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Abstract. Computed tomography (CT) reconstruction with sparse-view projections is
a challenging problem in medical imaging. The learning-based methods lack gener-
alization ability and mathematical interpretability. Since the model-based iterative re-
construction (IR) methods need inner gradient-based iterations to deal with the CT
system matrix, the algorithms may not be efficient enough, and IR methods with deep
networks have no convergence guarantees. In this paper, we propose an efficient deep
semi-proximal iterative method (DeepSPIM) to reconstruct CT images from sparse-
view projections. Unlike the existing IR methods, a carefully designed semi-proximal
term is introduced to make the system matrix-related subproblem solvable. Theo-
retically, we give some useful mathematical analysis, including the existence of the
solutions to the reconstruction model with an implicit image prior, the global conver-
gence of the proposed method under gradient step denoiser assumption. Experimental
results show that DeepSPIM is efficient and outperforms the closely related state-of-
the-art methods regarding quantitative image quality values, details preservation, and
structure recovery.
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1 Introduction

Over the past few decades, X-ray computed tomography (CT) has been one of the most
important diagnostic imaging techniques. However, radiation exposure may cause ge-
netic mutations and increase cancer risk [8]. Low-dose CT can significantly reduce the
threat of X-ray radiation. Sparse-view CT is a major strategy that only utilizes a few pro-
jected views for image reconstruction [10,39,40]. Unfortunately, the sparse-view CT strat-
egy can also compromise image quality [6]. As a result, numerous exciting and practical
models and algorithms have been proposed. In this paper, we focus on the semi-proximal
iterative method for sparse-view CT reconstruction.

The following linear system can express the forward model for CT imaging:

f =Ru+ξ, (1.1)

where f ∈R
m is a vectorized projected data, u∈R

n is a vectorized 2D image, R∈R
m×n is

the projection matrix, and ξ is the Gaussian white noise added to the projected data. Due
to the ill-posedness of the sparse-view CT image reconstruction problem, it is challenging
to reconstruct u from f in practice. The most widely used method is the filtered back-
projection (FBP) algorithm proposed by Kak and Slaney [28]. FBP is an efficient and
robust direct reconstruction method. However, when the projection views are limited
and polluted, FBP suffers from streaking artifacts. To address this issue, various methods
have been proposed.

The first category is iterative reconstruction (IR) methods. Gordon et al. [19] pre-
sented the first IR method, the algebraic reconstruction technique (ART) to reconstruct
CT images iteratively from no more than 60 views. Andersen and Kak [2] improved ART
by applying the error correction terms simultaneously and presented the simultaneous
algebraic reconstruction technique (SART). Shepp and Vardi [15] proposed the expecta-
tion maximization (EM) method to maximize the probability of the potential signal given
the projected data. Though these methods are computationally efficient, it is difficult to
provide satisfactory results when the projection views are highly sparse without image
priors. In order to characterize the image features, Sidky et al. [39] applied the total vari-
ation (TV) prior to the few views and limited-angle data in divergent-beam CT. Sidky
and Pan [40] have also studied the constrained TV minimization method for cone-beam
CT. In order to design an efficient algorithmic for total variation based image restora-
tion, Chen et al. [12] proposed a primal-dual fixed point algorithm for CT reconstruction.
Kim et al. [31] improved the reconstruction effects by non-local TV prior. Xu et al. [51]
introduced the dictionary-learning-based method to low-dose CT reconstruction. An im-
proved tensor dictionary learning method is proposed by Wu et al. [48] for low-dose spec-
tral CT reconstruction. IR methods with learning-based priors have also been studied.
As an important method in compressed sensing, the convolutional sparse coding prior
with gradient regularization (CSCGR) has been presented by Bao et al. [3] for sparse-
view CT reconstruction. By directly working on the whole image, CSCGR can maintain
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more details compared with dictionary-learning-based methods. In order to achieve bet-
ter reconstruction results, deep-learning-based prior has been utilized in iterative meth-
ods using a plug-and-play (PnP) strategy. He et al. [22] proposed the parameterized
plug-and-play ADMM (3pADMM) to reconstruct CT images with automatically selected
parameters. Gupta et al. [20] proposed the relaxed projected gradient descent method
(RPGD). They proved the convergence of RPGD under the non-expansive denoiser as-
sumption. Wu et al. [47] proposed the dual-domain residual-based optimization network
(DRONE) and solved the sparse-view reconstruction problem iteratively. He et al. [24]
utilized deep frequency-recurrent prior (DFRP), and incorporated it into classical itera-
tive reconstruction by proximal gradient descent. These reasonable priors, including TV
and its extensions, low-rank sparsity, dictionary learning, convolutional sparse coding,
and auto-encoding priors, can significantly improve imaging quality. However, there is
no convergence guarantee for IR methods with deep image priors. Besides, the high com-
putational cost hinders the application of IR methods since they often need hundreds of
iterations to achieve a satisfactory result.

The second category is the deep-learning-based methods. Due to the great success of
convolutional neural networks (CNNs) in image processing, some networks have been
proposed for CT reconstruction. Inspired by the iterative shrinkage thresholding algo-
rithm (ISTA) [5] for compressed sensing, Jin et al. [27] proposed FBPConvNet, a novel
deep unfolding CNN-based algorithm incorporated with normal-convolutional opera-
tors. In order to incorporate CNN with wavelet transformations, Kang et al. [29] pro-
posed the directional wavelet-based deep CNN for X-ray CT reconstruction. Han and
Ye [21] introduced framing U-Net via deep convolutional framelets to sparse-view CT
reconstruction. A residual encoder-decoder convolutional neural network (RED-CNN)
for low-dose CT was studied by Chen et al. [11]. By combining the DenseNet [25] and
deconvolution layer [49], Zhang et al. [56] presented DD-Net. Zhang et al. [55] proposed
a meta-inversion network (MetaInv-Net) to tackle sparse view CT reconstruction. These
methods take the result by FBP as an input, ignoring the data consistency in the sinogram
domain. In order to address this issue, Boghiu et al. [13] proposed WNet, a data-driven
dual-domain denoising model. WNet contains two encoder-decoder networks to per-
form denoising in the sinogram and reconstruction domain simultaneously. Experiments
showed the superiority of WNet compared with other state-of-the-art baselines.

However, the methods mentioned above have some drawbacks. FBP suffers from
limited and polluted projection data. IR methods like ART, SART, and EM are efficient,
but the reconstructed images are not satisfactory. IR methods with learned priors can
provide better reconstruction results, but they often need many iterations to converge
numerically and have no theoretical convergence guarantees, such as CSCGR, DRONE,
and DFRP. Deep-learning-based methods are efficient, and the reconstruction results are
competitive. However, these methods lack generalization ability: When the testing im-
ages differ from the training images, the reconstruction results may not be satisfactory.

