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Abstract. In this paper, we develop total variations for hue, saturation, and value of
a color image, and we propose a novel hue-saturation-value total variation model for
color image restoration. We first refine the hue formulation of a color image to make
it mathematically and applicationally meaningful by assigning different hue values
to different colors. We then develop the proposed hue-saturation-value total varia-
tion based on the conception of hue/saturation/value gradient. We investigate the
dual formulation and the properties of the proposed hue-saturation-value total vari-
ation, and we finally propose a color image restoration model which is formulated
by combing the proposed hue-saturation-value total variation regularization with the
data-fitting term between the objective color image and the observed color image. We
develop an efficient alternating iterative algorithm to solve the proposed optimization
model in practice, and we give the convergence analysis of the proposed algorithm.
Numerical examples are presented to demonstrate that the performance of the pro-
posed hue-saturation-value total variation and the proposed color restoration model
is better than that of other testing methods in terms of visual quality, peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), and S-CIELAB color error.

AMS subject classifications: 65K10, 65J22, 68U10, 90C26

Key words: Total variation, color image restoration, hue, saturation, value, alternating iterative
algorithm.

1 Introduction

The representation ways of color images have been extensively developed [5]. One of the
most popular color representation models is RGB (red, green, blue) color space, which
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is the most general hardware-oriented model. Another widely used color space is HSV
(hue, saturation, value) color space, which is similar to human color perception. In the
literature, many color image processing models are proposed based on different color
spaces, e.g. color image restoration [2, 4, 9, 13, 28, 30, 36], color image enhancement [9, 15]
based on RGB color space, color image restoration [8], color image segmentation [10, 20,
39] based on HSV color space, color image restoration [22], color image enhancement [1]
based on CIELAB color space, color image enhancement [33], color image restoration [19,
21, 23, 25, 32, 34], color image decomposition [26, 37] based on opponent color space, etc.

Images will be affected by the interference of imaging equipment and external en-
vironment noise during digitizing and transmitting. Therefore, regularization methods
need to be designed to deal with image restoration problem. As one of the most popular
regularization methods, total variation (TV) [29] is proposed to deal with grayscale im-
ages, and has been developed into many other forms for handling corresponding image
processing problems. For instance, anisotropic TV [14] is designed for image decompo-
sition problem, and nonlocal TV [16, 31] makes use of image structures and features for
image restoration problem. On the other hand, TV regularization is also generalized for
vector-valued (color of multichannel) image regularization. Bresson and Chan [4] pro-
posed a color TV regularization with a local channel-coupling

C-TV(u) :=
∫

Ω

√

c

∑
k=1

(

∂xuk(x,y)
)2
+
(

∂yuk(x,y)
)2

dxdy,

where Ω is the image domain, c is the number of channels, uk(x,y) is the k-th channel
of vector-valued image u=[u1(x,y),u2(x,y),··· ,uc(x,y)]⊤ and ∂xuk (or ∂yuk) is the partial
derivative of uk with respect to x (or y). In [13], the comparison of the TV regulariza-
tion with the local-channel coupling C-TV and the global channel coupling C-TV has
been studied, which shows that C-TV can determine edge locations in different chan-
nels. Moreover, Duran et al. [13] studied the gradient of a multispectral image as a three-
dimensional (3D) matrix or tensor with the dimensions corresponding to the spatial and
spectral channels. Different norms along different dimensions can be employed to mea-
sure the smoothness of this tensor. Paul et al. [28] proposed the generalized vector-valued
total variation (GV-TV) by coupling different channels with different norms. We remark
here that many efficient algorithms can be applied to solve different vectorial total varia-
tion models, such as the augmented Lagrangian method [18,27,38], dual method [6,7,38],
the split Bregman algorithm [3, 38] and the iteratively reweighted norm algorithm [28].

Color images can be studied from the view of Riemann geometry. In [12], a vector-
valued image was considered as a parametric 2D manifold embedded in a C-dimensional
space, where C is the number of channels. One idea is to study the spectral information
of (∇u(x,y))⊤∇u(x,y), which refers to the structure tensor of the image. The spectral
information would be useful for describing edges of color images. Sapiro [30] proposed
the following vectorial TV model:

V-TV(u) :=
∫

Ω
ϕ
(

λ+(x,y),λ−(x,y)
)

dxdy,
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where λ+,λ− correspond to the eigenvalues of the eigenvectors of (∇u(x,y))⊤∇u(x,y),
and ϕ(·) is a penalty function. Many forms of ϕ(·) can be defined to describe the edges
of color images, for example, by choosing Schatten-∞ norm (also noted as V-TV)

V-TV(u) :=
∫

Ω

√

λ+(x,y)dxdy.

