dt=Vi say, as well as dÛi/dt at that node. The term dÛ/dt is obtained by
differentiating (3.6) by the chain rule to obtain

dÛ

dt
=∑

dÛj

dt
Wj(x̂(t))+∑Ûj(t)

dWj(x̂(t))

dt
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=∑
dÛj

dt
Wj(x̂(t))+∑Ûj(t)∑

dWj

dX̂i

· dX̂i

dt

=∑
dÛj

dt
Wj(x̂(t))+∑

dÛ

dX̂j

· dX̂j

dt

=∑
dÛj

dt
Wj(x̂(t))−∑Vj ·(∇UWj(x̂(t))) (3.7)

(with the last equality easily proved for piecewise linear elements, and proved for all
Lagrange basis functions in [79]).

Minimization of the weighted L2 norm of the residual

Ut−LU =∑
dÛj

dt
Wj(x̂(t))−∑Vj ·(∇UWj(x̂(t)))−LU (3.8)

(weighted by the positive function w) over dÛj/dt and Vj results in a pair of equations
for each node which has a similar structure to (2.36) above:

∫

R(t)
Wi

{dU

dt
−V·∇U

}
wdx=

∫

R(t)
WiLUwdx (3.9)

and ∫

R(t)
(∇UWi)

{dU

dt
−V·∇U

}
wdx=

∫

R(t)
(∇UWi)LUwdx. (3.10)

The equations are scale-invariant when the original problem is scale-invariant.
As with the MOL approach, the resulting ODEs must be integrated forward in time

from the initial state, in this case including the initial mesh as well as a representation of
the initial data on this mesh. This reveals both the mesh and the corresponding solution
at each subsequent time. Note that Eqs. (3.9) and (3.10) may be alternatively derived
through a direct minimization of the L2 norm of the residual of (2.29) with respect to
dÛi/dt and Vi for each node, i, of the mesh.

In principle the method is optimal in the sense that it concurrently minimizes the L2

residual with respect to both dUi/dt and dXi/dt (see also [76–78] for other optimality
results). However, the formulation turns out to be degenerate when a component of ∇U
is continuous at any node of the mesh. This phenomenon (referred to by Miller as ”par-
allelism”), as well as the possibility of mesh tangling (where the measure of one or more
elements of the mesh becomes, or passes through, zero), is controlled by adding penalty
functions to the minimization, as illustrated in [62, 100]. An unfortunate consequence
of this penalization approach is to cause the resulting semi-discrete ODE system to be-
come very stiff, so that suitable stiff integrators for such systems need to be employed for
computational efficiency.

As shown in [5], for first order nonlinear PDEs the MFE method is a discretization of
Charpit’s method of characteristics for nonlinear PDEs (see e.g., [59]), while in the case
of second order diffusion equations the MFE velocities are driven by truncation errors.
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In the original MFE formulation the weight function w in (3.9) and (3.10) is equal to
unity, i.e., w ≡ 1. An important alternative, relating to arclength, is to take w = 1/(1+
|∇u|2) and carry out the integration over arclength, which is known as the gradient-
weighted form of MFE (GWMFE) and is described in [37, 38]. The further generalization
of this approach to systems of PDEs is considered in [101] and includes a so called ”string
gradient-weighted” formulation (SGWMFE) which is discussed in more detail in [143].
Other variants of the method include a Least Squares MFE method, [103], and a stabilized
MFE method, [102], which are both designed to control mesh movement for steady-state
convection-dominated problems, which can cause significant difficulty for the standard
MFE and GWMFE approaches.

In addition to the variants of the method proposed by Miller and co-workers, other
alternatives have also been developed. These include the use of higher order Lagrange
basis functions for both the trial and the test spaces, e.g., [39, 125, 126], and the use of
higher order C1 functions for the test space in [72]. More recently, both C1 trial and
test spaces have been considered in [55]. Each of the above techniques addresses the
degeneracy of the MFE equations via a suitable penalization. An explicit approach has
been studied in [11, 12] and [81], for example, primarily demonstrated for problems in
one space dimension and using explicit integration in time.

There are numerous examples of the successful application of the MFE method to
challenging practical problems, and in one space dimension these have typically yielded
efficient and accurate numerical solutions. Examples in subsurface flow include the wet-
ting of unsaturated soil, [46,65], solute transport problems, [66,80], and the simulation of
sedimentation, e.g., [127]. Similarly, the range of successful chemical engineering applica-
tions include front reaction, heat transfer and population balance problems (e.g., [40, 54]
and [55] respectively). The main difficulties with the method appear in two or more space
dimensions, where the very high computational expense suggests that it will not gener-
ally be cost-effective to solve for the mesh and the solution in this fully coupled manner.
It is for this reason that the Arbitrary Lagrangian Eulerian (ALE) and similar approaches
are frequently more efficient.

3.4 The deformation method

This method derives from analytic results of Moser [107] and Dacorogna and Moser [49]
concerning the existence of a particular class of diffeomorphism between two domains in
ℜn. In particular, [49] is concerned with the existence of diffeomorphisms φ :Ω→Ω such
that

det∇φ(x)= f (x), x∈Ω, (3.11a)

φ(x)=x, x∈∂Ω, (3.11b)

where f has mean value one over Ω and, along with Ω, satisfies certain regularity as-
sumptions.
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The significance of this work stems from the fact that the existence proofs in [49] are
constructive in nature, thus motivating associated numerical methods such as [86,88,89],
discussed below. Specifically, Dacorogna and Moser linearize (3.11) by expanding φ as a
perturbation from the identity: φ(x)= x+ν(x). Neglecting higher order terms in v then
leads to

∇·ν(x)= f (x)−1, x∈Ω, (3.12a)

ν(x)=0, x∈∂Ω. (3.12b)

The existence of a solution to (3.12) is proved constructively by setting ν(x)=∇w(x) and
finding w(x) from

∇2w(x)= f (x)−1, x∈Ω, (3.13a)

∇w(x)·n̂=0, x∈∂Ω. (3.13b)

The final stage of the proof is to demonstrate that the required mapping φ is given by
φ(x)=ϕ(x,1) where ϕ satisfies the ordinary differential equation

d

dt
ϕ(x,t)=

ν(ϕ(x,t))

t+(1−t) f (ϕ(x,t))
, (3.14a)

ϕ(x,0)=x. (3.14b)

This is proved by introducing the function

h(x,t)=det∇ϕ
[
t+(1−t) f (ϕ(x,t))

]
(3.15)

and showing that ∂h/∂t =0, from which it follows that h(x,1)=h(x,0), as required.
As indicated above, these concepts from [49] have been used to develop an algorithm

for mesh transformation by Liao and co-workers [86, 88, 89], who noted that f (x) could
be chosen to provide a transformation which contracts elements where f is small and
expands them where it is large, forming the basis of an adaptive meshing algorithm.
Liao and Su [90] then extended the ideas to allow for the tracking of time-varying volume
elements. In this context, given a differentiable, strictly positive, function f (x,t) which
satisfies the normalisation property

∫

Ω

( 1

f (x,0)
−1
)

dx=0, (3.16)

the one-to-one mapping φ(x,t) which guarantees equidistribution of f (x,t), becomes

det∇φ(x,t)= f (φ(x,t)), x∈Ω, t>0. (3.17)

This diffeomorphism is found by first constructing the vector field ν(x,t) satisfying

∇·ν(x,t)=− ∂

∂t

( 1

f (x,t)

)
, x∈Ω, (3.18a)

∇×ν(x,t)=0, x∈Ω, (3.18b)

ν(x,t)·n̂ =0, x∈∂Ω, (3.18c)
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and using it to update the system given by

∂

∂t
φ(x,t)=ν(φ,t) f (φ,t), t>0, (3.19)

with φ(x,0)= φ0(x). In the context of a moving mesh method, the rate of change of the
transformation ∂φ/∂t simply represents the mesh velocity. A condition on the curl of
the vector field is imposed to ensure uniqueness and imposes irrotationality, which will
typically help to improve the shape of the mesh cells (and is exploited below). Bochev,
Liao and de la Pena [23] show that this leads to the equidistribution of mesh points ac-
cording to the weight f (x,t) and prove that no tangling can occur in a domain where the
boundary is fixed and the movement of points along the boundary does not tangle. They
also present two-dimensional computational results showing the adaptation of meshes
to pre-specified, time-varying functions. Semper and Liao [124] combine this with an
SUPG finite element method to solve the one-dimensional time-dependent advection-
diffusion equation on a fixed domain, using discontinuities in time to allow for the mesh
movement.

Since then Liu, Ji and Liao [92] have applied the steady-state algorithm to solutions
of the two-dimensional Euler equations, fitting to shocks in aerofoil flows. Further, [32]
combines the algorithm with a least-squares finite element approach to solving the div-
curl system (3.18) directly for ν(x,t), and apply the resulting algorithm to problems
where the boundary deforms. The algorithm has also been applied in three space dimen-
sions [91], to track moving shock waves [87], and in image registration [41]. Delzanno et
al. [51] however note some situations where the quality of the grids obtained compares
unfavourably with a Monge-Kantorovich transformation approach.

The method has recently been generalised by Grajewski, Köster and Turek [67] to pro-
vide a non-tangling mapping from a non-uniform initial mesh which allows the transfor-
mation in time-dependent cases to be calculated directly from the mesh at the previous
time level, rather than relative to an initial uniform mesh. Wan and Turek [146] have
used this approach to model two-dimensional particulate flows in a viscous fluid using
an ALE formulation.

3.5 The GCL method

The Space Conservation Law (SCL) was originally formulated by Trulio and Trigger [139]
as an additional equation which should be approximated in the simulation of fluid flow
on moving meshes along with conservation of mass, momentum and energy. It was later
recognised by Thomas and Lombard [135], who termed it the Geometric Conservation
Law (GCL), as a constraint which should be imposed on numerical approximations of
conservation laws on moving meshes. In particular, any numerical scheme applied on a
moving mesh should reduce to the GCL when the solution is constant: the movement of
the mesh should not create or destroy ”space”.
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Given a spatial region Ω with the closed boundary ∂Ω moving with velocity v, the
GCL takes the form

d

dt

∫

Ω(t)
dx=

∫

∂Ω
v·n̂dΓ, (3.20)

(which is simply the Reynolds Transport Theorem (2.22) with constant u), or the equiva-
lent differential form

∂J

∂t
=∇·(Jẋ), (3.21)

in which J is the determinant of the Jacobian of the transformation between the fixed
reference domain and the physical domain. The GCL has been widely used as a con-
straint to be satisfied by numerical schemes applied in a moving frame of reference, and
in particular influences the implementation of the conservative ALE schemes described
in Section 3.2.

The desire to satisfy a GCL favours the finite volume framework [52, 53, 57, 69, 96],
which provides the most natural formulation of the GCL due to its inherent conservation
properties. However, it has also been applied with finite differences [135], conforming
finite elements [24,56,58], discontinuous Galerkin methods [114] (space-time FE and DG
methods automatically satisfy the GCL [141]), and residual distribution schemes [99].
The paper of Étienne, Garon and Pelletier [56] includes a useful summary of the literature
in this area and highlights three increasingly challenging levels of compliance with the
GCL within a formulation of a moving mesh algorithm.

1. It must reproduce the exact solution to the constant, no-flow test case on an arbi-
trary deforming mesh [52].

2. It must reproduce the exact solution of a uniform flow on moving grids: Farhat,
Geuzaine and Grandmont [57] referred to this as the Discrete GCL (DGCL).

3. The time-stepping scheme must exhibit the same rate of convergence on both fixed
and moving meshes. Guillard and Farhat [69] show that satisfying the DGCL is
a sufficient condition for the scheme to be at least first order accurate. No such
condition has yet been proved for higher orders of accuracy; in fact, even though
Mavriplis and Yang [96] and Geuzaine, Grandmont and Farhat [63] are both able
to derive schemes which satisfy the GCL and demonstrate high order temporal
accuracy, they suggest that satisfaction of the GCL is unrelated to the retention of
time-accuracy by the resulting numerical scheme.

Farhat, Geuzaine and Grandmont [57] suggest that satisfaction of the DGCL is a nec-
essary and sufficient condition for a numerical scheme to preserve nonlinear stability
properties. This is, however, disputed by Boffi and Gastaldi [24] and Formaggia and
Nobile [58] who demonstrate that this is only the case for backward Euler time-stepping.