Therefore, in this paper, we propose DeepSPIM, a deep semi-proximal iterative me-
thod for sparse-view CT reconstruction with convergence guarantee. Compared with
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the alternating direction method of multipliers (ADMM) [7], the proposed method has
a semi-proximal term to make the CT reconstruction problem solvable. Moreover, we
use the PnP framework to incorporate a pretrained deep prior to solve the denoising like
subproblem. Overall, our main contributions are threefold:

• A semi-proximal iterative method with deep prior for sparse-view CT reconstruc-
tion is proposed.

• The global convergence result of our algorithm is established under mild assump-
tions.

• The proposed method can better recover the fine structures and details in CT im-
ages compared with some state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2 we give the proposed
method and some useful mathematical analysis. In Section 3, we present some experi-
mental results. Finally, we conclude the paper in Section 4.

2 Method

This section will briefly review the typical CT reconstruction model with image priors
first. Then, some existing state-of-the-art IR methods will be discussed. In these discus-
sions, we will focus on the handling of the subproblem related to the system matrix R.
Next, we will present DeepSPIM, an efficient IR algorithm for sparse-view CT reconstruc-
tion via a semi-proximal ADMM-based PnP framework. Finally, some useful mathemat-
ical properties including the global convergence result for the proposed method will be
given.

2.1 CT reconstruction model

A typical sparse-view CT reconstruction model with prior F has the form

min
u

F(u)+
λ

2
‖ f −Ru‖2, (2.1)

where ‖·‖ denotes the 2-norm for vectors or the Frobenius norm for matrices. λ> 0 is
a balancing parameter between the regularization prior term F(·), and the data fidelity
term ‖ f −Ru‖2.

Many convex optimization methods can be applied to solve (2.1) [5,7,14,16,18,35,45].
If we take the ADMM algorithm for example, by substituting u in (2.1) with variable v,
the iterations are

uk+1=argmin
u

F(u)+
β

2
‖u−vk+bk‖2,

(λRTR+βI)vk+1=β(uk+1+bk)+λRT f ,

bk+1=bk+uk+1−vk+1,

(2.2)
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where I denotes the identity matrix with size n×n,bk corresponds to the multiplier,
and β>0 is the penalty parameter.

A straightforward way to solve the v-subproblem is to compute the inverse of the ma-
trix λRTR+βI. However, this could be time-consuming, because R is an ill-posed matrix,
and has a large size in the sparse-view CT reconstruction problems. Alternatively, one
can apply the conjugate gradient method, or the separable paraboloid surrogate method
(SPSM) [18], see [3, 30, 52]. However, such methods are iterative, which often introduce
additional CPU time. For instance, in CSCGR and DFRP, each outer iteration has 20 SPSM
inner iterations. To address this issue, in [47], DRONE approximates RTR by ‖R‖2 I. But
when the projection views are extremely sparse, the approximation is inaccurate. In [55],
the v-subproblem is parameterized by a neural network. However, this network needs to
be trained carefully, which makes the reconstruction model complex. Therefore, in this
paper, we aim to solve the v-subproblem efficiently by a semi-proximal ADMM method.

2.2 The proposed semi-proximal method

In this subsection, we will derive an effective IR algorithm for sparse-view CT reconstruc-
tion via a semi-proximal ADMM based PnP framework.

In order to make the v-subproblem solvable, we substitute Ru with v, and the La-
grangian function becomes

Lβ(u,v,b)=F(u)+
λ

2
‖ f −v‖2+β〈b,Ru−v〉+ β

2
‖Ru−v‖2 (2.3)

with the feasible set Ω f ={(u,v)∈R
n×R

m : Ru−v=0}. Then the iterations by ADMM are

uk+1=argmin
u

F(u)+
β

2
‖Ru−vk+bk‖2,

vk+1=argmin
v

λ

2
‖ f −v‖2+

β

2
‖Ruk+1−v+bk‖2,

bk+1=bk+Ruk+1−vk+1.

(2.4)

Now one can easily see that the v-subproblem is solvable. However, the u-subproblem
is another sparse-view CT reconstruction problem with input vk−bk and penalty pa-
rameter β, which has a similar solve difficulty as the problem (2.1). To address this
issue, we add a carefully designed semi-proximal term to the objective function in the
u-subproblem and solve it by the proximal point algorithm (PPA) [34]. That is

uk+1=argmin
u

F(u)+
β

2
‖Ru−vk+bk‖2+

1

2
‖u−uk‖2

P, (2.5)

where P is a semi-definite positive matrix, and ‖·‖P is the induced semi matrix norm
defined by ‖x‖P =

√

〈x,Px〉.
The goal is to choose a specific positive semi-definite matrix P, such that (2.5) is

equivalent to a Gaussian denoising task. Then the deep-learning-based Gaussian de-
noisers can be plugged into the algorithm. A tricky choice is P=αI−βRTR. By choosing
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α, β> 0,α≥ β‖R‖2, P� 0 is a positive semi-definite matrix by the following Lemma 2.1.
Note that similar results as Lemma 2.1 has been used in many generalized proximal point
algorithms.

Lemma 2.1. Let R be any matrix of size m×n, and RT be the adjoint/transpose matrix of R. Let
α≥β‖R‖2,α, β>0. Then P=αI−βRTR is a positive semi-definite matrix. Moreover, the problem
(2.5) is equivalent to the following problem:

uk+1=argmin
u

F(u)+
α

2
‖u−uk+wk‖2, (2.6)

where wk =(β/α)RT(Ruk−vk+bk).

The proof of Lemma 2.1 is given in Appendix A.1. By Lemma 2.1, the problem (2.5)
is equivalent to problem (2.6), which is a typical Gaussian noise removal task with input
uk−wk. We replace this step in the ADMM algorithm with an arbitrary Gaussian denoiser
in a plug-and-play fashion

uk+1=Dα

(

uk− β

α
RT(Ruk−vk+bk)

)

,

vk+1=
λ f +βRuk+1+βbk

λ+β
,

bk+1=bk+Ruk+1−vk+1,

(2.7)

where Dα is a Gaussian denoiser with denoise strength α. When α gets bigger, the denoise
strength gets smaller. In this paper, we choose DnCNN [54], a simple yet powerful Gaus-
sian denoiser based on residual learning [23] as Dα. The method in (2.7) is dubbed Deep-
SPIM, and is summarized in Algorithm 1. The architecture of DeepSPIM is illustrated in
Fig. 1. As shown in Fig. 1, DeepSPIM optimizes the CT image u and the projected Radon
data v alternatively to reach the final reconstruction.

Algorithm 1. DeepSPIM for Sparse-View CT Reconstruction.