This form can be used to penalize the largest gradient change in ∇u(x,y). ϕ(·) can also
be defined as the Frobenius norm or p-norm, see details in [17].

Besides different kinds of geometric models, another useful technique in color image
processing is to transform color images to other color spaces. Chan et al. [8] studied the
TV image restoration based on the chromaticity-brightness model and the HSV model.
The idea is to apply TV regularization on the objective image in the transformed color
space, e.g. applying TV denoising procedure to the chromaticity component (or hue com-
ponent and saturation component) and the brightness component separately. In [11], the
opponent color space, which is an equivalent version of HSV color space, was proposed
by using quaternion framework, and Jia et al. [21] proposed the saturation-value total
variation (SV-TV) model based on HSV color space in quaternion framework

SV-TV(u) :=
∫

Ω

√

|∂xu(x,y)|2s +|∂yu(x,y)|2s +α
√

|∂xu(x,y)|2v+|∂yu(x,y)|2v dxdy,

where |·|s and |·|v mean the saturation component and value component, α is a param-
eter for balancing the saturation regularization and value regularization. Notice that the
proposed SV-TV model in [21] make use of the saturation regularization to eliminate the
color disturbance, and make use of the value regularization to remove the value artifacts.
However, SV-TV model does not consider the information of the hue component, which
may lead to unexpected color loss during SV-TV based color image processing.

In this paper, we develop total variations for hue, saturation, and value of a color im-
age, and we propose a novel hue-saturation-value total variation model for color image
restoration. We first reconstruct the HSV color space by using quaternion framework. We
then refine the hue representation to make it mathematically and applicationally mean-
ingful by assigning different hue values to different colors. We finally propose and de-
velop a novel hue-saturation-value total variation (HSV-TV) regularization method based
on the conception of hue/saturation/value gradient. We investigate the dual formula-
tion and the properties of the proposed hue-saturation-value total variation. Color image
restoration model is then formulated by combing the proposed HSV-TV regularization
method with the data-fitting term between the objective color image and the observed
color image. We develop an efficient alternating iterative algorithm to solve the proposed
optimization model in practice, and we give the convergence analysis of the proposed al-
gorithm. Numerical examples are presented to demonstrate that the performance of the
proposed hue-saturation-value total variation and the proposed HSV-TV color restora-
tion model is better than that of other testing methods in terms of visual quality, peak
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signal-to-noise ratio (PSNR), structural similarity index (SSIM) [35], and S-CIELAB color
error [40].

The outline of this paper is given as follows. In Section 2, we reconstruct the HSV
color space by using quaternion framework, and refine the hue formulation. In Sec-
tion 3, we introduce the hue-saturation-value total variation and the proposed color im-
age restoration model, meanwhile, we give the theoretical analysis of the proposed HSV-
TV approach. In Section 4, we present an efficient alternating iterative algorithm to solve
the proposed color image restoration model. In Section 5, we report numerical examples
to demonstrate the effectiveness of the proposed approach. Finally, some concluding
remarks are given in Section 6.

2 Hue, saturation, and value of a color image

2.1 Hue, saturation, value, and quaternion

In this subsection, we will give the expressions of hue, saturation, and value in the quater-
nion framework. We first quote two lemmas in [11, 26] for quaternion calculations.

Lemma 2.1. If p,q are two pure quaternions (which are equivalent to three-dimensional vectors),
then

pq=p×q−p·q.

Moreover, if p,q are still orthogonal, then

pq=p×q,

where p×q means the cross product of p and q as three-dimensional vectors. p·q means the
scalar product of p and q as three-dimensional vectors.

Lemma 2.2. If u,µ are two pure quaternions, and µ is unitary, then

• The reflection of u with respect to µ (u
µ
re f l =−µuµ) is the reflection vector of u onto µ.

• The projection of u with respect to µ (u
µ
proj = (u−µuµ)/2) is the projection vector of u

onto µ.

• The rejection of u with respect to µ (u
µ
rej =(u+µuµ)/2) is the projection vector of u onto

the orthogonal plane of µ.

Assume u=(ur,ug,ub) is a color image defined on an image domain Ω. Then u(x,y)
can be equivalently considered as a pure quaternion, i.e. u= uri+ugj+ubk. In Fig. 1,
we show the projection vectors and the rejection vector of a color image u with respect
to the axis of a cone coordinate system built based on the quaternion calculations. The
following theorem gives the expressions of the hue, saturation, and value components
of u in the quaternion framework.
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Theorem 2.1. The hue, saturation, and value components of a color image u is given as follows
in the quaternion framework:



























ch(x,y)= tan−1

( |u(x,y)+µνu(x,y)νµ|
|u(x,y)−νu(x,y)ν|

)

,

cs(x,y)=
1

2
|u(x,y)+µu(x,y)µ|,

cv(x,y)=
1

2
|u(x,y)−µu(x,y)µ|,

where µ is the gray-value axis and ν is a reference color which is unitary and orthogonal to µ.