Cao, Huang and Russell [34] noted that the GCL could also be used to drive a mesh
movement algorithm. They considered the situation with a positive monitor function
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m(x,t) and required that

∇·v=− 1

m

Dm

Dt
. (3.22)

Combining this with the differential form of the GCL (3.21) gives

D

Dt
(mJ)=0⇒mJ =constant, (3.23)

a multidimensional generalisation of the one-dimensional equidistribution principle.
This leads to

∂m

∂t
+∇·(mv)=0, (3.24)

a condition on the divergence of the velocity field which, as in the case of the deformation
map approach, can be supplemented by a condition on its curl, given in [34] by

∇×ω(v−u)=0, (3.25)

for some choice of u(x,t) and ω >0. They then choose to find the mesh velocity field by
minimisation of the functional

I=
1

2

∫

Ω

∣∣∣∂m

∂t
+∇·(mv)

∣∣∣
2
+
(m

ω

)2∣∣∇×ω(v−u)
∣∣2dx, (3.26)

since the divergence and curl must be orthogonal in L2. This is combined with the bound-
ary condition v·n̂ = 0 on ∂Ω and computational results are presented which adapt the
mesh to pre-specified time-dependent functions on domains with fixed boundaries. A
smooth solution exists as long as the data and boundary are smooth. The mapping is
non-singular but the mesh can become highly skewed.

Cao, Huang and Russell [34, 35] go on to note the relationship between their method
and the deformation map approach. Given that ν=mv with m=1/ f , Eqs. (3.18) become

∇·(mv)=−∂m

∂t
, x∈Ω, (3.27a)

∇×(mv)=0, x∈Ω, (3.27b)

ρv·n=0, x∈∂Ω, (3.27c)

which is simply a special case of the GCL method with u=0 and ω =m.

3.6 The conservation method

The conservation method of Baines, Hubbard and Jimack [7–9] is built on the same foun-
dations as the GCL method of Cao, Huang and Russell [34]. Instead of recasting the GCL
as the minimization problem (3.26) for the purpose of discretization, this method uses
the conservative (integral) form to find the discrete velocities directly.



526 M. J. Baines, M. E. Hubbard and P. K. Jimack / Commun. Comput. Phys., 10 (2011), pp. 509-576

The method can be summarized as follows. The PDE is used in conjunction with an
Eulerian form of a conservation equation to generate a velocity, which is then used to
move the mesh in a Lagrangian manner. In simple cases the solution of the PDE can
be recovered a posteriori from the Lagrangian form of the same conservation law. As
can be seen in the following sections, this strategy forms a good basis for algorithmic
development. The fundamentals of the method and the details of the multidimensional
finite element implementation are set out in the following three sections. Section 4 deals
with nonlinear PDE problems which conserve mass, Section 5 extends the idea to non
mass-conserving problems, and Section 6 contains a number of further extensions and
generalizations.

4 The conservation method for mass-conserving problems

We now describe in detail the conservation method of the previous subsection for con-
structing velocities, developed from [20, 21] and [34], which is based on local or dis-
tributed mass conservation, and which exploits the equivalence between the Eulerian and
Lagrangian conservation laws described in Section 3.1. In the remainder of this section
we shall consider the consequences of local conservation in the case of mass-conserving
problems, and then use the idea to motivate a moving-mesh finite element method driven
by this property.

4.1 A local conservation principle

Let u > 0 be a solution of the PDE (2.1) in the interior of a moving domain R(t) and
suppose that the boundary conditions are such that total mass,

θ =
∫

R(t)
udx, (4.1)

is conserved, i.e., independent of time. The PME of Subsection 2.2.1 with a zero Dirichlet
boundary condition falls into this category.

The velocity is defined implicitly by the conservation principle
∫

Ω(t)
udx= c(Ω), independent of time, (4.2)

for an arbitrary moving subregion Ω(t) of R(t). (Assuming that the subregions Ω(t)
form a non-overlapping covering of R(t) Eq. (4.2) is consistent with the total mass θ in
(4.1) being independent of time.)

One motivation for the choice of (4.2) as the mechanism for generating the velocity is
a converse of the invariance property of self-similar solutions (2.16) mentioned in Sub-
section 2.2. This converse, which is proved in Appendix A, states that if (4.2) holds then
under certain conditions initial data that coincides with a self-similar solution is propa-
gated as a self-similar solution for all time.
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Differentiating (4.2) with respect to t and using the Reynolds Transport Theorem
(2.22),

d

dt

∫

Ω(t)
udx=0=

∫

Ω(t)
utdx+

∮

∂Ω(t)
uv·n̂dΓ, (4.3)

where n̂ is the outward unit normal to the boundary ∂Ω(t) and v is the velocity of points
on the boundary. Then, using the Divergence Theorem, (4.3) can be written as

∫

Ω(t)

{
ut+∇·(uv)

}
dx=0, (4.4)

where v is any sufficiently smooth velocity field consistent with the normal component of
the boundary velocity. Since Ω(t) is arbitrary it follows that u and v satisfy the pointwise
Eulerian conservation law

ut+∇·(uv)=0. (4.5)

We note the equivalence of the two conservation principles (4.2) and (4.5) (Lagrangian
and Eulerian) through the Reynolds Transport Theorem (2.22), as noted previously in
Subsection 3.1.

Since u satisfies the PDE (2.1) in R(t), Eq. (4.5) can be written as the purely spatial
equation

Lu+∇·(uv)=0, (4.6)

which, given u, can be regarded as an equation for the velocity v.

4.1.1 Solving for the velocity

In general there is no unique solution of (4.6) for v. But if, as suggested in [34], there
exists a velocity q such that curlv = curlq then there is also a velocity potential φ such
that

v=q+∇φ (4.7)

and Eq. (4.6) can be written

−∇·(u∇φ)=Lu+∇·(uq). (4.8)

Given u>0 in the interior of R(t), by Helmholtz’ Theorem [68] there is a unique solution
of (4.8) for φ (at least to the extent of a constant) in the region R(t), provided that either
u∂φ/∂n or φ is given on the boundary ∂R(t). The boundary conditions on u∂φ/∂n or
φ correspond respectively to either the normal component of the flux or the tangential
component of the velocity being prescribed on the boundary.

The velocity v is then determined by (4.7). The evolution of points x̂(t) of the region
R(t) may be found by integrating the ODE system (1.1) for the Lagrangian coordinate
x̂(t) which coincides instantaneously with the fixed coordinate x at an initial time.
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4.1.2 Recovering the solution

The solution u(t,x) in the moving frame can in principle be recovered a posteriori from
the local mass conservation equation (4.2). Writing (4.2) in the form

∫

Ω(t)
udx= c(Ω)=u(t) |Ω(t)|, (4.9)

where |Ω(t)|> 0 is the measure of Ω(t) and u(t) is a mean value of u(t,x) in Ω(t), we
may divide by |Ω(t)| and obtain u as the limit

u= lim
|Ω(t)|→0

c(Ω)

|Ω(t)| (4.10)

provided that the limit exists and is unique. Since c(Ω) is independent of time it is equal
to its initial value c(Ω0), so that from (4.9)

c(Ω)= c(Ω0)=u(t0) |Ω(t0)|, (4.11)

and the solution u may be obtained formally from (4.10) and (4.11) as

u(t,x̂(t))=
(

lim
|Ω(t)|→0

|Ω(t0)|
|Ω(t)|

)
u(t0,x̂(t0)). (4.12)

To summarize the structure of the conservation method, the Eulerian form (4.5) of the
conservation law (4.2) is used in conjunction with the PDE (2.1) to obtain the spatial
equation (4.6) for the velocity v. Then, assuming a prescribed vorticity of the form curlq

(which may be zero), there exists a velocity potential φ satisfying (4.8). The elliptic equa-
tion (4.8) is solved for φ, with either φ or u∂φ/∂n prescribed on the boundary. The veloc-
ity v is then found from (4.7) and used to move the points of the domain by (1.1). Finally,
the solution u is recovered a posteriori from the Lagrangian conservation law (4.2) in the
form (4.12).

The method is scale-invariant when the original problem is scale-invariant because
it relies only on the original PDE and the conservation principle (4.2), both of which are
scale-invariant.

4.1.3 Some exact solutions for the velocity

For a class of PDE problems the elliptic equation (4.8) has an exact solution for the poten-
tial φ, and hence for the velocity v. Consider nonlinear PDEs (2.1) of the form

ut =∇·(u∇p) (4.13)

in a moving domain R(t) for a general function p (which may depend on u and/or its
space derivatives), with the zero flux boundary condition

u
(

v·n̂+
∂p

∂n

)
=0 (4.14)



M. J. Baines, M. E. Hubbard and P. K. Jimack / Commun. Comput. Phys., 10 (2011), pp. 509-576 529

(the porous medium equation of Subsection 2.2.1, for which p ≡ u, with u = 0 on the
moving boundary, is such a problem). We note incidentally from (2.22) that

d

dt

∫

R(t)
udx=

∫

R(t)

{
ut+∇·(uv)

}
dx=

∫

R(t)

{
∇·(u∇p+uv)

}
dx

=
∮

∂R(t)
u
(∂p

∂n
+v·n̂

)
dΓ=0, (4.15)

by (4.14), showing that the total mass is conserved for these problems.
Suppose now that u is a positive solution of (4.13) in the interior of R(t) and that the

velocity field v is generated by (4.8) and (4.7) with q=0. Then some exact solutions for φ
and v may be derived. Since q=0 in (4.7), v=∇φ (the velocity is irrotational), hence for
Eq. (4.13) we may write (4.8) in the form

∇·{u∇(φ+p)}=0, in R(t), (4.16)

with the boundary condition (4.14) as

u
(

v·n̂+
∂p

∂n

)
=u

∂

∂n
(φ+p)=0, on ∂R(t). (4.17)

Since u>0 in the interior of R(t), the elliptic equation (4.16) for φ+p with the boundary
condition (4.17) has the unique solution φ+p=constant. Hence φ=−p is an exact solution
for the velocity potential to within a constant and the corresponding exact solution for v

is

v=∇φ=−∇p. (4.18)

As an example, if

p=(−1)k∆ku (k≥0), (4.19)

for which Eq. (4.13) is the high order nonlinear diffusion equation

ut =(−1)k∇·(u∇∆ku) (4.20)

with k positive, and if u,v satisfy the boundary condition

u
(

v·n̂+(−1)k ∂

∂n
∆ku

)
=0 (4.21)

(for example if u=0 there), then

v=(−1)k+1∇∆ku. (4.22)

Another choice of p is [117]

p(u)=
∫ u D(ū)

ū
dū (4.23)
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for a general function D(u) (assuming that the integral exists), for which

u∇p(u)= D(u)∇u, (4.24)

and Eq. (4.13) is the second order nonlinear diffusion equation

ut =∇·(D(u)∇u). (4.25)

Then, if u,v satisfy the boundary condition

uv·n̂+D(u)
∂u

∂n
=0 (4.26)

(for example if u= D(u)=0), there exists the exact solution

v=−∇p=−D(u)

u
∇u (4.27)

(provided that u 6=0, by (4.24)).
The porous medium equation of Subsection 2.2.1,

ut =∇·(un∇u) (4.28)

(cf. (2.17)) with n≥1, which is of the form (4.25) with D(u)=un, together with the bound-
ary condition

u
(
v+un−1∇u

)
·n̂=0, (4.29)

(satisfied in particular by u=0), has the exact solution

v=−un−1∇u=− 1

n
∇un. (4.30)

4.2 Distributed mass-conserving velocities

In preparation for the moving mesh finite element formulation described in the next sec-
tion we now construct a weak form of the conservation method using a weighted conser-
vation principle (cf. Subsection 2.4).

Let wi, (i=1,··· ,N), be a set of positive square-integrable weight functions forming a
partition of unity and moving with the points of the domain R(t). Define the distributed
conservation principle to be

∫

R(t)
wiudx= ci, independent of time, (4.31)

(a partition of (4.1)) where u is a positive solution of the weak form

∫

R(t)
utdx=

∫

R(t)
Ludx (4.32)
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of the PDE (2.1) in the interior of the domain R(t). By summing (4.31) over i the ci satisfy

N

∑
1

ci =
∫

R(t)
udx=

(∫

R(0)
udx

)∣∣∣
t=0

, (4.33)

since the wi’s form a partition of unity and mass is conserved. (We note in passing that the
local conservation principle (4.2) corresponds to choosing the wi to be the characteristic
function in Ω(t).)