1: Given α, β,λ>0, f ∈R
m, and Gaussian denoiser Dα.

2: Initialize k=0,u0,v0,b0.
3: Repeat

4: uk+1=Dα

(

uk− β

α
RT(Ruk−vk+bk)

)

.

5: vk+1=
λ f +βRuk+1+βbk

λ+β
.

6: bk+1=bk+Ruk+1−vk+1.
7: k= k+1.
8: Until uk+1 satisfies the stopping criteria, return uk+1 and stop.
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Figure 1: Algorithm framework for DeepSPIM at k-th iteration.

2.3 Assumptions on the Gaussian denoiser D

In order to analyze the model (2.1) and the proposed method (2.7), we need to make some
mild assumptions on the regularization term F(·) and the Gaussian denoiser D. Since in
experiments we train the denoiser Dα with L2 loss function, Dα is a good approximation
of minimum mean square error (MMSE) estimator D̂α(y)=E[x|y]. By Tweedie’s formula,
D̂α= I+α2∇log p(·), where I is the identity operator and p(·) denotes a smoothed prob-
ability density of images [17]. Therefore, we assume D is the form of the gradient step
(GS) denoisers as introduced in [26].

Assumption 2.1. The Gaussian denoiser satisfies Dα=∇hα , where

hα(x)=
1

2
‖x‖2−gα(x). (2.8)

gα : R
n→R, gα∈C2 is a scalar function parameterized by a differentiable neural network,

bounded from below, and ∇gα is L-Lipschitz with L<1.

When gα is a C2 function, ∇gα is L-Lipschitz with L<1, and it is proved [26] that

Dα(z)=Prox F
α
(z)=argmin

x
F(x)+

α

2
‖x−z‖2 (2.9)

with F : R
n→R∪{+∞} defined by

F(x) :=







αgα

(

D−1
α (x)

)

− α

2

∥

∥D−1
α (x)−x

∥

∥

2
, if x∈ Im(Dα),

+∞, otherwise.
(2.10)

Despite F may be non-convex, Dα is one-to-one. Note that by (2.8) and Dα =∇hα, we
have

Dα(x)=∇hα(x)= x−∇gα(x)=(I−∇gα)(x). (2.11)
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That is, when Assumption 2.1 is satisfied, the Gaussian denoiser Dα outputs the dif-
ference of the input image x and the predicted noise ∇gα(x). Therefore, the residual-
learning-based Gaussian denoiser DnCNN as shown in Fig. 1 matches with Assump-
tion 2.1, which demonstrates that Assumption 2.1 is a proper hypothesis for DeepSPIM.

Also note that, in Assumption 2.1, the residual I−Dβ is required to satisfy the
L-Lipschitz condition with L < 1. There have been some approaches to ensure this.
In [36], the real spectral normalization (RealSN) technique was proposed to ensure L<1
for DnCNN. It was shown that RealSN is an effective training method without compro-
mising the denoising performance. In [26], a regularization term ‖∇gα‖∗ was added to
the original loss function to ensure the Lipschitz condition. However, the method can
only ensure the L-Lipschitz condition on the training set. Therefore, in this paper, we
train the denoiser with RealSN.

2.4 Theoretical results for the proposed algorithm

In this subsection, we prove the global convergence of DeepSPIM. It should be noted that
since PnP-ADMM was proposed [43], there has been many works on the convergence of
PnP-ADMM, see [9,36,41]. However, to the best of our knowledge, no semi-proximal PnP
method like DeepSPIM has been proposed. Therefore, we aim to prove the convergence
of DeepSPIM under Assumption 2.1.

Theorem 2.1 gives the existence of solutions over R
n to the problem (2.1) under mild

assumptions.

Theorem 2.1. Let F=R
m,E=R

n, f ∈F is a fixed vector and λ>0. Given any compact set S∈E,
there exists at least one minimizer u∗∈E for (2.1) over S if

• Assumption 2.1 is satisfied,

• F : E→ [−∞,+∞] is proper and closed,

• S∩dom(F) 6=∅.

If we further assume that R has full column rank, then given any closed compact set S∈E, there
exists at least one minimizer u∗∈E for (2.1) over S.

The proof of Theorem 2.1 is given in Appendix A.2. Theorem 2.1 shows that given
projected data f ∈R

m, there is at least one minimizer u∗ over the closed set S⊂R
n, such

as S=R
n and S=[0,255]n .

We prove that the Lagrangian function defined in (2.3) is non-increasing and the con-
vergence of Algorithm 1.

Theorem 2.2. Given α, β,λ,σ> 0, f ∈R
m, R∈R

m×n be the system matrix. Let F be the regu-
larization term defined in (2.10), and {(uk,vk,bk)}∞

k=0 be the sequence generated by DeepSPIM
defined in (2.7). If
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• Assumption 2.1 is satisfied,

• λ≤ 1+
√

5

2
β, α≥β‖R‖2, α, β,λ>0,

then

• the Lagrangian function Lβ(u
k,vk,bk) in (2.3) is lower bounded and non-increasing,

• {(uk,vk,bk)} is bounded,

• (uk,vk,bk) converges weakly to (u∗,v∗,b∗), a minimizer of Lβ(u,v,b).

The proof of Theorem 2.2 is given in Appendix A.3. In Theorem 2.3, we establish the
relationship between (u∗,v∗,b∗) and the original problem (2.1).

Theorem 2.3. Let {(uk,vk,bk)}∞

k=0 be the sequence generated by DeepSPIM, and (u∗,v∗,b∗) be
the minimizer described in Theorem 2.2. When the minimizer of (2.1) and (2.3) is unique, under
the same assumptions as Theorem 2.2, (u∗,v∗,b∗) satisfies that

• v∗=Ru∗,

• u∗ is a minimizer of (2.1).

The proof of Theorem 2.3 is given in Appendix A.4. By Theorem 2.3, the convergent
solution u∗ by the proposed method is indeed a minimizer of the original problem (2.1),
which guarantees that u∗ is the desired reconstructed CT image.

3 Experiments

In this section, we show some experimental results to illustrate the effectiveness and
efficiency of our method. We use three typical CT images for detailed visual compar-
isons as displayed in Fig. 2, and a test data set containing ten typical images from “the
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge” [42] as shown in Fig. 3. The

(a) Abdominal (b) Thoracic (c) Pelvic

Figure 2: Three test CT images.
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projection data in parallel-beam geometry were simulated by Siddon’s ray-driven algo-
rithm [38], which can be implemented by the radon command in Matlab or scikit pack-
age in Python. For other projection settings, one can refer to [37]. The system matrix R
is obtained consequently. We test three sparse-view settings: 30 views, 45 views, and
60 views. The projection views are sampled uniformly from 180 views. All the experi-
ments are conducted under the Linux system, Python 3.8.12, Pytorch 1.10.2, and MAT-
LAB R2021a. CPU Intel Intel(R) Xeon(R) CPU E5-2698 v4 @2.20GHz, GPU3090.