Proof. First, we set γ=µν. By applying Lemma 2.1, we can easily derive that γ is orthog-
onal to the plane determined by µ and ν. Recall that a color vector in HSV color space
can be considered as a point in a cone from a geometric point of view. We then make use
of γ,µ, and ν to build a cone in the quaternion framework. As is shown in Fig. 1, the main
idea is to choose µ as the central axis. Then the value component of a color u is the length
of the projection of u onto µ. The saturation component is the length of the rejection of u

onto µ. The hue component is the angle between the reference color ν and the rejection
of u onto µ, which can be described by using the value of the arc tangent function at the
ratio of the projection length of u onto γ to the projection length of u onto ν. Combining
the calculations in Lemma 2.2, we can easily deduce that the formulations of ch, cs, and cv

based on the quaternion framework are given as follows:

ch = tan−1

(
∣

∣u
γ
proj

∣

∣

∣

∣uν
proj

∣

∣

)

= tan−1

( |u−γuγ|
|u−νuν|

)

= tan−1

( |u+µνuνµ|
|u−νuν|

)

,

cs =
∣

∣u
µ
rej

∣

∣=
1

2
|u+µuµ|, cv=

∣

∣u
µ
proj

∣

∣=
1

2
|u−µuµ|.

The proof is complete.

Figure 1: The geometric meaning of HSV in the quaternion framework.
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2.2 Hue, saturation, and value of a color image

In this subsection, we will further study the representations of hue, saturation, and value
for a color image. We will establish the conversion relationship between red, green, blue
and quaternion based hue, saturation, value, meanwhile, we will try to figure out how
different couplings between red, green, and blue channels describe different features
(hue, saturation, value) of a color image.

In the following discussion, we set µ=(i+j+k)/
√

3 corresponding to the grey-value
axis. Noting that ν is a reference color which is unitary and orthogonal to µ. In this paper,
we choose the reference color ν corresponding to the red color i. By using Lemma 2.2,
ν can be calculated as follows:

ν=
(i+µiµ)/2

|(i+µiµ)/2| =
1√
6
(2i−j−k).

Then we can derive the representations of hue, saturation, and value based on the cou-
plings of red, green, blue channels by using the quaternion calculations in Theorem 2.1.
We conclude them in the following theorem.

Theorem 2.2. Assume u=(ur,ug,ub)
⊤ is a color image. Then hue, saturation, and value of u

can be give as

H(u)= tan−1

(‖C1u‖
‖C2u‖

)

, S(u)=‖Cu‖, V(u)=
1√
3
|ur+ug+ub|,

where

C1=





0 0 0
0 1/2 −1/2
0 −1/2 1/2



, C2=





2/3 −1/3 −1/3
−1/3 1/6 1/6
−1/3 1/6 1/6



, C=





2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3



.

Here, ‖·‖ means the Frobenius norm of a three-dimensional vector.

Proof. We first show some quaternion calculations as follows:

u−νuν=
1

3

(

(4ur−2ug−2ub)i+(−2ur+ug+ub)j+(−2ur+ug+ub)k
)

,

1

2
|u−νuν|=‖C2u‖,

u+µνuνµ=(ug−ub)j+(−ug+ub)k,

1

2
|u+µνuνµ|=‖C1u‖,

u+µuµ=
2

3

(

(2ur−ug−ub)i+(−ur+2ug−ub)j+(−ur−ug+2ub)k
)

,

1

2
|u+µuµ|=‖Cu‖,
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u−µuµ=
2

3

(

(ur+ug+ub)i+(ur+ug+ub)j+(ur+ug+ub)k
)

,

1

2
|u−µuµ|= 1√

3
|ur+ug+ub|.

By using the formulations of ch, ch, and ch given in Theorem 2.1, we have

H(u)= tan−1

(‖C1u‖
‖C2u‖

)

, S(u)=‖Cu‖, V(u)=
1√
3
|ur+ug+ub|.

The proof is complete.

However, there is a problem with the definition of hue in Theorem 2.2, i.e. the range
of H(u) is restricted in [0,π/2], which causes confusion in color representation. Particu-
larly, different colors may share the same hue. For example, let us check the hue of green
u1=(0,1,0)T and blue u2=(0,0,1)T based on the formulation of H(u) as follows:

C1u1=





0
1/2

−1/2



, C1u2=





0
−1/2

1/2



, ‖C1u1‖=‖C1u2‖=
1√
2

,

C2u1=





−1/3
1/6
1/6



, C2u2=





−1/3
1/6
1/6



, ‖C2u1‖=‖C2u2‖=
1√
6

,

then it is easy to get that H(u1)=H(u2)= tan−1(
√

3)=π/3. In order to deal with this
problem, we further improve the formulation of hue in Definition 2.1.