One motivation for the choice of (4.31) to generate the velocity is that if the initial data
coincides with the L2 projection of a self-similar solution into the space spanned by the wi

then, as shown in Appendix B, under the similarity velocity (2.10) the solution remains
the L2 projection of the self-similar solution for all time. Although the velocity generated
is only approximately the similarity velocity this is an interesting property.

From (4.31) and (2.35), assuming that Lu exists and is square-integrable, the velocity
v satisfies ∫

R(t)
wi

{
Lu+∇·(uv)

}
dx=0 (4.34)

(cf. (4.6)), since the wi move with velocity v. Furthermore, if wi ∈ H1{R(t)} then after
using Green’s Theorem on (4.34) we obtain the weak form

∫

R(t)
u∇wi ·vdx=

∫

R(t)
wiLudx+

∮

∂R(t)
wiuv·n̂dΓ (4.35)

of (4.5).
There is no unique solution of Eq. (4.34) or (4.35) for v in general but if there exists a

square-integrable velocity q and velocity potential φ such that

∫

R(t)
u∇wi ·vdx=

∫

R(t)
u∇wi ·(q+∇φ)dx (4.36)

(a weak form of (4.7)) then Eq. (4.35) can be written

∫

R(t)
u∇wi ·∇φdx=

∫

R(t)
(wiLu−u∇wi ·q)dx+

∮

∂R(t)
wiuv·n̂dΓ. (4.37)

Since u > 0 in the interior of R(t), then if wiuv·n̂ is given on the boundary ∂R(t) the
right-hand side of (4.37) is known and the equation possesses a unique solution for φ∈
span{wi} provided that φ is prescribed at at least one point of the domain (or to within
an additive constant if it is not).

4.2.1 Weak form of the velocity and recovery of the solution

Having obtained the velocity potential φ the next step is to derive the velocity. From
(4.36), if v,q∈ span{∇wi} then v is given directly by (4.7), as before. Otherwise, a weak
form is required. The weak form (4.36) connecting φ and v is insufficient by itself to
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determine v from φ, since it is just an orthogonality condition. We therefore construct a
best approximation ṽ to v obtained by projecting v−q−∇φ into the space spanned by the
wi in an L2 sense, thus minimizing ‖v−q−∇φ‖2 over each component of v and leading
to the normal equations

∫

R(t)
wi(ṽ−q−∇φ)dx=0 (4.38)

for ṽ. Note that in the case of the velocity ṽ the rate of change of the integral in (4.31) is

d

dt

∫

R(t)
wi u dx=

∫

R(t)
u∇wi ·(ṽ−q−∇φ)dx =

∫

R(t)
u∇wi ·(ṽ−v)dx (4.39)

which is different from zero, so that (4.31) is no longer independent of time. Nevertheless,
the right-hand side of (4.39) is likely to be small, as can be seen from the inequality

∥∥∥
∫

R(t)
u∇wi ·(ṽ−q−∇φ)dx

∥∥∥
2
≤
∥∥u
∥∥

2
·
∥∥ṽ−q−∇φ

∥∥
2
·
∥∥∥
∫

R(t)
∇widx

∥∥∥
2
, (4.40)

provided that ‖u‖2 is bounded, since ‖ṽ−q−∇φ‖2 is least. Hence the ci in (4.31) are
expected to vary slowly with time.

The evolution of points of the domain can be obtained by integrating (1.1) in time
with v replaced by ṽ, and the solution u approximated by inverting (4.31) on the new
domain. The solution u may alternatively be found exactly by evaluating the right-hand
side of (4.39), integrating in time to give

∫

R(t)
wi u dx=µi (4.41)

say, and then inverting
∫

R(t)
wiudx=µi (4.42)

for u, where µi (acting in lieu of the ci in (4.31)) is updated at each time-step.

An alternative is to use the conservative ALE equation (2.35) in the form

µ̇i =
d

dt

∫

R(t)
wiudx=

∫

R(t)
wi

{
Lu+∇·(uṽ)

}
dx, (4.43)

which also leads to a system of the form (4.42) after integration in time. Using (4.34) it
can be shown that (4.43) is equivalent to (4.39) under some circumstances. However, in
general (4.43) will produce a slightly different u since the right-hand side of (4.42) will
have been propagated differently in time.
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4.3 A moving mesh finite element method

We now use the distributed conservation principle (4.31) together with the weak forms
(4.37) and (4.38) to generate a multidimensional moving mesh finite element method. For
the mesh we assume a moving polygonal or polyhedral approximation ∂R(t) to ∂R(t)
together with a moving tessellation of simplices of R(t). At any instant t let S1{R(t)}⊂
H1{R(t)} be the space spanned by standard piecewise linear basis functions Wi(t,x) on
the tessellation, forming a partition of unity. Note that the Wi are scale-invariant.

Piecewise linear approximations U≈u, V≈ ṽ, Φ≈φ and X̂≈ x̂ are also assumed, lying
in S1{R(t)} (in the case of the vectors X̂ and V for each Cartesian component lying in
this space). The total mass ∫

R(t)
U dx (4.44)

is partitioned and the partitions ∫

R(t)
Wi U dx (4.45)

maintained in time to generate the velocity, as in the previous subsection. The partitions
Ci≈ ci are defined by

∫

R(t)
Wi U dx=Ci, independent of time (4.46)

(cf. (4.31)). Since the Wi form a partition of unity, Eq. (4.46) is consistent with mass con-
servation, and ∑i Ci is constant, as in (4.33). Assuming that U>0 lies in the domain of the
operator L and that LU is square-integrable, from (4.35) the velocity field V satisfies the
weak form ∫

R(t)
U∇Wi ·Vdx=

∫

R(t)
WiLUdx+

∮

∂R(t)
WiUV·n̂dΓ. (4.47)

There is no unique solution of (4.47) for V in general but if there exists a square-
integrable velocity Q and a velocity potential Φ satisfying the weak form

∫

R(t)
U∇Wi ·Vdx=

∫

R(t)
U∇Wi ·(Q+∇Φ)dx (4.48)

(cf. (4.36)), then Eq. (4.47) can be written
∫

R(t)
U∇Wi ·∇Φdx=

∫

R(t)

{
WiLU−U∇Wi ·Q

}
dx+

∮

∂R(t)
WiUV·n̂dΓ. (4.49)

Since U > 0, Eq. (4.49) has a unique solution for Φ∈S1{R(t)} provided that WiUV·n̂ is
given on the boundary ∂R(t) and that Φ is given at at least one point in R(t) (which is
no restriction since only ∇Φ is required).

We shall henceforth restrict the argument to problems for which WiUV·n̂ is given on
the boundary. This includes all problems with zero Dirichlet boundary conditions on U
(and those with non-zero Dirichlet boundary conditions too, as described in Section 4.3.4
below) as well as those problems for which the normal component of V is given on the
boundary.
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4.3.1 Matrix forms

Expanding Φ as

Φ=∑ΦjWj (4.50)

with coefficients Φj to be determined, Eq. (4.49) leads to the matrix equation

K(U)Φ= f , (4.51)

where K(U) is a weighted stiffness matrix with entries

Kij =
∫

R(t)
U∇Wi ·∇Wjdx. (4.52)

The vector Φ contains the unknown coefficients Φj and the vector f has entries

fi =
∫

R(t)
(WiLU−U∇Wi ·Q)dx+

∮

∂R(t)
Wi UV·n̂ dΓ. (4.53)

The system (4.51) is rank deficient as is standard (since the equations sum to zero), which
is why Φ needs to be specified at at least one node. Without loss of generality we take
Φ = 0 at any node since only the gradient of Φ is required. Elimination of this variable
from the system (4.51) gives the reduced system

K′(U)Φ′= f ′, (4.54)

where the prime refers to the matrix K(U) reduced by the row and column (and the vector
f reduced by the entry) corresponding to assigned node. The system (4.54) is symmetric
positive definite and can be solved using for example a conjugate gradient algorithm.

4.3.2 Solving for the velocity

A continuous piecewise linear velocity V is required to preserve the identity of the mesh,
and hence V does not lie in the span{∇Wi} which contains only discontinuous functions.
Therefore, in a similar way to that of Subsection 4.2.1, we seek an approximation Ṽ ∈
S1{R(t)} satisfying the weak form (4.38) in the form

∫

R(t)
Wi(Ṽ−Q−∇Φ)dx=0. (4.55)

Expanding Ṽ as

Ṽ=∑ṼjWj, (4.56)

Eq. (4.55) yields the matrix equation

MdṼ=h, (4.57)



M. J. Baines, M. E. Hubbard and P. K. Jimack / Commun. Comput. Phys., 10 (2011), pp. 509-576 535

where the block diagonal matrix Md has d blocks, each of which is a standard mass
matrix with entries

Mij =
∫

R(t)
WiWjdx. (4.58)

The vector Ṽ in (4.57) contains the coefficients of the nodal velocities Ṽi, and the vector
h has entries

hi =
∫

R(t)
Wi(Q+∇Φ)dx. (4.59)

Eq. (4.57) may be solved for Ṽ with or without the application of boundary conditions
on V. If no boundary condition is applied the unique velocity generated is the one that
minimizes the L2 error norm ‖V−Q−∇Φ‖2.

An alternative to the approximation generated by (4.55) is a local averaging approxi-
mation. Since the piecewise constant gradient ∇Φ is most accurate at the centroids of the
elements [131], a local element-weighted average can be used to advantage, giving the
approximation

Vi =
∑k |Ωk|(Q+∇φ)k

∑k |Ωk|
, (4.60)

where |Ωk| is the measure of element k of the patch of elements surrounding node i.
Boundary conditions on V can be applied as required.

A further alternative is to use this framework to take into account the flow of infor-
mation under the velocity by restricting the sum in (4.60) to upwind elements, as in

Vi =
∑k+ αk|Ωk|(Q+∇φ)k

∑k+ αk|Ωk|
, (4.61)

where k+ denotes upwind cells and the αk are consistent weights (see below). This option

allows a zero condition on the velocity at a point to be applied naturally: Vi is set to
zero when there are no contributions to the sum. The upwinded velocity can be effected
on a cell-by-cell basis by distributing Q+∇Φ to the vertices of the cell according to its
orientation relative to the velocity field. Thus, if Q+∇Φ has a positive component along
the inward normals to two of a triangle’s edges it is assigned to the unique downwind
vertex, otherwise it is distributed between the two downwind vertices with appropriate
weights. A simple approach considers (Q+∇Φ)·nν, a scaled normal component of Q+
∇Φ along the inward normal to edge ν of a cell. The weights αν are then defined to be
the positive part of (Q+∇Φ)·nν normalized by their sum over the three cell edges, viz

αν =

[
(Q+∇Φ)·nν

]
+

∑edges

[
(Q+∇Φ)·nν

]
+

. (4.62)

These coefficients correspond to those of the LDA fluctuation distribution scheme for
approximating hyperbolic conservation laws (see [1, 50] for details).
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Whichever way the approximation to the velocity V is constructed, the displacements
X̂i(t) can be obtained via integration of the ODE system

dX̂i

dt
=Vi(t,X̂) (4.63)

in time (cf. (1.1)) using any convenient time-stepping scheme.

In spite of targeting exact mass conservation in (4.46) and (4.47), because of the ap-
proximations used, none of the above constructions for the velocity is exactly consistent
with mass conservation, so that the integrals

∫

R(t)
WiUdx=µi, (4.64)

say, in (4.46) typically vary slowly with time. We therefore consider an alternative way of
recovering the solution U using an ALE equation, as described in the next section.

4.3.3 Recovering the solution

As discussed in Section 4.2 there are a number of possible ways in which the solution
may be recovered, each of which requires the solution of a similar linear system ((4.31) or
(4.42)). We focus on the discrete ALE equation (4.43) in the form

µ̇i =
d

dt

∫

R(t)
WiUdx=

∫

R(t)
Wi

{
LU+∇·(UV)

}
dx, (4.65)

where µi(t) is defined by (4.64). Integrating the right-hand side with respect to time we
obtain values of µi in (4.64) which, after expanding U as

U =∑UjWj, (4.66)

leads to the matrix equation

MU =µ, (4.67)

where µ = {µi}. The matrix M is symmetric positive definite and can be inverted using
a conjugate gradient method, for example.