For the Gaussian denoiser Dα in Algorithm 1, we select DnCNN [54], a simple yet
powerful Gaussian denoiser based on the residual learning [23]. We use 1/α2 to represent
the denoising strength of DnCNN as suggested in [9]. For example, when α=1/

√
10, it

means that the DnCNN denoiser is particularly trained to remove Gaussian noise with
standard derivation 10.

Since the proposed method is a plug-and-play method, we use the 800 DIV2K natural
images [1] as the training set. The images are divided into 96×96 patches. No obvious
denoising improvement is observed with a larger patch size. Note that in the training
procedures, no information about CT images is used. In order to ensure the Lipschitz
condition in Assumption 2.1, we select L=0.99 and adopt RealSN in [36] in the training
procedure. The network is trained using the ADAM optimizer for 50 epochs, with a mini-
batch size of 64. The learning rate was 10−4 in the first 25 epochs, then decreased to 10−5.

Figure 3: CT images named from “01” to “10” in the test dataset.

3.1 Parameter settings

The parameters are set as follows. For the denoising strength α, we need a smaller α

when the projection view get fewer. Empirically, we choose α=1/
√

8,1/
√

8,1/
√

10 when
the projection view number is 60, 45, and 30 respectively. The augmented parameter β

should be tuned in the range (0,α/‖R‖2] according to Theorem 2.2. We empirically set
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β= α/‖R‖2 in all experiments. Although Theorem 2.2 gives the sufficient conditions to
ensure the convergence of Algorithm 1, experiments show that we do not need to restrict
λ∈ (0,(1+

√
5)β/2). Therefore, λ is tuned from (0,+∞) manually.

We set the stopping criteria in Algorithm 1 as the relative error Errk <0.008 or k>50.
The relative error is defined as

Errk =
‖uk−uk−1‖
‖uk−1‖ . (3.1)

3.2 Reconstruction results

We compare our method with FBP [28], FBPConvNet by Jin et al. [27], CSCGR by Bao
et al. [3], DFRP by He et al. [24], WNet by Boghiu et al. [13], and DRONE by Wu et al. [47].
All methods are fine-tuned to reach the best visual performance.

We show an overall result of PSNR values and SSIM values in Table 1. The highest
value is marked in boldface. It can be seen that the PSNR values and SSIM values by
DeepSPIM are higher than other methods in most cases. Moreover, our PSNR and SSIM
values outperform the second-best method by 3.38dB and 0.0154 on average, respectively.

Table 1: The comparisons of PSNR values and SSIM values by different methods for sparse-view CT recon-
struction on the three test images as shown in Fig. 2. The methods are FBP [28], FBPConvNet (FNet for
short) [27], CSCGR [3], DFRP [24], WNet [13], DRONE [47], and the proposed DeepSPIM.

Images Metrics FBP FNet CSCGR DFRP WNet DRONE DeepSPIM

Abdominal PSNR 26.76 33.50 34.86 34.34 36.23 35.72 38.99

30 views SSIM 0.4677 0.8550 0.8960 0.8700 0.9150 0.9013 0.9410

Abdominal PSNR 29.88 35.78 38.86 37.83 39.90 38.87 41.96

45 views SSIM 0.6101 0.9006 0.9441 0.9269 0.9606 0.9465 0.9640

Abdominal PSNR 32.18 37.51 41.65 40.77 40.71 40.91 43.20

60 views SSIM 0.7133 0.9065 0.9660 0.9565 0.9560 0.9530 0.9695

Thoracic PSNR 24.82 31.90 33.02 32.11 35.14 35.94 39.16

30 views SSIM 0.4093 0.8305 0.8795 0.8369 0.9247 0.9306 0.9565

Thoracic PSNR 28.01 34.72 37.11 37.97 38.98 38.55 42.43

45 views SSIM 0.5445 0.9033 0.9391 0.9646 0.9447 0.9580 0.9746

Thoracic PSNR 30.38 36.41 40.09 41.32 40.08 40.51 44.06

60 views SSIM 0.6518 0.8896 0.9721 0.9722 0.9707 0.9720 0.9802

Pelvic PSNR 26.71 31.87 35.40 36.39 39.55 39.69 42.50

30 views SSIM 0.4681 0.8566 0.9054 0.9009 0.9663 0.9729 0.9739

Pelvic PSNR 30.40 34.12 40.06 42.23 41.42 42.31 45.61

45 views SSIM 0.6261 0.8617 0.9601 0.9707 0.9767 0.9790 0.9848

Pelvic PSNR 32.78 36.88 43.25 47.09 42.98 43.34 48.37

60 views SSIM 0.7379 0.9246 0.9781 0.9888 0.9832 0.9834 0.9913



12 D. Wei et al. / CSIAM Trans. Appl. Math., x (2024), pp. 1-26

In Fig. 4, we show the results of the image “Abdominal” from 60 projection views.
We enlarge the green part. We can see that the results in Figs. 4(a)-4(b) by FBP and
FBPConvNet are not satisfactory. Though CSCGR can retain the structures well, there
are some noise residuals, see Fig. 4(c). The results in Figs. 4(d)-4(e) by DFRP and WNet
are smooth, but seem to be blurred, and the edges are not clear. The result by DRONE has
some staircase artifacts, see Fig. 4(f). Compared with these methods, ours can provide an
artifact-free image with better structures, see Fig. 4(g). The residual images shown in
Fig. 4 show that the image by DeepSPIM is closer to the potential image.

We also show the results when reconstructing the image “Thoracic” from 30 projec-
tion views in Fig. 5. In this very low-dose setting, it is difficult to recover the enlarged
structure. In Fig. 5(a), the result by FBP illustrates the difficulty. In Fig. 5(b), FBPConvNet
can recover the edge and most of the streaking artifacts, but failed to recover the structure.
The results by CSCGR and DFRP, as shown in Figs. 5(c)-5(d), have some artifacts. WNet
and DRONE can better recover the enlarged structures, but still blurred, see Figs. 5(e)-
5(f). Compared with these methods, the image in Fig. 5(g) by DeepSPIM has clear edges
and structures, with less streaking artifacts residuals. The residual images in Figs. 5(a)-
5(g) also illustrate the effectiveness of the proposed method.

In order to further evaluate the performance of Algorithm 1 for sparse-view CT re-
construction, tests are performed on a test data set containing ten typical CT images.
Quantitative results on this test set are listed in Table 2. We can notice that the PSNR val-
ues and SSIM values by DeepSPIM are higher than other methods. In terms of PSNR, the
average gain of our method over the second-best method is about 1.71 dB, which shows
the potential ability of DeepSPIM on data sets.