Definition 2.1. The formulation of hue is given as

H∗=























H, β1 >0, β2≥0,

π−H, β1 ≤0, β2>0,

π+H, β1 <0, β2≤0,

2π−H, β1 ≥0, β2<0,

(2.1)

where

β1=sign
(

(u−νuν)·ν
)

=















1, uν
proj and ν are in the same direction,

0, uν
proj =0,

−1, uν
proj and ν in the opposite direction,
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β2=sign
(

(u−γuγ)·γ
)

=sign
(

(u+µνuνµ)·(µν)
)

=















1, u
γ
proj and γ are in the same direction,

0, u
γ
proj =0,

−1, u
γ
proj and γ are in the opposite direction.

Noting that uν
proj=(u−νuν)/2 is the projection vector of u onto ν, then β1 describes the direction

of uν
proj. Similarly, β2 describe the direction of u

γ
proj. Finally, by letting ω1 = sign(β1−β2/2)

and ω2=sign(β2+β1/2), formula (2.1) can be rewritten as

H∗=(ω1ω2)H+π

(

1− 1

2
ω1ω2−

1

2
ω2

)

. (2.2)

We then give an example to illustrate the effect of the improved definition of hue.
We show the hue values of different colors by using the formulation of H∗ in Fig. 2.
We see from the figure that the hue values are in between [0,2π], and different colors
correspond to different unique hue values. Then it can be used as an effective color
feature to distinguish different colors. We remark that the hue value has nothing to do
with the saturation or the brightness of the color pixel. As we can see in Fig. 2 that
the saturation of the chromatogram decreases vertically, however, the hue values are the
same vertically.

Figure 2: The hue values of the chromatogram.

3 Total variations for hue, saturation, and value

3.1 The formulation

Recall that Ω is a bounded and convex domain, ∂xuk (or ∂yuk) is the partial derivative
of uk with respect to x (or y). We define the total variation for hue as follows:
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HTV(u) :=
∫

Ω

√

(

∂xH∗(x,y)
)2
+
(

∂yH∗(x,y)
)2

dxdy.

According to the definition of H∗ given in (2.2), we can easily deduce the hue gradient as
follows:

∂xH∗(x,y)=(ω1ω2)∂xH(x,y), ∂yH∗(x,y)=(ω1ω2)∂yH(x,y).

Noting that ω1ω2 can only be 1 or −1. Therefore,

HTV(u)=
∫

Ω

√

(

∂xH(x,y)
)2
+
(

∂yH(x,y)
)2

dxdy. (3.1)

As introduced in [21], total variations for saturation, and value are given as follows based
the conception of saturation/value gradient:

STV(u)=
∫

Ω

√

|∂xu(x,y)|2s +|∂yu(x,y)|2s dxdy, (3.2)

VTV(u)=
∫

Ω

√

∣

∣∂xu(x,y)
∣

∣

2

v
+
∣

∣∂yu(x,y)
∣

∣

2

v
dxdy, (3.3)

where

∂xu(x,y)=





∂xur(x,y)
∂xug(x,y)
∂xub(x,y)



, ∂yu(x,y)=





∂yur(x,y)
∂yug(x,y)
∂yub(x,y)



,

|∂xu(x,y)|s =‖C∂xu(x,y)‖2, |∂yu(x,y)|s =‖C∂yu(x,y)‖2,

|∂xu(x,y)|v =
1√
3
|∂xur(x,y)+∂xug(x,y)+∂xub(x,y)|,

|∂yu(x,y)|v =
1√
3
|∂yur(x,y)+∂yug(x,y)+∂yub(x,y)|.

We then define hue-saturation-value total variation (HSV-TV) by combining the total
variations for hue (3.1), saturation (3.2) and value (3.3) as follows:

HSV-TV(u) :=
∫

Ω

√

(

∂xH(x,y)
)2
+
(

∂yH(x,y)
)2
+α1

√

|∂xu(x,y)|2s +|∂yu(x,y)|2s

+α2

√

|∂xu(x,y)|2v+|∂yu(x,y)|2vdxdy, (3.4)

where α1 and α2 are positive parameters given as the weights of the hue, saturation, and
value components.

3.2 The dual formulation and properties of hue-saturation-value total
variation

In this subsection, we study the dual formulation of HSV-TV, and we present several ge-
ometric properties of HSV-TV, including lower semi-continuity, compactness, etc. Before
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further discussion, we recall the definition of the space of bounded variation functions
(BV(Ω)).