Boundary conditions do not need to be imposed on U in solving the system (4.67). If
no boundary conditions are imposed the solution approximates the true solution weakly
through its weak imposition in the boundary integral in (4.53). The application of strong
Dirichlet boundary conditions on U is inconsistent with the assumption of total mass
conservation (as we shall see below) and requires a separate investigation, summarized
in the following subsection.
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4.3.4 Mass-conserving test functions

In applying strong Dirichlet boundary conditions to U in the system (4.67) the test space
is reduced in size and the set of Wi’s no longer form a partition of unity. As a result the
conservation principle (4.46) is inconsistent with mass conservation.

To counter this inconsistency and allow strong Dirichlet conditions to be applied to
(4.67), modified test functions W̃i can be constructed [75] which have the property that
they vanish on the boundary as well as forming a partition of unity. These test functions
may be obtained by modifying the original set of Wi’s by adding those Wi’s correspond-
ing to nodes where strong boundary conditions are applied to interior Wi’s, forming new
test functions W̃i. There are many ways to do this but the simplest takes the form

W̃i =Wi+ ∑
j∈∪△i∩∂R(t)

1

Nj
Wj (4.68)

in which ∪△i∩∂R(t) is the set of mesh nodes in the intersection of the closure of the
support of Wi and the boundary of the domain, and Nj is the number of interior nodes
adjacent to the boundary node j. Details can be found in [75].

The potential Φ and velocity V are obtained exactly as before, using the standard Wi

test functions, but now the solution Ũ (which satisfies the strong Dirichlet conditions) is
found from a modified form of Eq. (4.67),

M̃Ũ = µ̃, (4.69)

with the strong boundary conditions imposed, where the modified (unsymmetric) mass

matrix M̃ takes the form

M̃ij =
∫

R(t)
W̃iWjdx, (4.70)

and

µ̃i =
∫

R(t)
W̃iŨdx. (4.71)

The vector Ũ in (4.69) is a vector of the unknowns Ũi in the expansion of Ũ in terms of the
Wj. The right-hand side of (4.69) can be found either by keeping the µi of (4.71) constant
or, more accurately, as in the previous section, updating the µi using the modified ALE
equation

˙̃µi =
d

dt

∫

R(t)
W̃iŨdx=

∫

R(t)
W̃i

{
LŨ+∇·(ŨV)

}
dx. (4.72)

Note that the mesh velocities V in (4.72) are calculated using the standard linear test and
trial functions. This means that the velocity potentials are calculated from (4.49) based
on the proportions of the total mass associated with the test functions Wi (see (4.46)) and
are different to those used in the direct recovery of U via (4.71).

We can now state the algorithm for the moving mesh finite element conservation
method.
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4.3.5 Algorithm for mass-conserving problems

Given a mesh with nodes {X0
i } and nodal values {U0

i } representing the initial conditions,
at each time-step:

1. Find Φi from (4.54).

2. Find Ṽi from (4.57).

3. Advance X̂i(t) in time using any convenient time-stepping scheme applied to (4.63) with V=Ṽ.

4. Recover Ui at the new time-step, either from (4.67) with µi given by (4.65) and (4.64) (in the
case of weak implementation of Dirichlet boundary conditions on U), or from (4.69) with µ̃i given
by integrating (4.72) and (4.71) (for strong implementation of Dirichlet boundary conditions on
U).

Remarks:

• The algorithm differs from standard finite element approaches by primarily target-
ing the mesh velocity.

• Due to the several approximations made the Lagrangian conservation law (4.46)
does not hold precisely. The Ci should therefore be recomputed at each time-step.

• Step 2 may be varied to obtain Vi from (4.60) or (4.61).

• There is no requirement in the algorithm for equidistribution. In principle any initial
distribution is propagated in time.

• Steps 1, 2 and 4 of the algorithm are scale-invariant. This is because all the equations
used, as well as the Wi and W̃i, are individually scale-invariant. However, Step 3 is not
necessarily scale-invariant (but see Subsection 4.4.1 below).

4.4 Time-stepping for the ODE system

The algorithm can be thought of as solving the ODE system

d

dt

(
X̂

µ

)
=

(
V

µ̇

)
, (4.73)

where µ = {µi}. The method is therefore in essence a method of lines which can be ap-
proximately solved by any convenient time-stepping scheme.

The first order Euler explicit scheme is surprisingly successful in this context although
its accompanying stability condition sometimes demands impractically small time-steps.
The second order Heun scheme [75] has been found to be sufficiently accurate for all
the problems considered in this paper although it too is subject to inconveniently small
time-steps on occasion due to stability restrictions.
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4.4.1 Scale-invariant time-stepping

The time-stepping in the algorithm in Section 4.3.5 can be made scale-invariant by rescal-
ing the time derivative in the ODE system (4.73) by using τ = tβ instead of t (cf. [28]).
Then dt=dτ1/β =(1/β)τ1/β−1dτ, yielding the transformed ODE system

d

dτ

(
X̂
µ

)
= β−1τ1/β−1

(
V

µ̇

)
. (4.74)

With constant time-steps ∆τ, standard time-stepping schemes are scale-invariant and the
entire algorithm in Section 4.3.5 is scale-invariant.

4.5 The one-dimensional finite element method

In one space dimension the concept of vorticity does not exist and is not required for the
purpose of imposing uniqueness on the velocity field. Therefore q≡Q≡0 can be assumed
in all of the previous analysis. In fact, it is no longer necessary to use a velocity potential
at all: a unique velocity field can be found directly from the conservation principle (4.46).

Assume that the domain is the interval (a(t),b(t)) with nodes

a(t)= x0(t)< x1(t)< ···< xN+1(t)=b(t) (4.75)

and let Wi(x) be the standard piecewise linear hat functions. From (4.47) the velocity V
satisfies the weak form

∫ b(t)

a(t)
U

dWi

dx
V dx=

∫ b(t)

a(t)
WiLU dx+[WiUV]

b(t)
a(t)

. (4.76)

Using the expansion
V =∑VjWj, (4.77)

Eq. (4.76) leads to the matrix equation

B(U)V = f , (4.78)

where V is the vector of coefficients Vj and the entries of B(U) and f are respectively

Bij =
∫ b(t)

a(t)
U

dWi

dx
Wj dx, fi =

∫ b(t)

a(t)
WiLU dx+[WiUV]

b(t)
a(t)

. (4.79)

For an even number of nodes the matrix B(U) is singular when U is constant in space,
leading to the kind of singularity akin to that in the MFE method of Section 3.3. For an
odd number of nodes the system (4.78) always has a unique solution when WiUV in the
last term of (4.79) is known at x=a(t) and b(t) (as assumed in this work) and at least one
value of V is prescribed (to anchor the velocity). For geometrically symmetric problems
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it is simple to choose this value of V because the node at the centre of the domain is fixed.
The system (4.78) can then be solved directly for V. The procedure for updating the mesh
node positions and recovering U on the updated mesh remains unchanged.

This method of solving (4.78) for V (as opposed to solving for a velocity potential
first) replaces two symmetric systems with one unsymmetric system of similar size. Mesh
convergence studies suggest that the results are of similar quality. However, the difficulty,
in general, of picking a point at which to apply a known velocity makes the use of a
velocity potential, which along with (4.55) calculates all values of V automatically, more
attractive.

The one-dimensional method is readily extended to radially symmetric problems.

4.6 Initial data

As pointed out earlier there is no requirement for the mesh to be equidistributed, which
raises the question of the distribution of the initial mesh. Since the aim of the algorithms
is to preserve local or distributed mass it is important to set up an initial mesh with the
properties that it is desired to keep.

4.6.1 Initial data in one dimension

The simplest initial data consists of nodes equally spaced between the endpoints with
initial values obtained by sampling the initial condition at these points. This choice de-
termines an initial distribution of mass which the algorithm then attempts to maintain.

Notwithstanding the generality of the initial distribution an initial mesh may also be
obtained by the equidistribution technique [26]. Under this technique mesh points are
generated by equalizing the integral of the initial function u0, so that the integral

∫ xi

xi−1

u0(t0,x)dx (4.80)

takes the same value in each interval. The mesh is only implicit in Eq. (4.80) but can be
extracted by an iterative inversion procedure, such as that given in [6].

From the point of view of equalizing the error between the initial function and its
discrete representation on a given mesh, a discrete form of u0(x) may be obtained by
minimizing the L2 error between the two. Supposing that U(x) is the L2 projection of
u0(x) into the span{Wi} the normal equations are

∫ b

a
Wi(U(t0,x)−u0(t0,x))dx=0 (4.81)

which lead, via the expansion U(x)=∑j UjWj, to the matrix form

MU = f
0
, (4.82)
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where M is the standard mass matrix, U is a vector of coefficients Uj, and the components

of the vector f
0

are
∫ b

a
Wiu0(x)dx. This choice is appropriate if we wish to pursue the

propagation of the L2 best fit to self-similar solutions property proved in Appendix B.
The L2 error can further be minimized over node positions as well as nodal values to

give an optimal initial mesh [5, 138].

4.6.2 Initial data in higher dimensions

Again, the simplest initial mesh in higher dimensions consists of roughly equally spaced
points (connected as a Delaunay triangulation [27], say) and the simplest initial values
are obtained by sampling the initial condition at these points.

In multidimensions equidistribution is less intuitive and depends on a variational
approach (see, e.g., [74]).

Alternatively, the initial values may be readily obtained from minimization of the
L2 error between the initial function and its discrete representation U(t0,x) in the space
spanned by the basis functions Wi(t0,x) on a given mesh, for which the normal equations
are ∫

R(0)
Wi

{
U(t0,x)−u0(t0,x))

}
dx=0 (4.83)

leading to (4.82) with

f
0
=
∫

R(0)
Wiu0(x)dx, (4.84)

which is again appropriate for the purpose of invoking the propagation of the best L2 fit
to self-similar solutions property proved in Appendix B.

The L2 error can again be minimized over node positions as well as nodal values in
multidimensions to give an optimal mesh [5, 138].

4.7 Examples

We now illustrate the multidimensional finite element conservation method for mass-
conserving problems on a number of test problems using the algorithm of Subsection
4.3.5. In all the problems shown u=0 on the boundary, so the right hand side of (4.49) is
known.

4.7.1 The porous medium equation

For the PME (2.17) with U=0 imposed weakly on ∂R(t), the velocity potential Φ satisfies
(4.51) with

fi =
∫

R(t)
Wi

{
∇·(Un∇U+UQ)

}
dx. (4.85)

The velocity is then found from (4.57), the new mesh from an explicit time-stepping of
(4.63), and the solution from (4.67), using (4.65) in the form

µ̇i =
d

dt

∫

R(t)
WiUdx=−

∫

R(t)
∇Wi ·(Un∇U+UV)dx, (4.86)
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Figure 1: Accuracy of the approximate solutions to the two-dimensional porous medium equation (n = 1 and
n=2) on a sequence of meshes at T=0.01 obtained using the standard scheme: solution error (left) and mesh
error (right) both in the L1 norm.

(after the use of Green’s Theorem and setting U =0 on the boundary) to obtain µ.