(a)
FBP

(b)
FBPConvNet

(c)
CSCGR

(d)
DFRP

(e)
WNet

(f)
DRONE

(g)
DeepSPIM

(h)
Ground truth

Figure 4: Results of different methods when reconstructing the image “Abdominal” from 60 views. The
second row is the enlarged part of the first row. The third row is the difference between the reconstructed
image u and the ground truth image I. (a) Result by FBP, PSNR=32.18 dB. (b) Result by FBPConvNet,
PSNR=37.51dB. (c) Result by CSCGR, PSNR=41.65dB. (d) Result by DFRP, PSNR=40.77dB. (e) Result by
WNet, PSNR=40.71dB. (f) Result by DRONE, PSNR=40.91dB. (g) Result by DeepSPIM, PSNR=43.20dB.
(h) Ground truth.
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(a)
FBP

(b)
FBPConvNet

(c)
CSCGR

(d)
DFRP

(e)
WNet

(f)
DRONE

(g)
DeepSPIM

(h)
Ground truth

Figure 5: Results of different methods when reconstructing the image “Thoracic” from 30 views. The sec-
ond row is the enlarged part in the first row. The third row is the difference between the reconstructed
image u and the ground truth image I. (a) Result by FBP, PSNR=24.82 dB. (b) Result by FBPConvNet,
PSNR=31.90dB. (c) Result by CSCGR, PSNR=33.02dB. (d) Result by DFRP, PSNR=32.11dB. (e) Result by
WNet, PSNR=35.14dB. (f) Result by DRONE, PSNR=35.94dB. (g) Result by DeepSPIM, PSNR=39.16dB.
(h) Ground truth.

Table 2: The comparisons of PSNR values and SSIM values by different methods for sparse-view CT recon-
struction on the test CT data set as shown in Fig. 3.

Views Metrics FBP FNet CSCGR DFRP WNet DRONE DeepSPIM

30 views
PSNR 26.03±0.51 34.98±0.97 35.60±0.81 35.63±0.99 38.97±0.78 38.02±0.70 39.86±1.23

SSIM 0.458±0.025 0.880±0.010 0.914±0.005 0.895±0.010 0.947±0.009 0.934±0.028 0.955±0.010

45 views
PSNR 29.31±0.49 37.28±0.89 39.94±0.87 40.16±1.07 39.89±0.72 40.67±1.37 43.00±0.84

SSIM 0.593±0.024 0.911±0.007 0.958±0.004 0.952±0.022 0.957±0.005 0.962±0.011 0.973±0.004

60 views
PSNR 31.68±0.49 39.45±0.88 42.52±0.82 43.70±1.02 43.43±0.65 42.72±0.84 44.55±0.45

SSIM 0.693±0.023 0.931±0.012 0.974±0.004 0.975±0.023 0.975±0.003 0.976±0.046 0.979±0.002

3.3 Reconstruction results on large dataset

We validate the proposed method for sparse view reconstruction on the dataset “L067”
from “NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”. The dataset includes
224 thoracic, abdominal, and pelvic images. These images are treated as ground truth.

We show an overall result of mean PSNR values and SSIM values, as well as the
standard derivations in Table 3. The highest value is marked in boldface. It can be seen
that the PSNR values and SSIM values by DeepSPIM are higher than other methods.
Moreover, our PSNR and SSIM values outperform the second-best method by about 3dB
and 0.01 on average, respectively. It shows the potential ability of DeepSPIM on large
data sets.
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Table 3: The comparisons of PSNR values and SSIM values by different methods for sparse-view CT recon-
struction on the dataset “L067”.

Images Metrics FBP FNet CSCGR DFRP WNet DRONE DeepSPIM

30 views
PSNR 25.71±0.50 32.83±0.88 34.53± 0.80 34.64±0.79 36.03±0.74 34.39±0.74 39.33± 1.02

SSIM 0.496±0.027 0.722±0.016 0.901±0.012 0.900±0.021 0.925±0.007 0.896±0.012 0.951±0.008

45 views
PSNR 29.10±0.53 35.49±0.89 39.46±0.87 39.68± 1.02 39.45±0.63 39.56±1.31 43.58±0.66

SSIM 0.641±0.026 0.649±0.016 0.953±0.006 0.949±0.013 0.955±0.005 0.955±0.057 0.975±0.002

60 views
PSNR 31.37±0.48 38.08±0.94 42.71±0.81 43.16±0.93 42.27±0.60 42.39±0.76 45.13±0.58

SSIM 0.739±0.021 0.645±0.008 0.973±0.003 0.972±0.011 0.972±0.004 0.971±0.003 0.981±0.002

3.4 Noisy reconstruction results

We also test our method of reconstructing CT images from noisy projection data. The
noisy projected data with 60 views is obtained by adding 1%,2%, and 4% white Gaussian
noise, respectively.

Fig. 6 shows the visual reconstructed results by different methods from 60 views and
4% Gaussian noises when reconstructing the image “08”. It can be seen from Figs. 6(a)-
6(b) that, FBP and FBPConvNet can not suppress the artifacts. The results by CSCGR
and DFRP have noise residuals, see Figs. 6(c)-6(d). WNet provides an over-smoothed
image, see Fig. 6(e). In Fig. 6(f), we can observe the obvious staircase artifacts. Compared
with these methods, DeepSPIM can better reconstruct the image with more structures
preserved and fewer artifacts residuals, see Fig. 6(g).

(a)
FBP

(b)
FBPConvNet

(c)
CSCGR

(d)
DFRP

(e)
WNet

(f)
DRONE

(g)
DeepSPIM

(h)
Ground truth

Figure 6: Results of different methods when reconstructing the image “08” from 60 views with 4% Gaussian
noise. The second row is the enlarged part in the first row. The third row is the difference between the
reconstructed image u and the ground truth image I. (a) Result by FBP, PSNR=31.33 dB. (b) Result by
FBPConvNet, PSNR=38.67dB. (c) Result by CSCGR, PSNR=41.05dB. (d) Result by DFRP, PSNR=41.21dB.
(e) Result by WNet, PSNR=42.62 dB. (f) Result by DRONE, PSNR=42.31 dB. (g) Result by DeepSPIM,
PSNR=43.49dB. (h) Ground truth.
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The PSNR and SSIM values are reported in Table 4. It can be seen in Table 4 that,
the performance for each method degrades when there is Gaussian noise in the projected
data. However, DeepSPIM still outperforms the others by at least 1.05dB in PSNR value
and 0.051 in SSIM value on average. It validates the robustness of the proposed method
under Gaussian noise.

Table 4: The comparisons of PSNR values and SSIM values by different methods for 60 views CT reconstruction
with Gaussian noises on the test CT data set as shown in Fig. 3.