Definition 3.1. Suppose Ω is a bounded open subset of R2m with a positive integer m. Let B
m

denote the closed united ball in R
m and Km=C1(Ω,B2m) be the set of continuously differentiable

and bounded functions from the compact support in Ω to B
2m. We define BV(Ω) as follows:

BV(Ω)=

{

u∈L1(Ω);
∫

Ω
|Du|= sup

ξ∈Km

{

∫

Ω
udivξdx

}

<∞

}

,

where Du is called the distributional gradient of u.

We then give the dual formulation of HSV-TV in Definition 3.2. We also discuss the
relationship between the dual formulation and the derivative-based definition (3.4) of
HSV-TV in Proposition 3.1.

Definition 3.2 (Dual Formulation of HSV-TV). Assume that ur,ug,ub∈L1(Ω), then

HSV-TVdual(u)

= sup
ξ1∈K1,

(ξ2,ξ3)∈K2,ξ4∈K1

{

∫

Ω
H(u)div(ξ1)+

α1√
2
(ug−ub)div(ξ2)

+
α1√

6
(2ur−ug−ub)div(ξ3)+

α2√
3
(ur+ub+ug)div(ξ4)dxdy

}

. (3.5)

Proposition 3.1. If u(x,y) is differential, then HSV-TVdual(u)=HSV-TV(u).

Proof. If u(x,y) is differential, we can easily derive the following result by using [21,
Proposition 3.1]:

∫

Ω
α1

√

|∂xu(x,y)|2s +|∂yu(x,y)|2s +α2

√

|∂xu(x,y)|2v+|∂yu(x,y)|2v dxdy

= sup
(ξ2,ξ3)∈K2,ξ4∈K1

{

∫

Ω

α1√
2
(ug−ub)div(ξ2)+

α1√
6
(2ur−ug−ub)div(ξ3)

+
α2√

3
(ur+ub+ug)div(ξ4)dxdy

}

. (3.6)

Noting the definition of HTV(u) in (3.1), we can deduce that

∫

Ω

√

(

∂xH(x,y)
)2
+
(

∂yH(x,y)
)2
= sup

ξ1∈K1

{

∫

Ω
H(u)div(ξ1)dxdy

}

=HTV(u). (3.7)

Eqs. (3.6) and (3.7) leads to (3.5).

In order to show the lower semi-continuity of HSV-TV, we first give a lemma about
the hue function H(u).



W. Wang and C. Yang / CSIAM Trans. Appl. Math., x (2024), pp. 1-39 11

Lemma 3.1. Assume that ur,ug,ub ∈BV(Ω), and there exists ǫ0 >0 such that ‖C2u‖> ǫ0 in
Ω, then H(x,y)∈BV(Ω).

Proof. As defined in Definition 3.1, we need to prove that H(x,y)∈L1(Ω) and
∫

Ω
|DH|<∞.

As H(x,y)⊆ [0,π/2] and Ω is bounded, we have
∫

Ω
H(x,y)dxdy≤ π

2
|Ω|<∞,

which means H(x,y)∈ L1(Ω). We then prove that
∫

Ω
|DH|<∞. Notice that ‖C2u‖> ǫ0,

therefore
∫

Ω
|DH|=

∫

Ω

∣

∣

∣

∣

Dtan−1

(‖C1u‖
‖C2u‖

)∣

∣

∣

∣

≤
∫

Ω

∣

∣

∣

∣

D

(‖C1u‖
‖C2u‖

)∣

∣

∣

∣

≤ 1

ǫ0

∫

Ω

∣

∣D‖C1u‖
∣

∣,

which means that
∫

Ω
|DH| can be controlled by

∫

Ω
|D‖C1u‖|. Recall that ‖C1u‖ =

|ug−ub|/
√

2, and ur,ug,ub∈BV(Ω), then the linear combination (ug−ub)/
√

2∈BV(Ω),
which gives

∫

Ω

∣

∣D‖C1u‖
∣

∣<∞.

Therefore, we can get that
∫

Ω
|DH|<∞. (3.8)

The proof is complete.

Proposition 3.2 (Lower Semi-Continuity). Let un =(un
r ,un

g,un
b )

⊤,u=(ur,ug,ub)
⊤. Assume

that un
r ,un

g,un
b ∈BV(Ω), and un

r →ur,u
n
g →ug,un

b →ub in L1(Ω), then

liminf
n→∞

HSV-TV(un)≥HSV-TV(u).

Proof. The lower semi-continuity of SV-TV has already given in [21], we only need to
prove that

liminf
n→∞

HTV(un)≥HTV(u).

Recall the definition of HTV(u), which can be written as the supremum of the following
operator:

L : u 7→
∫

Ω
H(u)div(ξ)dxdy,

where ξ(x,y)∈K1. As calculated in the appendix,

‖C1u‖= 1√
2
|ug−ub|, ‖C2u‖= 1√

6
|2ur−ug−ub|.