Mass is conserved for this problem and there exists an exact radially symmetric solu-
tion in d dimensions [14, 113] given by

u(r,t)=





1

(λ(t))d

(
1−
( r

r0λ(t)

)2) 1
n

, |r|≤r0λ(t),

0, |r|> r0λ(t),

(4.87)

in which d is the number of space dimensions, r is the usual radial coordinate, and

λ(t)=
( t

t0

) 1
2+dn

, t0 =
r0

2n

2(2+dn)
. (4.88)

Mesh convergence results for the method are shown in Fig. 1 for n = 1 and n = 2. The
errors shown are computed from

solution error=
1

N

N

∑
i=1

|Ui−u(Xi)|,

mesh boundary error=
1

NB

NB

∑
i=1

|Ri−r|,

in which N is the number of mesh nodes, NB is the number of boundary nodes, u and
r are the analytic solution and domain radius and Ri is the distance of boundary node
i from the origin. The solutions differ qualitatively for different values of n since from
(4.87) for n≤ 1 the similarity solution has finite slope normal to the boundary whereas
for n > 1 it has infinite slope. This has the effect of lowering the order of convergence
when n is increased beyond 1. The convergence results have been obtained using a se-
ries of unstructured meshes generated on a circle of radius 0.5 by an advancing front
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n = 2) on a sequence of meshes at T = 0.01 obtained using the exactly conservative scheme but with weakly
imposed Dirichlet boundary conditions on u: solution error (left) and mesh error (right) both in the L1 norm.
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Figure 3: Accuracy of the approximate solutions to the two-dimensional porous medium equation (n = 1 and
n = 2) on a sequence of meshes at T = 0.01 obtained using the standard scheme but with a non-zero vorticity
added to the mesh velocity field: solution error (left) and mesh error (right) both in the L1 norm.

method [93] in which the mesh size parameter has been repeatedly halved. In fact, every
two-dimensional experiment presented in this paper has been carried out on unstruc-
tured meshes of this type. Unless stated otherwise, all subsequent experiments shown
use the conservative ALE update (4.72) for the U with strongly imposed Dirichlet bound-
ary conditions (and take Q≡ 0). The time-step is always chosen to ensure that the error
due to the temporal discretization is negligible compared to that of the spatial discretiza-
tion. Numerical evidence suggests that this is the case for any stable time-step when
Heun’s scheme is used [75].

The results shown in Fig. 1 impose the Dirichlet boundary condition U = 0 exactly
(see Section 4.3.4) and are exactly conservative (to machine accuracy). Similar orders
of convergence are seen for non-conservative and weakly imposed boundary conditions
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Figure 4: Snapshots of the solution and mesh (T = 0,0.01,0.025) showing the evolution of a porous medium
equation similarity solution (n=1) on a rotating mesh.

(though occasionally they are slightly lower, as with the mesh error in Fig. 2 for n = 1):
results for this test case are given in Fig. 2 and a full comparison can be found in [75].

Fig. 3 shows that the results remain very similar when a non-zero vorticity is added
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to the mesh velocity field. In this case q is chosen to be (−200yr,200xr)T , where r is the
usual radial coordinate, which is divergence-free and provides a rotation which increases
in magnitude with distance from the origin. Fig. 4 shows three snapshots of the evolution
of the mesh and the solution on this rotating mesh.

Fig. 5 shows the same mesh convergence study carried out for the upwind weighted
velocity update (4.61) from the potential with coefficients as in (4.62). There is very little
difference between these results and those obtained using a standard Galerkin recovery,
though they are typically slightly less accurate.

Fig. 6 shows the convergence results corresponding to those shown in Fig. 1, the only
difference being that the numerical experiments have been initiated with a best L2 fit to
the analytical solution at T = 0 constrained to satisfy the Dirichlet boundary conditions,
instead of nodally exact values. The main difference is that the least squares approxima-
tion appears to give a higher order of accuracy in the approximation to the solution when
n=2.

The final set of convergence results in this section are for the one-dimensional porous
medium equation, obtained using a series of initially uniform meshes. Fig. 7 provides a
direct comparison between the standard scheme from the algorithm in Subsection 4.3.5
and the modification in which the mesh velocity is found directly from (4.76) instead of
using a potential. There is very little difference between the two sets of results except for
the mesh accuracy when n=1. Here the convergence is more erratic (although the error is
smaller) when the potential is used, though the two approaches appear to be converging
towards each other as the mesh is refined.

4.7.2 Fourth order nonlinear diffusion

The second example is the fourth order nonlinear diffusion (or thin film) equation [22,
128] given by

ut =∇·(un∇p), where p=−∆u, in R(t), (4.89)

with boundary conditions u = ∂u/∂n = ∂p/∂n = 0, on ∂R(t). The velocity potential Φ is
given by Eq. (4.51) with

fi =
∫

R(t)
Wi

{
∇·(Un∇P+UQ)

}
dx, (4.90)

in which the piecewise linear P≈ p must be recovered in an appropriate manner. Here
we choose a standard finite element projection, which generates the normal equations

∫

R(t)
Wi P dx=

∫

R(t)
∇Wi ·∇U dx, (4.91)

using the boundary condition ∂u/∂n = 0 (see [7]). This problem also has an explicitly
defined radially symmetric similarity solution in d dimensions in the special case n = 1,
given by

u(r,t)=

{
AtβU0(1−η2)2, |η|≤1,

0, |η|>1,
(4.92)
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Figure 8: Accuracy of the approximate solutions to the two-dimensional fourth order nonlinear diffusion equation
(n=1) on a sequence of meshes at T=0.01 obtained using the standard scheme: solution error (left) and mesh
error (right) both in the L1 norm.

in which

η =
r

A
1
4 tδ

, δ=
1

4+d
, β=4δ−1, A=U0

−4δ, (4.93)

and U0 = 1/192 is chosen so that u(0,t0)= 1, where t0 is such that the initial position of
the moving front is at r=1.

Fig. 8 shows that the solution converges with order 2 as the mesh is refined. Here,
the term ”ALE recovery” refers to the use of (4.67) with (4.65), whilst ”direct recovery”
refers to (4.67) with (4.64). In [7] it was noted that in some circumstances fourth order
convergence could be observed in one space dimension. Examples of the application of
the finite element conservation method to non-radial problems can also be found in [7].

4.7.3 Waiting times for the porous medium equation

The waiting time T∗ is the time it takes for the boundary to begin to move from a general
initial condition and depends on the solution profile in the vicinity of the boundary [85,
128]. For radially symmetric solutions of the porous medium equation (2.17) it can be
shown that

T∗
>0, if u(r,0)≤C|r−r0|

2
n , (4.94a)

T∗=0, if u(r,0)≥C|r−r0|γ, for γ<
2

n
. (4.94b)

The initial conditions used for the numerical tests which are now described were taken
to be

u(r,0)=





[
1−
( r

r0

)2]p
, r≤ r0,

0, r> r0,
(4.95)

so that the solution initially approximates (r−r0)p at the moving boundary (cf. (4.87)).
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Figure 9: Snapshots of the solution and mesh (T = 0,0.1,0.2,0.3) showing the evolution of a porous medium
equation solution (n=3) from an initial profile which exhibits a non-zero waiting time.

Figs. 9 and 10 show the evolution of an initial profile with p=2 in the porous medium
equation with n=3 and illustrate the typical behaviour of a waiting time solution and the
evolution of the mesh as it attempts to sustain locally conservation. These results have
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been obtained using the upwind approach of (4.61) to recovering the mesh velocity from
the potential because it is slightly more robust than the Galerkin approach. A steep front
evolves in the interior of the domain and the mesh clusters behind this front because
this is where the ”mass” is accumulating. This front then moves towards the stationary
boundary, which only starts to move once the front arrives (see also [112]). The result
also illustrates one of the issues with velocity-based moving mesh methods: if the ring
of narrow cells becomes too thin then the mesh edges are bound to cross over if they
remain straight lines. When the mesh is constructed via a transformation this can be
avoided [30].

Fig. 11 shows results obtained while varying p for a fixed mesh resolution, which
shows that non-zero waiting times are only observed when the theory indicates that they
should be (for n =3 there should be non-zero waiting times for p>2/3), and also while
varying the mesh size for a fixed value of p, which demonstrates that the results are
converging to a particular value for the waiting time.

4.7.4 Richards’ equation

The one-dimensional Richards’ equation [60] models unsaturated unsteady flow in soils
in the vertical x direction and is given by

ut =
(

D(u)ux+κ(u)ρg
)

x
, (4.96)

where u(t,x) is the saturation of the wetting phase, κ(u) is the relative permeability of the
wetting phase and D(u) the diffusion coefficient. This equation is suggested as a good
model for the diffusion of pollutant in soils [98]. Stojsavljevic [132] has implemented
the moving mesh finite element conservation method for the case when D(u) = u and
κ(u)=u3 with zero Dirichlet boundary conditions and initial condition u(0,x)=(1−x2)3

+.

There is an exact solution for the velocity v=−ux−u2 (see 4.1.3) and with the above
initial condition the solution also waits before moving, as seen in the numerical results
shown in Fig. 12 (reproduced from [132]).

We now generalize the conservation method to non mass-conserving problems, gov-
erned by the PDE (2.1) or its integral form, in a domain R(t) when u>0 in the interior of
the domain.

5 The conservation method for non mass-conserving problems

If the total mass in the problem varies with time then neither the local or distributed
conservation principles (4.2) and (4.31) are consistent with a constant value of θ in (4.1)
(which should then be written as θ(t) as in (5.2) below). However, a consistent conser-
vation principle may be constructed by normalizing the integral (4.2) at the expense of
carrying θ(t) as an extra variable.
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Figure 10: Snapshots of the solution and mesh (T = 0.4,0.5,1.0) showing the evolution of a porous medium
equation solution (n=3) from an initial profile which exhibits a non-zero waiting time.
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Figure 12: Evolution of the solution (left) and mesh velocity (right) for the one-dimensional Richards equation,
reproduced from [132].

Let u be a positive solution of (2.1) in the interior of the moving domain Ω(t) and
define the relative conservation principle,

1

θ(t)

∫

Ω(t)
udx= c(Ω), independent of time, (5.1)

where the total (variable) mass

θ(t)=
∫

R(t)
udx (5.2)

is the extra (normalizing) variable. Note that from (5.1) and (5.2), c(R)=1.

5.1 Velocity and solution

The Reynolds Transport Theorem (2.23) is now applied to the function u/θ(t), leading to
the equation

∫

Ω(t)
utdx+

∮

∂Ω(t)
uv·n̂dΓ= c(Ω)θ̇ =

θ̇

θ

∫

Ω(t)
udx, (5.3)

where v·n̂ is the normal boundary velocity and we have used (5.1). By the Divergence
Theorem (5.3) can be written

∫

Ω(t)

{
ut+∇·(uv)

}
dx=

θ̇

θ

∫

Ω(t)
udx, (5.4)

where v is any sufficiently smooth velocity field which matches the normal boundary
velocity. Since Ω(t) is arbitrary, Eq. (5.4) yields the generalized pointwise Eulerian con-
servation equation (cf. (4.5))

ut+∇·(uv)=
θ̇

θ
u. (5.5)
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Substituting for ut from the PDE (2.1), Eq. (5.3) takes the purely spatial integral form

∫

Ω(t)
Ludx+

∮

∂Ω(t)
uv·n̂dΓ= c(Ω)θ̇ =

θ̇

θ

∫

Ω(t)
udx (5.6)

while Eq. (5.5) becomes the differential equation

Lu+∇·(uv)=
θ̇

θ
u. (5.7)

Either Eq. (5.6) or (5.7) can be regarded as an equation for v and θ̇.

In some cases θ̇ can be obtained explicitly. Applying (5.6) to the whole domain R(t)
and using c(R)=1, ∫

R(t)
Lu dx+

∮

∂R(t)
uv·n̂ dΓ= θ̇, (5.8)

which gives θ̇ explicitly if either v·n̂ is given on the boundary ∂R(t) or if u=0 there. The
discussion is restricted to these cases in the subsequent argument.

Even if θ̇ is known there is no unique solution of Eq. (5.7) for v but, as in Section
4.1.1, if the vorticity curlv=curlq, where q is a given velocity, then there exists a velocity
potential φ satisfying (4.7) and Eq. (5.7) can be written as (cf. (4.8))

−∇·(u∇φ)=∇·(uq)+Lu− θ̇

θ
u. (5.9)

Since u > 0 in the interior of R(t) there is a unique solution of (5.9) for φ (at least to the
extent of a constant) provided that φ or u∂φ/∂n is specified on the boundary ∂R(t).

Once φ and θ̇ have been found the velocity follows from (4.7). The evolution of points
x̂(t) of the region R(t) can be determined by integrating (1.1), and θ determined by inte-
grating θ̇. Finally, the solution u(t,x) may be recovered a posteriori from the Lagrangian
conservation principle (5.1) in the form

1

θ(t)

∫

R(t)
u(t,x)dx=

1

θ(t0)

∫

R(t0)
u(t0,x)dx (5.10)

using the technique described in Subsection 4.1.2.

5.2 Distributed forms

In the distributed case, with wi belonging to a set of square-integrable test functions,
fixed in R(t) and forming a partition of unity, the relative conservation principle (5.1) is
modified to read

1

θ(t)

∫

R(t)
wiudx= ci, independent of time, (5.11)
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where u is a positive solution of (4.32) in the interior and θ(t) is given by (5.2). Since the
wi form a partition of unity, by summing Eq. (5.11) over i we still obtain ∑ci =1. (We note
in passing that (5.11) reduces to (5.1) when wi is the characteristic function in Ω(t).)