Views Metrics FBP FNet CSCGR DFRP WNet DRONE DeepSPIM

1%
PSNR 31.67±0.45 39.44±1.05 42.38±0.98 43.51±0.77 43.32±0.65 42.60±0.96 44.51±0.49

SSIM 0.693±0.023 0.931±0.010 0.973±0.005 0.974±0.021 0.974±0.006 0.973±0.020 0.979±0.005

2%
PSNR 31.66±0.46 39.43±0.98 42.29±0.72 43.29±0.81 43.19±0.67 42.56±1.04 44.35±0.53

SSIM 0.692±0.019 0.931±0.009 0.971±0.006 0.973±0.018 0.973±0.005 0.973±0.028 0.978±0.004

4%
PSNR 31.61±0.42 39.36±1.02 41.83±0.78 42.35±0.80 42.98±0.64 42.43±0.98 43.77±0.55

SSIM 0.689±0.018 0.930±0.015 0.965±0.005 0.965±0.020 0.971±0.005 0.972±0.018 0.976±0.006

3.5 Ablation study

We train the DnCNN denoiser when the train set is replaced by 2174 CT medical im-
ages from the patients except for the patient “L067” from NIH-AAPM-Mayo Clinic Low
Dose CT Grand Challenge. The proposed method with CT image trained DnCNN is re-
ferred to DeepSPIM-CT. Besides, we replace the denoiser DnCNN by multi-level wavelet
convolutional neural network (MWCNN) [32], which has a UNet architecture. We train
MWCNN with DIV2K dataset, and denote the method by DeepSPIM-MWCNN.

Tests are conducted on the dataset showed in Fig. 3. Quantitative results are reported
in Table 5. It can be seen from Table 5 that when the denoiser is trained with CT images,
the results are not satisfactory. Compared with CT images, DIV2K dataset contains many
kind of natural images with different textures and structures, which helps the training of
DnCNN. When the denoiser is MWCNN, the reconstruction results get better when there
are 60 projection views. However, when the views are fewer, DeepSPIM with DnCNN
denoiser provides a higher average PSNR and SSIM values.

Table 5: The comparisons of PSNR values and SSIM values by different methods for sparse-view CT recon-
struction on the test CT data set as shown in Fig. 3.

Views Metrics DeepSPIM-CT DeepSPIM-MWCNN DeepSPIM

30 views
PSNR 37.44±1.00 39.53±0.94 39.86±1.23

SSIM 0.931±0.011 0.940±0.006 0.955±0.010

45 views
PSNR 40.07±0.72 42.84±1.05 43.00±0.84

SSIM 0.961±0.007 0.974±0.007 0.973±0.004

60 views
PSNR 41.37±0.72 44.90±1.05 44.55±0.45

SSIM 0.968±0.010 0.982±0.008 0.979±0.002
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3.6 Alternative methods

In Algorithm 1, we use the ADMM framework and add the semi-proximal term to the
u-subproblem to make it solvable. An alternate algorithm for solving (2.1) is to use (2.2).
We refer this algorithm to PnP-ADMM in [26] and solve it by adding a semi-proximal
term to the v-subproblem, with P=α−λRTR. The iterations of PnP-ADMM becomes

uk+1=argmin
u

F(u)+
β

2
‖u−vk+bk‖2,

vk+1=argmin
v

λ

2
‖Rv− f‖2+

β

2
‖uk+1−v+bk‖2+

1

2
‖v−vk‖2

P

=
β

α+β
(uk+1+bk)+

α

α+β
vk− λ

α+β
RT(Rvk− f ),

bk+1=bk+uk+1−vk+1.

(3.2)

Another way to solve (2.1) is to add the semi-proximal term ‖u−uk‖2
P directly to (2.1)

with P=α−λRTR, then solve

uk+1=argmin
u

F(u)+
λ

2
‖ f −Ru‖2+

1

2
‖u−uk‖2

P

=argmin
u

F(u)+
α

2

∥

∥

∥

∥

u−uk+
β

α
RT(Ruk− f )

∥

∥

∥

∥

2

. (3.3)

We refer (3.3) to PnP-PGD in [36].
For DeepSPIM, PnP-ADMM, and PnP-PGD, we use the total variation image prior, or

the deep prior by DnCNN, and fine tune the parameters to achieve the best reconstruc-
tion results.

In Fig. 7, we compare the proposed DeepSPIM, PnP-ADMM, and PnP-PGD when
reconstructing the image “01” from 60 projection views. It can be seen from Figs. 7(b)-
7(d) that, when it is TV prior, the results by DeepSPIM, PnP-ADMM and PnP-PGD are
very similar. This is because that the three algorithms are guaranteed to converge to the
minimizer of (2.1) when the prior is convex. However, when it is the deep prior, which
may be potentially non-convex, the results by the three methods are very different, see
Figs. 7(e)-7(g). The results by the proposed method has less residual, and a deep prior
provides a better result than TV prior, see Figs. 7(d) and 7(g).

In Fig. 8, we compare the proposed DeepSPIM, PnP-ADMM, and PnP-PGD when re-
constructing the image “02” from 30 projection views. Results in Figs. 8(b)-(d) are similar
because of the convex TV prior. When it comes to the deep prior, the results are different,
while DeepSPIM generates a satisfying image with clearer structures, see Figs. 8(e)-8(g).

Contrast to PGD, ADMM has been proven to converge to a stationary point even
when the prior is non-convex, and restricted prox-regular, see [46]. Also in [36], in the ex-
periments, PnP-ADMM has been shown to be more effective than PnP-PGD. Therefore,
when F is a deep prior, DeepSPIM and PnP-ADMM work better than PnP-PGD. Com-
pared with PnP-ADMM, DeepSPIM adds a semi-proximal term to the u-subproblem, and



D. Wei et al. / CSIAM Trans. Appl. Math., x (2024), pp. 1-26 17

(a)
FBP

(b)
PnP-PGDTV
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(f)
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(g)
DeepSPIMdeep

(h)
Ground truth

Figure 7: Results by different methods when reconstructing the image “01” from 60 views. The second row
is the enlarged part of the first row. The third row is the difference between the reconstructed image u and
the ground truth image I. (a) Result by FBP, PSNR=32.12 dB. (b) Result by PnP-PGD with TV prior,
PSNR=41.57dB. (c) Result by PnP-ADMM with TV prior, PSNR=41.63dB. (d) Result by DeepSPIM with TV
prior, PSNR=41.64 dB. (e) Result by PnP-PGD with deep prior, PSNR=39.96 dB. (f) Result by PnP-ADMM
with deep prior, PSNR=42.44dB. (g) Result by DeepSPIM, PSNR=45.37dB. (h) Ground truth.