Noting that un
i

L1(Ω)−→ ui, i= r,g,b, we can easily deduce that

∥

∥C1un
∥

∥

L1(Ω)−→ ‖C1u‖,
∥

∥C2un
∥

∥

L1(Ω)−→ ‖C2u‖.
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Therefore, we have H(un)
L1(Ω)−→ H(u). Noting the linearity of L, we can deduce that

Lun → Lu.

It follows that

Lu= limLun= liminf Lun≤ liminf

(

sup
ξ∈K1

Lun

)

= liminf HTV(un).

Then we can deduce the lower semi-continuity of HTV by taking the supremum,

HTV(u)≤ liminf HTV(un).

Combine with the lower semi-continuity of SV-TV which is given in [21], we finally get

HSV-TV(u)≤ liminf HSV-TV(un).

The proof is complete.

Proposition 3.3 (Approximation). For any u = (ur,ug,ub)
⊤ with ur,ug,ub ∈ BV(Ω), there

exists a sequence {un =(un
r ,un

g,un
b )

⊤} with {un
r },{un

g},{un
b}⊂C∞(Ω)∩W1,1(Ω) such that

lim
n→∞

∫

Ω

∣

∣un
r −ur

∣

∣dxdy=0,

lim
n→∞

∫

Ω

∣

∣un
g−ug

∣

∣dxdy=0,

lim
n→∞

∫

Ω

∣

∣un
b −ub

∣

∣dxdy=0,

lim
n→∞

HSV-TV(un)=HSV-TV(u).

Proof. As is shown in [6], we can find three sequences {uǫ
r},{uǫ

g},{uǫ
b}∈C∞(Ω)∩W1,1(Ω)

such that

∫

Ω

∣

∣uǫ
r −ur

∣

∣dxdy → 0,
∫

Ω

∣

∣uǫ
g−ug

∣

∣dxdy → 0,
∫

Ω

∣

∣uǫ
b−ub

∣

∣dxdy → 0

as ǫ→0. Recall that [21] gives
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lim
ǫ→0

SV-TV(uǫ)=SV-TV(u), (3.9)

we then need to prove that
lim
ǫ→0

HTV(uǫ)=HTV(u).

Let L be the same definition as in the previous proof, then for fixed ξ∈K1,

Lu= lim
ǫ→0

Luǫ.

Therefore,
lim
ǫ→0

Luǫ≤HTV(u).

According to the above equation, we can find ǫ0>0 such that if ǫ<ǫ0,

Luǫ≤HTV(u).

Then for ǫ<ǫ0,
HTV(uǫ)≤HTV(u).

Noting the lower semi-continuity of HTV, we have

HTV(u)≤ liminf
ǫ→0

HTV(uǫ)≤ limsup
ǫ→0

HTV(uǫ)≤HTV(u). (3.10)

Combine (3.9) with (3.10), we derive the following result:

lim
n→∞

HSV-TV(un)=HSV-TV(u).

The proof is complete.

Proposition 3.4 (Compactness). Assume {HSV-TV(un)+∑i=r,g,b‖un
i ‖L1} is uniformly boun-

ded, then there exist a subsequence (still noting as {un =(un
r ,un

g ,un
b )}) and ur,ug,ub ∈BV(Ω)

such that
un

r → ur, un
g → ug, un

b → ub in L1(Ω).

Proof. Set

vn
1 =

un
g−un

b√
2

, vn
2 =

2un
r −un

g−un
b√

6
, vn

3 =
un

r +un
g+un

b√
3

.

By the dual form of HSV-TV(un) given in (3.5), we have

HSV-TV(un)= sup
ξ1∈K1,(ξ2 ,ξ3)∈K2,

ξ4∈K1

{

∫

Ω
tan−1

(

vn
1

vn
2

)

div(ξ1)+α1vn
1div(ξ2)

+α1vn
2 div(ξ3)+α2vn

3 div(ξ4)dxdy

}

.
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By using the boundedness of HSV-TV(un) and noting that vn
i (i=1,2,3) is a linear combi-

nation of un
r ,un

g,un
b , we can easily deduce that {vn

1},{vn
2},{vn

3} are uniformly bounded in
BV(Ω). Noting the compactness of BV(Ω), there exist three subsequences (still noting
as {vn

1},{vn
2},{vn

3}) and v1,v2,v3∈BV(Ω) such that

vn
1 → v1, vn

2 → v2, vn
3 →v3 in L1(Ω).