Then, applying the Reynolds Transport Theorem to the function wiu/θ(t), and assum-
ing that the points of R(t) and therefore the wi move with the velocity v, the unknowns
v and θ̇ satisfy ∫

R(t)
wi

{
ut+∇·(uv)

}
dx= ci θ̇ (5.12)

(cf. (4.34)), which leads via the weak form (4.32) of the PDE (2.1) to the spatial equation
∫

R(t)
wi

{
Lu+∇·(uv)

}
dx= ci θ̇. (5.13)

Further assuming that wi∈H1{R(t)} for all t, we apply Green’s Theorem to (5.13), giving
∫

R(t)
u∇wi ·vdx=

∫

R(t)
wiLudx+

∮

∂R(t)
wiuv·n̂dΓ−ci θ̇. (5.14)

Summing Eq. (5.13) over i and using ∑ci =1 leads to
∫

R(t)
Lu+

∮

∂R(t)
uv·n̂dΓ= θ̇ (5.15)

which yields θ̇ explicitly if either v·n̂ is given on the boundary ∂R(t) or if u=0 there. We
shall that assume that this holds in the following argument.

There is no unique solution of Eq. (5.14) for v but if there exists a velocity potential φ
satisfying the weak form (4.36) then (5.14) can be written

∫

R(t)
u∇wi ·∇φdx=

∫

R(t)

{
wiLu−u∇wi ·q

}
dx+

∮

∂R(t)
wiuv·n̂dΓ−ci θ̇. (5.16)

Since uv·n̂ is given on the boundary ∂R(t), so that the penultimate term in (5.16) is
known, there is a unique solution of (5.16) for φ∈ span{wi} provided that φ is specified
at at least one point of the domain (which is no restriction since only ∇φ is required).

Once φ and θ̇ have been determined, if v,q ∈ span{∇wi} then v is given by (4.7),
as in Subsection 4.2.1. Otherwise, an approximate velocity ṽ can be obtained from the
weak form (4.38). The evolution of the Lagrangian coordinate x̂(t) is then determined by
integrating (1.1) over time, and θ(t) by integrating θ̇. In the case of the weak form (4.38)
the velocity ṽ is not exactly equal to q+∇φ and the conservation principle (5.11) therefore
holds only approximately. Although we can still use (5.11) to recover an approximate
solution from the equation

1

θ(t)

∫

R(t)
wi u dx=

1

θ(t0)

∫

R(t0)
wi(t0)u(t0)dx, (5.17)

a more accurate recovery of u(t,x) is obtained, as in Section 4.2.1, from the weak form of
the ALE equation (4.43) by integrating the right-hand side in time prior to the inversion
of (4.42). By using the approximate velocity ṽ and the ALE equation the conservation
principle (5.11) is bypassed and the ci are expected to change slowly with time.
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5.3 The moving mesh finite element method

For the finite element mesh and approximations we assume the same set-up as in Section
4.3.

In the finite-dimensional space the normalized conservation principle (5.11) for non
mass-conserving problems becomes

1

Θ(t)

∫

R(t)
WiUdx=Ci, where Θ(t)=

∫

R(t)
Udx (5.18)

and the Ci are assumed to be independent of time (at least for the purpose of deriving the
mesh velocity potential). Then, by (5.14), the unknowns V and Θ̇ satisfy

∫

R(t)
U∇Wi ·Vdx=

∫

R(t)
WiLUdx+

∮

∂R(t)
WiUV·n̂dΓ−CiΘ̇, (5.19)

while summation of (5.19) over i gives

Θ̇=
∫

R(t)
LU dx+

∮

∂R(t)
UV·n̂ dΓ (5.20)

so that, since it has been assumed that UV·n̂ is given on the boundary, Θ̇ is known
explicitly.

There is no unique solution of (5.19) for V in general but if there exists a square-
integrable velocity Q and velocity potential Φ satisfying the weak form (4.48) then
Eq. (5.19) can be written

∫

R(t)
U∇Wi ·∇Φdx=

∫

R(t)

{
WiLU−U∇Wi ·Q

}
dx+

∮

∂R(t)
WiUV·n̂dΓ−CiΘ̇. (5.21)

Since U>0, Eq. (5.21) has a unique solution for Φ∈S1{R(t)} (since UV·n̂ is known on the
boundary) provided that Φ is given at at least one point in R(t) (which is no restriction
since only ∇Φ is required).

The matrix form for Φ is again (4.54) (one component of Φ having been specified) but
with the f components given by

fi =
∫

R(t)

{
WiLU−U∇Wi ·Q

}
dx+

∮

∂R(t)
Wi UV·n̂ dΓ−CiΘ̇. (5.22)

The velocity is derived as in Subsection 4.3 and both X̂(t) and Θ(t) stepped forward in
time.

The solution U can be approximately recovered from the first of (5.18), either directly
via the finite element form of (5.17),

1

Θ(t)

∫

R(t)
Wi U dx=

1

Θ(t0)

∫

R(t0)
Wi(t0)U(t0)dx, (5.23)
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or by evaluating the µi of (4.64) from the conservative ALE equation (4.65) prior to in-
verting it for U via the technique of Subsection 4.3.3. By using the ALE equation the con-
servation principle (5.18) is bypassed: hence the Ci may vary slowly in time and should
be recalculated at each time step.

Thus for non mass-conserving problems in which V·n is given on the boundary or
U =0 there, we have the following algorithm.

5.3.1 Algorithm for non mass-conserving problems

Given an initial mesh {X0} and nodal values {U0
i } on the mesh, representing the initial

condition, at each time step:

1. Find Θ̇ from (5.20).

2. Find Φ from (4.54) with f given by (5.22).

3. Find Ṽ from (4.55) via (4.57).

4. Advance X̂(t) and Θ in time using any convenient time-stepping scheme applied to Ṽ and Θ̇.

5. Recover Ui at the new time-step by integrating the ALE equation (4.65) in time to obtain the
µ̇i of (4.65), advancing µi in time, and using (4.67). (Strong Dirichlet boundary conditions can
also be imposed as described in Section 4.3.4.)

As in the case of the algorithm of Section 4.3.5 the velocity potential is computed from
the Eulerian conservation law in the form (4.54). However, the velocity and solution
make use of the weak forms (4.55) and (4.65) for which (5.18) does not hold precisely, so
the constants Ci there need to be recomputed at each time-step. Steps 1, 2 and 4 of the
algorithm are scale-invariant because all the equations used, as well as the Wi and W̃i, are
individually scale-invariant.

The algorithm can be thought of as solving the ODE system

d

dt




X̂

Θ

µ


=




V

Θ̇

µ̇


, (5.24)

where µ = {µi} may be replaced by the µ̃ = {µ̃i} of Subsection 4.3.4 in the case of strong
Dirichlet conditions. The method is therefore again a method of lines, and (5.24) can be
integrated approximately by any convenient time-stepping scheme.

5.3.2 Numerical example: the Crank-Gupta problem

We illustrate the conservation method for non mass-conserving problems by a single
example using the algorithm of Subsection 5.3.1. The Crank-Gupta problem [18, 48, 109]
in multiple space dimensions is

ut =∇2u−1, in R(t), (5.25)
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Figure 13: Snapshots of the evolution of the Crank-Gupta problem (T=0,0.04,0.08,0.12,0.16,0.1974) compared
with the asymptotic approximation (left), and comparison of the rate of change of the position of the point on
the moving boundary for different initial meshes (right).
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Figure 14: Snapshots of the evolution of the two-dimensional Crank-Gupta problem (T= 0, 0.024, 0.048, 0.072,
0.096, 0.12) on a 615 node moving mesh.

with boundary conditions u =0 and ∂u/∂n =0 on ∂R(t). Mass is not conserved for this
problem but it is easily verified from (5.8), using the boundary conditions, that the rate
of change of mass is given by θ̇ =−|R|.

It has already been shown in [7] that the conservation method is second order accurate
for this equation when comparing with a one-dimensional exact solution with a different
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boundary condition. Here, we compare with the original problem [48] in one dimension,
which is solved on a half domain and therefore has a condition ux = 0 imposed at the
symmetry boundary, where v=0 is also imposed. The initial condition is given by

u(r,0)=





1

2
(1−x)2, x≤1,

0, x>1.
(5.26)

There is no known exact solution to this problem but some asymptotic expansions have
been derived [48]. Fig. 13 shows the evolution of this initial profile and compares it to the
asymptotic expansion. Fig. 13 also compares the movement of the free boundary node
for a series of meshes (although these results are almost indistinguishable at this scale).

Fig. 14 shows snapshots of the evolution of a radially symmetric profile (computed as
a two-dimensional problem) with x replaced by r in (5.26).

6 Extensions and further applications

In this section a number of extensions and applications are described which show the
development and scope of the above moving mesh conservation method. We begin with
its application to two-phase problems in Section 6.1 and then describe the generalization
to monitor functions in Section 6.2. A corresponding finite difference method (in one
dimension) is then briefly mentioned in Section 6.3. Finally references to some of the
applications of the method are given in Section 6.4.

6.1 Internal boundaries

The conservation method is not restricted to predicting the evolution of problems for
which the moving boundary is always the exterior of the computational domain. It is
also possible to approximate the movement of sharp interfaces lying in the interior of a
domain [10].

In order to do this each subregion defined by the internal and external boundaries
must be considered separately. The main reason for this is that the mesh movement aims
to preserve the proportion of the total mass associated with each test function. How-
ever, since each test function remains associated with the same subregion throughout the
computation this is inconsistent with the proportion of the total mass associated with a
given subregion changing with time. In general, for problems involving moving internal
boundaries there is a transfer of mass into or across the moving boundary. Hence the
algorithm used is based on that presented in Section 5.

6.1.1 Velocity and solution

A moving polygonal approximation R(t) to R(t) is set up, consisting of a moving tes-
sellation of simplices. This is then split up into non-overlapping polygonal subregions
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Rk(t) where R(t) =
⋃Rk(t) and the boundaries ∂Rk(t) approximate the correspond-

ing internal and external boundaries of the subregions of R(t). For clarity, the bound-
ary of each subregion will be divided into fixed (F) and moving (M) components, i.e.,

∂Rk(t)= ∂RF
k ∪∂RM

k (t). Once this has been done, the equation for the velocity potential
(5.21) can be written as

∫

Rk(t)
U∇Wi ·∇Φ dx=

∫

Rk(t)

{
WiLU−U∇Wi ·Q

}
dx+

∮

∂RM
k (t)

Wi UV·n̂dΓ−CiΘ̇k, (6.1)

since V = 0 on ∂RF
k . Assuming that U > 0 in the interior of R(t), Eq. (6.1) has a unique

solution for Φ ∈ S1{R(t)} in terms of Θ̇k provided that the interface integral is known
and that Φ is given at at least one point. In problems of this type a condition on V

at the moving interface is typically provided as part of the well-posed initial-boundary
value problem. It is this condition that supplies the coupling between the subregions and
ensures that the right-hand side of (5.19) may be evaluated.

Once the velocity potentials have been found in each of the subregions, the mesh ve-
locities can be recovered using (4.48), solving over the whole domain at once in order to
produce a velocity field which is continuous across the internal boundaries, and impos-

ing V = 0 on ∂RF
k . This recovery step has been shown to be significantly more accurate

if the equations involving the test functions associated with mesh nodes on the moving
internal boundaries are replaced by a weak form of the condition on V which governs
the movement of the interface [10].

Finally, after the nodal positions and each Θk have been updated using a standard
timestepping scheme, the solution U is recovered separately in each of the subregions.
This can be done using (4.67) or (4.69), either directly with fixed Ci and updated Θk on the
right-hand side, or after the right-hand side has been updated using the ALE approach,
(4.65) or (4.72).