(a)
FBP

(b)
PnP-PGDTV

(c)
PnP-

ADMMTV

(d)
DeepSPIMTV

(e)
PnP-PGDdeep

(f)
PnP-

ADMMdeep

(g)
DeepSPIMdeep

(h)
Ground truth

Figure 8: Results by different methods when reconstructing the image “02” from 30 views. The second row
is the enlarged part of the first row. The third row is the difference between the reconstructed image u and
the ground truth image I. (a) Result by FBP, PSNR=25.40 dB. (b) Result by PnP-PGD with TV prior,
PSNR=35.34dB. (c) Result by PnP-ADMM with TV prior, PSNR=35.40dB. (d) Result by DeepSPIM with TV
prior, PSNR=35.40 dB. (e) Result by PnP-PGD with deep prior, PSNR=35.25 dB. (f) Result by PnP-ADMM
with deep prior, PSNR=38.29dB. (g) Result by DeepSPIM, PSNR=39.96dB. (h) Ground truth.

makes it closer to a convex and proper subproblem than PnP-ADMM. Therefore, Deep-
SPIM approximates the global minimum better, and provides more satisfying results than
PnP-ADMM. Overall, the experiments validate the effectiveness of DeepSPIM.
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3.7 Computational time

To show the efficiency of the proposed method, we report the reconstruction time on
CPU/GPU in seconds by different methods in Table 6. Compared with FBP, FBPCon-
vNet, and WNet, DeepSPIM needs more time to get the final result. However, com-
pared with other IR methods, the proposed method needs less time to reach a well-
reconstructed image. A major reason is that the semi-proximal term in Algorithm 1 helps
solve the u-subproblem, while in both CSCGR and DFRP, there is an inner loop to per-
form about 20 gradient descent-like steps in each outer iteration, and in DRONE, there is
an inner loop with 100 steps for the total variation minimization.

We also plot the PSNR and SSIM curves when reconstructing the image “Abdominal”
from 60 projection views by four IR methods (CSCGR, DFRP, DRONE, and ours) in Fig. 9.
It can be seen that DeepSPIM needs less iterations (about 50 iterations) to converge, while
CSCGR, DFRP, and DRONE need more than 100 iterations to converge. It also validates
the global convergence result proved in Theorem 2.2.

Table 6: The comparisons of the reconstruction time in seconds by different methods for sparse-view CT
reconstruction on the test CT data set as shown in Fig. 3.

Metrics FBP FNet CSCGR DFRP WNet DRONE DeepSPIM

Time 0.01 s 3.7 s 811.8 s 976.2 s 6.4 s 40.1 s 10.8 s

Iteration / / 120 120 / 300 50

(a) PSNR curves (b) SSIM curves

Figure 9: PSNR and SSIM curves by CSCGR [3], DFRP [24], DRONE [47], and the proposed method DeepSPIM
when reconstructing the CT image “Abdominal” with 60 projection views. x-axis: iteration number, y-axis:
PSNR/SSIM value.

3.8 Parameter sensitivity

We test the influence of different parameters on the reconstruction results. Since in the
experiments β is empirically set as β= α/‖R‖2, we only test λ when reconstructing the
image “02” from 60 views and 4% Gaussian noise. In Fig. 10, we show the results. It can
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be seen from Fig. 10 that the best PSNR and SSIM values can be attained by fine-tuning λ

in the range [20,60]. When λ is too small, the penalty on the projection data is too weak,
see the model (2.1). When λ is too large, the Gaussian noise cannot be removed effec-
tively. Therefore, λ should be fine-tuned in experiments for different imaging settings.
Overall, DeepSPIM is robust to λ in a large range.

(a) PSNR curve (b) SSIM curve

Figure 10: PSNR and SSIM curves with different λ/β by DeepSPIM when reconstructing the image “02” with
60 projection views and 4% Gaussian noise. x-axis: λ/β, y-axis: PSNR/SSIM value.

4 Conclusion

In order to obtain high-quality reconstructed CT images, many model-based iterative re-
construction (IR) methods have been well studied. The model consists of a regularization
prior term and a data fidelity term. Early IR methods focus on solving the model with
a hand-crafted prior term by classical convex optimization algorithms. However, there
are two core issues: it is difficult to solve the subproblem related to the system matrix; IR
methods with hand-crafted priors can not provide satisfying reconstruction results.

For the first issue, since the system matrix has a large size, it is difficult to compute the
Moore-Penrose Pseudo inverse. Instead, some works solve the subproblem by gradient-
based methods, such as the separable paraboloid surrogate method, and conjugate gra-
dient method. However, these gradient-based methods introduce an extra inner loop in
each outer iteration, which increases the computational time and limits the further appli-
cations of IR methods.

For the second issue, many researchers try to incorporate iterative methods with
a deep image prior in a plug-and-play fashion. However, it causes difficulty in the con-
vergence proof. Instead, the convergence can only be verified empirically in experiments.

To address these issues, in this work, we propose DeepSPIM, an efficient semi-proxi-
mal iterative method with deep prior for sparse-view CT reconstruction. For the first
issue, we aim to solve the subproblem in the proximal point strategy. A semi-proximal
term is carefully designed to make the system matrix related subproblem solvable. As
a result, without introducing extra inner iterations, this troubling subproblem can be
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efficiently tackled. For the second issue, we use the residual-learning-based Gaussian
denoiser DnCNN as the deep image prior. In order to establish the convergence of Deep-
SPIM, we assume that the network is a gradient step denoiser. By the derivations, we
see that the gradient step denoiser outputs the difference between the input image and
the predicted noise, which matches DnCNN. The existence of the solutions of the model
over closed sets and the global convergence of DeepSPIM are established under reason-
able assumptions.

Experiments show that DeepSPIM needs much less time to converge than other IR
methods. Besides, compared with some state-of-the-art methods, DeepSPIM can better
suppress the streaking artifacts when the projection views are sparse. Visual comparisons
show that DeepSPIM can better preserve the fine details and structures in CT images.
Reconstruction results on noisy projected data report the robustness of DeepSPIM. In
future work, DeepSPIM can be improved by integrating a properly designed prior in the
sinogram domain. The convergence result should also be established. In experiments, we
find that DeepSPIM generates an over-smoothed result when it is Fanbeam geometry. We
will extend the proposed method to more realistic projection geometry, such as Fanbeam
geometry and Conebeam geometry.

In conclusion, the proposed method DeepSPIM has shown better reconstruction re-
sults than some state-of-the-art methods, including FBPConvNet, CSCGR, DFRP, WNet,
and DRONE. It is emphasized that DeepSPIM is a global convergent iterative method
with deep gradient step denoiser prior, which fills the gap in the IR methods for sparse-
view CT reconstruction. DeepSPIM can be naturally extended to limited-angle CT [50],
interior CT [53], positron emission tomography (PET) [33], and magnetic resonance imag-
ing (MRI) [44].