By the given relationship between un
r ,un

g,un
b and vn

1 ,vn
2 ,vn

3 above, it is easy to deduce that

un
r =

√
6vn

2+
√

3vn
3

3
, un

g =
3
√

2vn
1−

√
6vn

2 +2
√

3vn
3

6
, un

b =
−3

√
2vn

1 −
√

6vn
2 +2

√
3vn

3

6
,

which means un
r ,un

g ,un
b are the linear combinations of vn

1 ,vn
2 ,vn

3 . We derive that there exist
a subsequence (still noting as {un =(un

r ,un
g ,un

b )}) and ur,ug,ub∈BV(Ω) such that

un
r →ur, un

g →ug, un
b →ub in L1(Ω).

This completes the proof.

3.3 Total variation model for color image restoration

In this subsection, we study the following hue-saturation-value total variation model for
color image restoration:

min
ur,ug,ub∈BV(Ω)

{

E(u)=HSV-TV(u)+
λ

2

∫

Ω
|(K⋆u)(x,y)−z(x,y)|2dxdy

}

. (3.11)

Here, Ω is a bounded open subset of R2. The first term is the proposed hue-saturation-
value total variation which is used for color image regularization. The second term is
the data-fitting term, where z(x,y) is the given noisy image, λ>0 is a positive parameter
which is used to balance these two terms, and K is a given blurring operator, ⋆ is the
convolution operation. Noting that HSV-TV(u) is nonconvex, we conclude the existence
of the minimizer of the proposed problem (3.11) in the following theorem.

Theorem 3.1. The minimization problem (3.11) has at least one solution.

Proof. First, if we set u(x,y) to be constant, then HSV(u) is finite, which implies that
the infimum of E(u) is finite, i.e. the proposed minimization problem is well defined.

Assume that u(n)= [u
(n)
r u

(n)
g u

(n)
b ]⊤ is a minimizing sequence of (3.11), then there exists

a constant M>0 such that
HSV-TV(u(n))≤M.

Notice that the data-fitting term is a coercive functional with respect to u, we get that

‖u
(n)
i ‖L2 is uniformly bounded for i= r,g,b. By using Holder inequality, we have

∥

∥u
(n)
i

∥

∥

L1 ≤
∥

∥u
(n)
i

∥

∥

L2‖1‖L2 .
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Combine with the boundedness of Ω, we can deduce that ‖u
(n)
i ‖L1 is uniformly bounded

for i = r,g,b. Then {HSV-TV(u(n))+∑i=r,g,b‖u
(n)
i ‖L1} is uniformly bounded. By using

Proposition 3.4, up to a subsequence (also denoted by u
(n)
r ,u

(n)
g ,u

(n)
b ), there exists ũ(x,y)=

[ũr(x,y),ũg(x,y),ũb(x,y)]⊤ (ũr,ũg,ũb∈BV(Ω)) satisfying that

u
(n)
r (x,y)

L1(Ω)−→ ũr(x,y), u
(n)
r (x,y) → ũr(x,y) a.e. (xy)∈Ω,

u
(n)
g (x,y)

L1(Ω)−→ ũg(x,y), u
(n)
g (x,y) → ũg(x,y) a.e. (x,y)∈Ω,

u
(n)
b (x,y)

L1(Ω)−→ ũb(x,y), u
(n)
b (x,y) → ũb(x,y) a.e. (x,y)∈Ω.

Noting the lower semi-continuity given in Proposition 3.2, we have

liminf HSV-TV(u(n))≥HSV-TV(ũ). (3.12)

Meanwhile, the following convergence results hold:

((

K⋆u
(n)
r

)

(x,y)−z(x,y)
)2 →

(

(K⋆ũr)(x,y)−z(x,y)
)2

a.e. (x,y)∈Ω,
((

K⋆u
(n)
g

)

(x,y)−z(x,y)
)2 →

(

(K⋆ũg)(x,y)−z(x,y)
)2

a.e. (x,y)∈Ω,
((

K⋆u
(n)
b

)

(x,y)−z(x,y)
)2 →

(

(K⋆ũb)(x,y)−z(x,y)
)2

a.e. (x,y)∈Ω.

By using Fatou’s lemma, we have

liminf
∫

Ω

((

K⋆u
(n)
r

)

(x,y)−z(x,y)
)2

dxdy+
∫

Ω

((

K⋆u
(n)
g

)

(x,y)−z(x,y)
)2

dxdy

+
∫

Ω

((

K⋆u
(n)
b

)

(x,y)−z(x,y)
)2

dxdy

≥
∫

Ω

(

(K⋆ũr)(x,y)−z(x,y)
)2

dxdy+
∫

Ω

(

(K⋆ũg)(x,y)−z(x,y)
)2

dxdy

+
∫

Ω

(

(K⋆ũb)(x,y)−z(x,y)
)2

dxdy. (3.13)

Combine with the lower semi-continuity and (3.13), we have

liminf HSV-TV
(

u(n)
)

+
λ

2

∫

Ω

∣

∣

(

K⋆u(n)
)

(x,y)−z(x,y)
∣

∣

2
dxdy

≥HSV-TV(ũ)+
λ

2

∫

Ω
|(K⋆ũ)(x,y)−z(x,y)|2dxdy. (3.14)

It leads to the existence of the solution of (3.11).