6.1.2 Example: a two-phase Stefan problem

We illustrate the method using a two-phase Stefan problem. This problem, described in
detail in [47] for example, models changes of phase between liquid and solid phases. The
interfaces between these phases move as the conversion between them takes place and
can be followed using the technique described above. The diffusion of heat within each
phase is modelled by the equations [25]

KS ut =∇·(kS∇u), in solid regions, (6.2a)

KL ut =∇·(kL∇u), in liquid regions, (6.2b)

in which u is the temperature and KS,L, kS,L represent, respectively, the volumetric heat
capacity and the thermal conductivity of the phase. From now on any subscript k, used
to index the subregions, can be associated with the phase in that region (solid or liquid)
and the corresponding equation taken from (6.2).
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The conditions imposed on the moving interface ∂RM
k (t) in this system are u = uM

and, based upon an energy balance across the phase-change boundary,

[
kk∇uk ·n̂

]solid

liquid
=λv·n̂, (6.3)

where n̂= n̂(t) is a unit normal to the moving interface, λ is the heat of phase-change per
unit volume, and v·n̂ is the normal velocity of the interface. Note that u is continuous but
∇u is discontinuous across the moving boundary, so the jump between the two phases
(indicated by [·] in (6.3)) is generally non-zero.

In the finite element implementation where UM 6= 0 (which can always be achieved
since adding a constant to the solution still satisfies the remaining conditions) the equa-
tions for the velocity potentials in subregion k become (assuming for simplicity that
Q=0):

Ci Θ̇k+
∫

Rk(t)
U∇Φ·∇Wi dx=κk

∮

∂RM
k (t)

Wi∇Uk ·n̂k dΓ+κk

∮

∂RF
k

Wi∇Uk ·n̂k dΓ

−κk

∫

Rk(t)
∇Wi ·∇U dx+

UM

λ

∮

∂RM
k (t)

Wi

[
kk∇Uk ·n̂k

]solid

liquid
dΓ, (6.4)

in which n̂k is the outward pointing unit normal to subregion k and κk = kk/Kk. Once
these systems are solved for a piecewise linear Φ in each region, the mesh velocity may

be recovered at all of the internal nodes using (4.55) with V=0 on ∂RF
k and the equations

associated with the mesh nodes on ∂RM
k (t) replaced by

λ
∮

∂RM
k (t)

Wi V dΓ=
∮

∂RM
k (t)

Wi

[
kk∇Uk

]solid

liquid
dΓ. (6.5)

Finally, the ALE update is given by

˙̃µi =
∮

∂RM
k (t)

W̃i(κk∇Uk+UM V)·n̂k dΓ+κk

∮

∂RF
k

W̃i∇Uk ·n̂k dΓ

−
∫

Rk(t)
∇W̃i ·(κk∇U+UV)dx. (6.6)

When compared with analytical solutions the algorithm has demonstrated second order
accuracy for both one- and two-phase Stefan problems [10]. A single, one-dimensional,
example is given here to illustrate its capabilities: two-dimensional implementations can
be found in [10]. Fig. 15 shows the evolution of a one-dimensional solution profile (liquid
in the centre, surrounded by solid) where the outer boundaries are stationary and held at
a fixed temperature. The left-hand side of the figure shows the evolution of the solution
itself via snap-shots at discrete times. The right-hand side of the figure shows the smooth
trajectories of the mesh nodes and the change of direction of the phase-change interface
as the gradient of the temperature of the liquid phase at the interface drops below that
of the solid phase. In the absence of an exact solution to this problem, Fig. 16 illustrates
the convergence of the maximum value of the solution and the boundary position as the
mesh is refined.
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Figure 15: Evolution of the solutions to the one-dimensional two-phase Stefan problem for a non-symmetric
initial profile and an 81 node mesh: snapshots of the solution profile (left) and node trajectories (right).
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Figure 16: Evolution of the maximum value of U in the domain (left) and the position of the moving interfaces
(right) for the one-dimensional two-phase Stefan problem with non-symmetric initial profile using three different,
initially uniform, meshes.

6.2 Monitor integrals

We now discuss the generalization of the conservation method to incorporate the use of
monitor functions. Instead of using u as the integrand in the conserved integral in (5.1)
we may replace it by a general positive monitor function m, any measure of the depen-
dent and independent variables. The integral corresponding to the conserved integral in
(5.1) is then the monitor integral ∫

Ω(t)
mdx. (6.7)

An example of a monitor function is

m=
√(

1+|∇u|2
)

(6.8)
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Figure 17: Accuracy of the approximate solutions to the two-dimensional porous medium equation (n =1 and
n=2) on a sequence of meshes at T=0.01 obtained using the scale-invariant arclength monitor integral: solution
error (left) and mesh error (right) both in the L1 norm.

for which (6.7) becomes ∫

Ω(t)

√(
1+|∇u|2

)
dx, (6.9)

i.e., the area of the part of the manifold of u whose projection is Ω(t). We note that for
this particular m,

dm

du
=

∇u√{1+(∇u)2}∇ (6.10)

is an operator.
Unlike the previous cases studied a general monitor will not necessarily have an as-

sociated scale-invariant monitor integral and therefore will not lead to a scale-invariant
numerical method. However by replacing the variables in the monitor integral by the
similarity variables (see (2.11)) we can ensure scale invariance [9]. For example, the radi-
ally symmetric scale-invariant monitor integral corresponding to (6.9) is

t−dβ
∫

R(t)

√(
1+t−2(γ−β)|∇u|2

)
dx, (6.11)

which is constructed from the area function in the space of similarity variables. Results
obtained using this monitor are shown in Fig. 17 for the two-dimensional porous medium
equation. Second order accuracy is generally achieved except, in this case, for the solution
error when n=2.

Since the total monitor integral (6.7) is not independent of time in general, a consistent
conservation principle must be constructed, as in Section 5, by normalizing the integral
(6.7) at the expense of carrying the extra variable

θ(t)=
∫

R(t)
mdx. (6.12)
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We therefore define the relative conservation principle to be

1

θ(t)

∫

Ω(t)
mdx= c(Ω), independent of time. (6.13)

It follows from (6.13) and (6.12) that c(R)=1.
By differentiating (6.13) with respect to time, in a similar way as in Section 5 the

velocity v satisfies
∫

R(t)
m∇wi ·vdx=

∫

R(t)
wi

dm

du
utdx+

∮

∂R(t)
wimv·n̂dΓ−ci θ̇, (6.14)

where we have used m=m(u) and

mt =
dm

du
ut, (6.15)

dm/du being the formal derivative of m with respect to u (see e.g., (6.10)). We cannot
use the weak form (4.32) to substitute directly for ut in (6.14) since the test function
(dm/du)wi does not lie in the span{wi} in general. However, we may project Lu, into the
span{(dm/du)wi} giving an approximation Put=PLu to ut. leading to the approximate
equation ∫

R(t)
m∇wi ·vdx=

∫

R(t)
wi

dm

du
PLudx+

∮

∂R(t)
wimv·n̂dΓ−ci θ̇ (6.16)

for v and θ̇. The projection error means that the velocity computed from (6.16) only
approximately corresponds to the conservation of (6.13) in time.

The velocity potential, the velocity, and Lagrangian coordinate can be calculated as
before, and the solution obtained via the ALE equation. There is a corresponding finite
element method. For further details on the method using monitor functions see [9,20,21,
148, 149].

6.3 A finite difference method

Although this paper is primarily concerned with the finite element implementation of
the conservation method we briefly describe a corresponding finite difference scheme in
one dimension [20, 21] which is equally effective.

When the total mass in the interval (a(t),b(t)) is constant in time the conservation
principle (4.2) can be written

∫ x̂(t)

a(t)
u(t,x)dx= c(a, x̂), independent of time, (6.17)

for any interval (a(t), x̂(t)). Differentiating (6.17) with respect to time using Leibnitz’
Integral Rule (cf. (2.22)) and using the PDE (2.1) gives the spatial equation for v(t,x),

∫ x̂(t)

a(t)
Ludx+[uv]

x̂(t)
a(t)

=0 (6.18)
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(cf. (4.4)), where v=dx̂/dt.
Eq. (6.18) can be solved for v at any point x̂(t) provided that v is given at x=a(t). The

Lagrangian coordinate x̂(t) can then be found by time integration of

dx̂

dt
=v (6.19)

(cf. (1.1)).
The solution may be recovered approximately from the conservation principle (6.17)

in its incremental form

∫ x̂i+1(t)

x̂i−1(t)
u(t,x)dx=

∫ x̂i+1(0)

x̂i−1(0)
u(0,x)dx (6.20)

by an application of the midpoint rule, leading to the approximation

ui(t)=
x̂i+1(t0)− x̂i−1(t0)

x̂i+1(t)− x̂i−1(t)
ui(t0) (6.21)

(cf. (4.12)).
As in the multidimensional case, scale-invariance is inherited for a scale-invariant

problem, since the scale-invariant conservation principle (6.17) has been used to deter-
mine the mesh. The one-dimensional method is readily extended to incorporate monitor
functions [20, 21]. Results from several applications of the one-dimensional method are
cited in the subsection 6.4.2 below.

6.4 Further applications

In this section we briefly describe and reference several further applications of the con-
servation method in both finite element and finite difference form.

6.4.1 Other nonlinear diffusion problems

The sixth order nonlinear diffusion problem [16, 73] is

ut =∇·(u∇·∆2u), (6.22)

with boundary conditions u = ∂u/∂n = ∂3u/∂n3 = ∂5u/∂n5 = 0. The moving mesh finite
element approach to the solution of this problem is very similar to that for fourth order
diffusion in Section 4.7.2. Letting q=−∆u and p=−∆q, Eq. (6.22) can be written

ut =∇·(u∇p) (6.23)

(which from Section 4.1.3 has the exact solution v=−∇p for the velocity).
In the moving mesh finite element method the finite element approximation P≈ p is

recovered from Q≈ q and Q is in turn recovered from U by a finite element projection,
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as in Section 4.7.2. Some results of the application of the moving mesh finite element
conservation method to the sixth order problem can be found in [19].

Another application involving nonlinear diffusion is the modelling of water uptake
in rice. The problem is given by a nonlinear diffusion equation of the form

ct =∇·(D(c)∇c) (6.24)

in R(t), where c=c̄ is held constant on the moving boundary ∂R(t). Results for a particu-
lar choice of D(c), corresponding to a circularly symmetric rice grain, are shown in [111].

6.4.2 One-dimensional applications using finite differences

A number of one-dimensional problems have been treated by the finite difference method
of Subsection 6.3 in the references cited below.

• The porous medium equation with n=4 has been studied in [110].

• Blow-up in Fisher’s equation ut = uxx+up, with p = 2 can be found in [20, 43, 140],
and in the Kassoy equation ut =uxx+eu in [140].

• A model volcano equation ht+Ux = ws(x), where h is the height of the profile and
the rheology term U is a function of h and ∂h/∂x derived from the physics [13], can
be found in [120].

• A model glacier equation [42], Ht = (H5H3
x)x+s, where H is the ice depth and s

is precipitation, with a zero Dirichlet condition at the moving boundary, has been
treated in [112, 119].

6.4.3 Applications to systems of equations

For systems of equations the conservation method has been applied, amongst others, to
the Shallow Water Equations [106], the Euler equations of compressible flow [148, 149],
and chemotaxis blow-up using the Keller-Segel system

ut =uxx+χ(vux)x, vt =vxx+u−v,

implemented in [43].

7 Summary

In this paper we have considered velocity-based adaptive meshing strategies based upon
the movement of the nodes of a topologically-fixed finite element grid. Unlike other
adaptive techniques, such as h-refinement (mesh subdivision) or p-refinement (finite el-
ement order enrichment), this strategy does not require nested finite element spaces and
always has the same number of degrees of freedom. The adaptive element involves mod-
ifying the finite element space as a result of the changing location of the node points, upon
which the underlying basis functions are defined. For the spatial semi-discretization of
time-dependent PDEs this works very naturally by making the finite element space a
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continuous function of time: the goal being to ensure that the trial space evolves in such
a way that, at any instant in time, it is able to provide an accurate and efficient represen-
tation of the PDE solution.

The approach used is to prescribe the evolution of the trial space by imposing (time-
varying) velocities on the nodes of the finite element mesh. The positions of the nodes as
functions of time (and therefore the finite element trial space at any given time) are then
determined by integration of these nodal velocities. Our concern has been to describe
possible techniques for determining this nodal velocity field so as to ensure that the re-
sulting finite element spaces locate, and evolve, their degrees of freedom in such a way
as to permit the most accurate representations of the PDE solution.