Appendix A

A.1 Proof of Lemma 2.1

Proof. Obviously, P is symmetric. Note that ‖x‖P =
√

〈x,Px〉. Since all the matrices and
vectors discussed in this paper are real-valued, we have 〈y,Px〉= 〈Px,y〉= 〈x,PTy〉. For
any x∈R

n, we have

〈x,Px〉= 〈x,(αI−βRTR)x〉=α〈x,x〉−β〈x,RTRx〉
=α〈x,x〉−β〈Rx,Rx〉=α‖x‖2−β‖Rx‖2

≥ (α−β‖R‖2)‖x‖2 ≥0. (A.1)

Therefore, P is positive semi-definite. We can then derive that
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By omitting the constant terms with respect to u, we arrive at
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which completes the proof.

A.2 Proof of Theorem 2.1

Proof. To prove the theorem, we first show that the energy function E(u) in (2.1) is proper
and closed. Since Assumption 2.1 is satisfied, gα is bounded from below. Therefore, F is
also bounded from below by some constant C. It is obvious that E is proper because

E(u)=F(u)+
λ

2
‖Ru− f‖2 ≥C>−∞. (A.4)

Besides, E is closed as a sum of closed functions.
If S is a compact set, then by the Weierstrass theorem for closed functions [4], we

know E attains its minimal value over S, and the theorem is proved.
If R has full column rank, we show that E is coercive. Note that since R has full

column rank, RTR is positive definite. Thus, when ‖u‖→+∞,‖Ru‖→+∞ and ‖Ru− f‖→
+∞. Therefore, we have

lim
‖u‖→∞

E(u)≥ lim
‖u‖→∞

C+
λ

2
‖Ru− f‖2 =+∞. (A.5)

Thus, E is coercive with respect to u in E.
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Finally, we prove that E attains its minimal value over S. By the assumption S∩
dom(F) 6=∅, we choose an arbitrary point u0∈S∩dom(F). By the coerciveness of E, there
exists an A>0 such that

E(u)>E(u0) (A.6)

for any ‖u‖2 > A. Define S1 = {u∈E : ‖u‖2 ≤ A}. Then, for any minimizer u∗, we have
E(u∗)≤E(u0), and that u∗∈S1∩S. S1∩S is compact because it is the intersection of two
bounded and closed sets. Therefore, by the Weierstrass theorem for closed functions [4],
there exists at least one minimizer over S1. Since ∅ 6=S1∩S⊂S, there also exists at least
one minimizer over S, which completes the proof.

A.3 Proof of Theorem 2.2

Proof. The equality (2.9) holds under Assumption 2.1 according to [26]. Let

zk =uk− β

α
RT(Ruk−vk+bk).

Since

uk+1=Prox F
α
(zk)=argmin

u
F(u)+

α

2
‖u−zk‖2,

we have

F(uk+1)+
α

2
‖uk+1−zk‖2≤F(uk)+

α

2
‖uk−zk‖2, (A.7)

F(uk+1)−F(uk)≤−α

2
‖uk+1−uk‖2−β〈uk+1−uk,RT(Ruk−vk+bk)〉. (A.8)

Therefore,

Lβ(u
k+1,vk,bk)−Lβ(u

k,vk,bk)

=F(uk+1)−F(uk)+
β

2
‖Ruk+1−Ruk‖2+β〈Ruk+1−Ruk,bk+Ruk−vk〉

≤−α

2
‖uk+1−uk‖2−β〈uk+1−uk,RT(Ruk−vk+bk)〉

+
β

2
‖Ruk+1−Ruk‖2+β〈Ruk+1−Ruk,bk+Ruk−vk〉

≤
(

β

2
‖R‖2− α

2

)

‖uk+1−uk‖2. (A.9)

The first “≤” comes from (A.8). Besides, it can be easily seen that Lβ is (λ+β)-strongly
convex with respect to v. Thus,

Lβ(u
k+1,vk+1,bk)−Lβ(u

k+1,vk,bk)≤−(λ+β)‖vk+1−vk‖2. (A.10)
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Note that the formula of vk+1 in (2.7) can be equivalently expressed as

vk+1 =
λ f +βRuk+1+βbk

λ+β
=

λ f +βvk+1+βbk+1

λ+β
,

λvk+1 =λ f +βbk+1,

bk+1=
λ(vk+1− f )

β
.

(A.11)

Thus, we obtain

Lβ(u
k+1,vk+1,bk+1)−Lβ(u

k+1,vk+1,bk)

=β〈bk+1−bk,Ruk+1−vk+1〉

=β‖bk+1−bk‖2=
λ2

β
‖vk+1−vk‖2. (A.12)

By putting (A.9), (A.10), and (A.12) together, we arrive at

Lβ(u
k+1,vk+1,bk+1)−Lβ(u

k,vk,bk)

≤
(

λ2

β
−λ−β

)

‖vk+1−vk‖2+

(

β

2
‖R‖2− α

2

)

‖uk+1−uk‖2. (A.13)

When λ≤ ((1+
√

5)/2)β, and α≥β‖R‖2, Lβ is non-increasing.
By Assumption 2.1, gα is bounded from below, hence Lβ and F are also bounded from

below.
On the feasible set Ω f , F(u)+(λ/2)‖ f −v‖2 is coercive. Therefore, {(uk,vk)} is boun-

ded. Since bk=(λ/β)(vk− f ),{bk} is also bounded. By the non-increasing property of Lβ,

we have that Lβ(u
k,vk,bk) converges to the minimum Lβ(u

∗,v∗,b∗) as k goes to infinity. In

other words, (uk,vk,bk) converges weakly to (u∗,v∗,b∗).

A.4 Proof of Theorem 2.3

Proof. By the iteration of (2.7), we know b∗=b∗+Ru∗−v∗, and v∗=Ru∗. Thus,

Lβ(u
∗,v∗,b∗)=F(u∗)+

λ

2
‖ f −Ru∗‖2. (A.14)

Now we prove that u∗ is a minimizer of (2.1) by contradiction. Assume that u∗ is not
a minimizer of (2.1), that is, there exists a unique minimizer x, such that

F(x)+
λ

2
‖ f −Rx‖2

<F(u∗)+
λ

2
‖ f −Ru∗‖2. (A.15)

Let y=Rx,z=0. Then

Lβ(x,y,z)=F(x)+
λ

2
‖ f −Rx‖2

<F(u∗)+
λ

2
‖ f −Ru∗‖2= Lβ(u

∗,v∗,b∗), (A.16)

which contradicts with the assumption that (u∗,v∗,b∗) is the unique minimizer of Lβ.
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