Section 2 of the paper introduces the class of problems that we consider and discusses
some of the properties of these PDEs that we may wish to be reflected in our adaptive nu-
merical methods. These include mass conservation, scale-invariance and self-similarity.
Consequences of the velocity-based approach are also discussed, in terms of the moving
frame of reference that this induces and the effects of considering the governing equa-
tions, and their weak forms, in such moving frames. Section 3 then provides a short
historical overview of some of the techniques for prescribing the velocity fields that de-
fine the resulting mesh evolution. These include physically-based algorithms derived
from fluid flows and elastic deformations for example, as well as mathematically-based
algorithms which seek either to directly minimize weighted residuals or to mimic certain
mathematical properties of the equations of interest. In particular, methods based upon
geometric conservation principles are described as a means of motivating the techniques
discussed in the remainder of the paper.

Sections 4 onwards focus primarily on reviewing this particular class of method, ini-
tially for mass-conserving problems and then for non mass-conserving equations. Nu-
merous examples are presented and a large number of applications are described, in
varying levels of detail. The power of the approach is that it respects many of the phys-
ical properties of the PDEs that are being solved, including local and global mass con-
servation, scale-invariance and self-similarity when they are present. Furthermore the
technique has been applied extensively to model problems in both one and two space
dimensions.

It should be noted that the techniques discussed in this review are still far from ma-
ture and considerable further research is likely to be fruitful. In particular, implicit time-
stepping strategies should increase significantly the size of the time-steps that may be
taken, especially in the solution of fourth order (and higher) problems. Other develop-
ments that will be of potential significance include further extension of the techniques
outlined in subsection 6.2 in order to permit a wider selection of monitor functions to be
considered. This will open up the possibility of selecting different criteria upon which to
base the evolution of the interior of the finite element mesh. Furthermore it is likely that,
for many applications, the most effective solution strategies will involve the combina-
tion of mesh movement, such as those discussed here, with more conventional adaptive
strategies which allow the mesh topology to be adjusted and permit the number of de-
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grees of freedom to be adjusted at discrete points in time. The most effective ways of
combining these different strategies is likely to be an important topic of future research.

Appendix

A Propagation of self-similar solutions

In Appendix A we show that under the local mass conservation principle (4.2) any func-
tion u(t,x)>0 which coincides with a self-similar solution of a scale-invariant mass con-
serving problem at an initial time t= t0 and vanishes on the boundary is propagated as a
self-similar solution for all time.

Theorem A.1. Let

1. u(t,x)>0 be the solution of a scale-invariant mass-conserving problem in a domain R(t)
such that u(t,x) vanishes on the boundary ∂R(t),

2. u(t,x) satisfy the local conservation principle

∫

Ω(t)
u(t,x)dx= constant in time, (A.1)

of (4.2) for all Ω(t)∈R(t),

3. the velocity v(t,x) induced by (A.1) be irrotational,

4. u(t0,x) coincide with a self-similar solution at an initial time t= t0.

Then u(t,x) remains self-similar for all t> t0.

Proof. As a preliminary we show that at time t= t0 the induced velocity v(t0,x) has com-
ponents

vν(t0,x)=
βνxν

t0
(A.2)

for all x={xν}.

Since u(t,x) satisfies the local Lagrangian conservation principle (A.1) for all Ω(t), it
also satisfies the corresponding Eulerian conservation law

ut+∇·(uv)=0, (A.3)

where v(t,x) is the induced velocity. Let the self-similar solution be

uss(t,x)= tγ f (ξ), (A.4)
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where ξ = {ξν}= {xν/tβν} and γ,βν are the scaling indices for u,xν respectively. Then,
since u(t,x) coincides with uss(t,x) at time t=t0, substituting (A.4) at time t=t0 into (A.3),

γt
γ−1
0 f (ξ0)−t

γ−1
0 ∑

ν

βνξ0
ν

∂ f (ξ0)

∂ξν
0

+t
γ
0∇x ·

{
f (ξ0)v

}
=0, (A.5)

where ξ0 = {ξ0
ν} = {xν/t

βν

0 }. Also, since ∑βν+γ = 0 for a mass conserving problem,
Eq. (A.5) reduces to

−t−1
0 ∑

ν

βν
∂{ξ0

ν f (ξ0)}
∂ξ0

ν

+∑
ν

∂

∂xν

{
f (ξ0)vν

}
=0, (A.6)

which can be written

∑
ν

∂

∂xν

{
f (ξ0)

(
− βνxν

t0
+vν

)}
=0. (A.7)

Moreover, since v is irrotational, introducing a velocity potential φ such that v = ∇φ,
Eq. (A.7) takes the form

∑
ν

∂

∂xν

{
f (ξ0)

∂

∂xν

(
−∑

µ

1

2

βµx2
µ

t0
+φ
)}

=0. (A.8)

Then, since u (and therefore f ) is positive in the interior of the domain and vanishes on
the boundary, Eq. (A.8) has the unique solution

φ=
1

2 ∑
µ

βµx2
µ

t0
+const⇒vν =

∂φ

∂xν
=

βνxν

t0
. (A.9)

Next we show that for all t in the interval (t0,t0+∆t) the moving coordinate x̂ν(t)
varies as tβν to order O(∆t)2. Writing t=t0+k∆t, where 0<k≤1, from a Taylor expansion
of x̂(t) and (A.9),

x̂ν(t)=x̂ν(t0)+k∆tvν(t0,x)+O(∆t)2 = x̂ν(t0)+k∆t
βν x̂ν(t0)

t0
+O(∆t)2

=
(

1+
k∆t

t0

)βν

x̂ν(t0)+O(∆t)2 =
( t

t0

)βν

x̂ν(t0)+O(∆t)2. (A.10)

It follows that
x̂ν(t)

tβν
=

x̂ν(t0)

t
βν

0

+O(∆t)2 (A.11)

for all t0 < t≤ t0+∆t and hence that x̂ν(t) varies as tβν in the interval (t0,t0+∆t) to order
O(∆t)2.
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Now consider the identity

∫

Ω(t)
u(t,x)dx−

∫

Ω(t)
tγ f
( x1

tβ1
,

x2

tβ2
,··· , xd

tβd

)
dx

≡
∫

Ω(t0)
u(t0,x)dx−

∫

Ω(t0)
t0

γ f
( x1

t
β1

0

,
x2

t
β2

0

,··· , xd

t
βd

0

)
dx+O(∆t)2, (A.12)

which holds because the first integrals on each side of (A.12) are equal by local conserva-

tion, and the second integrals on each side are equal under the substitution xν/tβ=yν/t
β
0 ,

to order O(∆t)2. Note that since the problem is mass-conserving ∑βν+γ=0, and that the
points of R(t) coincide with those of R(t0) to order O(∆t)2 under the above substitution.

Since at t= t0

u(t0,x)= t0
γ f
( x1

t
β1

0

,
x2

t
β2

0

,··· , xd

t
βd

0

)
(A.13)

and Ω(t0) is arbitrary, it follows from (A.12) that

u(t,x)−tγ f
( x1

tβ1
,

x2

tβ2
,··· , xd

tβd

)
=O(∆t)2 (A.14)

for all t such that t0 < t≤ t0+∆t. Thus at t= t1 = t0+∆t

u(t1,x)−t
γ
1 f
( x1

t
β1

1

,
x2

t
β2

1

,··· , xd

t
βd

1

)
=O(∆t)2, (A.15)

so that u(t1,x) is the self-similar solution uss(t1,x) at time t1 = t0+∆t to order O(∆t)2.
Repeating the whole argument at time t= t1, with an additional O(∆t) term in Eqs. (A.5)
to (A.9), we can deduce in the same way that at time t2 = t1+∆t= t0+2∆t

u(t2,x)−t
γ
2 f
( x1

t
β1

2

,
x2

t
β2

2

,··· , xd

t
β2

2

)
=O(∆t)2. (A.16)

After n such repetitions we find that at a fixed time tn = t0+n∆t

u(tn,x)−t
γ
n f
( x1

t
β1
n

,
x2

t
β2
n

,··· , xd

t
β2
n

)
=O(∆t). (A.17)

Finally, letting n→∞, ∆t→0 it follows that u(t,x) is the self-similar solution for all time.
This completes the proof.

As a corollary, the components of v(t,x) are

vν(t,x)=
βνxν

t
(A.18)

for all t and all xν.
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B Propagation of L2 projections of self-similar solutions

We now show that, under the similarity velocity (2.10), initial data which coincides with
the L2 projection of a self-similar solution at time t= t0 is propagated as the L2 projection
of the self-similar solution for all time.

Theorem B.1. Let

1. u(t,x) be a positive solution of a mass-conserving scale-invariant problem governed by the
PDE (2.1),

2. U(t,x) satisfy the conservation principle (4.46),

3. the velocity be the similarity velocity (2.10) for all t,

4. U(t0,x) coincide with the L2 projection of the self-similar solution (2.11) at time t= t0.

Then U(t,x) remains the L2 projection of the self-similar solution for all t> t0.

Proof. This proof is much simpler than that in Appendix A because we have assumed
that the velocity is the self-similar velocity (2.10) for all t.

By assumption ∫

R(t)
WiU(t,x)dx (B.1)

is constant in time, and by the substitution xν = tβν ξν

∫

R(t)
Wit

γ f (ξ)dx (B.2)

is also constant in time, since R(t) and Wi move with the self-similar velocity (2.10) and
for mass conserving problems ∑βν+γ=0. Therefore

∫

R(t)
Wi

{
U(t,x)−tγ f (ξ)

}
dx (B.3)

is constant in time. Because U is the L2 projection of the self-similar solution (2.11) at time
t0 the integral (B.3) is zero at time t= t0. Hence it remains zero for all time and U remains
the L2 projection of (2.11) for all time. This completes the proof.
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[53] I. Demirdžić and M. Perić, Finite volume method for prediction of fluid flow in arbitrarily
shaped domains with moving boundaries, Int. J. Numer. Meth. Fluids, 10(7) (1990), 771–
790.

[54] B. Duarte, Moving finite elements method applied to the solution of front reaction models:
causticizing reaction, Comput. Chem. Eng., 19 (1995), S421–S426.

[55] B. P. M. Duarte and C. M. S. G. Baptista, Moving finite elements method applied to dynamic
population balance equations, AIChE J., 54 (2008), 673–692.

[56] S. Étienne, A. Garon and D. Pelletier, Perspective on the geometric conservation law and fi-
nite element methods for ALE simulations of incompressible flow, J. Comput. Phys., 228(7)
(2009), 2313–2333.

[57] C. Farhat, P. Geuzaine and C. Grandmont, The discrete geometric conservation law and the
nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J.
Comput. Phys., 174(2) (2001), 669–694.

[58] L. Formaggia and F. Nobile, Stability analysis of second-order time accurate schemes for
ALE-FEM, Comput. Method. Appl. Math., 134 (1996), 71–90.

[59] P. Garabedian, Partial Differential Equations, Wiley, New York, 1964.
[60] W. Gardner and J. A. Widtsoe, The movement of soil moisture, Soil Sci., 11 (1921), 215–232.
[61] P. H. Gaskell, P. K. Jimack, M. Sellier, H. M.Thompson and M. C. T. Wilson, Gravity-driven

flow of continuous thin liquid films on non-porous substrates with topography, J. Fluid
Mech., 509 (2004), 253–280.

[62] R. J. Gelinas, S. K. Doss and K. Miller, The moving finite element method: applications to
general partial differential equations with multiple large gradients, J. Comput. Phys., 40
(1981), 202–249.

[63] P. Geuzaine, C. Grandmont and C. Farhat, Design and analysis of ALE schemes with prov-
able second-order time-accuracy for inviscid and viscous flow simulations, J. Comput.
Phys., 191(1) (2003), 206–227.

[64] F. X. Giraldo, The Lagrange-Galerkin method for the two-dimensional shallow water equa-
tions on adaptive grids, Int. J. Numer. Meth. Fluids, 33(6) (2000), 789–832.

[65] G. Gottardi and M. Venutelli, Moving finite element model for one-dimensional infiltration
in unsaturated soil, Water Resour. Res., 28 (1992), 3259–3267.

[66] G. Gottardi and M. Venutelli, One-dimensional moving finite element model of solute
transport, Ground Water, 32 (1994), 645–649.



M. J. Baines, M. E. Hubbard and P. K. Jimack / Commun. Comput. Phys., 10 (2011), pp. 509-576 573
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