On the other hand, the Euler-Lagrange equation of the proposed HSV-TV model is
given as
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−∇·





Hr∇H

HTV(u)
+α1

∇(2ur−ug−ub)

3
√

|∂xu|2s +|∂yu|2s
+α2

∇(ur+ug+ub)

3
√

|∂xu|2v+|∂yu|2v





+
∂xH∂xHr

HTV(u)
+

∂yH∂yHr

HTV(u)
+λ(K∗

⋆K⋆ur−K∗
⋆zr)=0,

−∇·





Hg∇H

HTV(u)
+α1

∇(2ug−ur−ub)

3
√

|∂xu|2s +|∂yu|2s
+α2

∇(ur+ug+ub)

3
√

|∂xu|2v+|∂yu|2v





+
∂xH∂xHg

HTV(u)
+

∂yH∂yHg

HTV(u)
+λ(K∗

⋆K⋆ug−K∗
⋆zg)=0,

−∇·





Hb∇H

HTV(u)
+α1

∇(2ub−ur−ub)

3
√

|∂xu|2s +|∂yu|2s
+α2

∇(ur+ug+ub)

3
√

|∂xu|2v+|∂yu|2v





+
∂xH∂xHn

HTV(u)
+

∂yH∂yHb

HTV(u)
+λ(K∗

⋆K⋆ub−K∗
⋆zb)=0,

where K∗ is the conjugate transpose of K, and

Hr=β1β2
ub−ug√
3||Cu||2

, Hg=β1β2
ur−ub√
3||Cu||2

, Hb=β1β2
ug−ur√
3||Cu||2

. (3.15)

The detailed calculations are shown in Appendix A. We see from the above equations
that HSV-TV takes the form of coupling channel-wise diffusion coefficients in the hue
component, saturation component, and value component. Meanwhile, HSV-TV takes
the form of three diffusion equations corresponding to three color channels, and each
diffusion equation still involves three color channel variables. Because of deep coupling
among three color channels in diffusion coefficients and equations, we expect that the
color image restoration may be enhanced. In Section 5, numerical examples are given to
demonstrate the effectiveness of the proposed model.

4 Numerical algorithm for HSV-TV model

4.1 Numerical algorithm

In this section, we make use of an alternating iterative algorithm to solve the proposed
optimization problem (3.11). Let

J(u)=HSV-TV(u),

we then solve (3.11) according to the following scheme.
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Algorithm 1.

1: Initialization: Set u0=z.

2: For fixed uk
g,uk

b, update uk+1
r by solving

min
ur

{

J
(

ur,u
k
g,uk

b

)

+
λ

2

∫

Ω
(K⋆ur−zr)

2dxdy

}

. (4.1)

3: For fixed uk+1
r ,uk

b, update uk+1
g by solving

min
ug

{

J
(

uk+1
r ,ug,uk

b

)

+
λ

2

∫

Ω
(K⋆ug−zg)

2dxdy

}

. (4.2)

4: For fixed uk+1
r ,uk+1

g , update uk+1
b by solving

min
ub

{

J
(

uk+1
r ,uk+1

g ,ub

)

+
λ

2

∫

Ω
(K⋆ub−zb)

2dxdy

}

. (4.3)

5: Stop the iteration until ‖uk+1
r −uk

r‖/‖uk
r‖<ǫ for fixed ǫ.

The Euler-Lagrange equations of (4.1)-(4.3) are given as follows:

0∈∂J
(

ur,u
k
g,uk

b

)

+λK∗
⋆(K⋆ur−zr),

0∈∂J
(

uk+1
r ,ug,uk

b

)

+λK∗
⋆(K⋆ug−zg),

0∈∂J
(

uk+1
r ,uk+1

g ,ub

)

+λK∗
⋆(K⋆ub−zb),

where K∗ is the conjugate transpose of K. Numerically, we consider the following implicit
scheme of the evolution equations:

0∈ ur−uk
r

τ
+∂J

(

ur,u
k
g,uk

b

)

+λK∗
⋆(K⋆ur−zr), (4.4)

0∈
ug−uk

g

τ
+∂J

(

uk+1
r ,ug,uk

b

)

+λK∗
⋆(K⋆ug−zg), (4.5)

0∈ ub−uk
b

τ
+∂J

(

uk+1
r ,uk+1

g ,ub

)

+λK∗
⋆(K⋆ub−zb). (4.6)

Let

Jr(ur)= J
(

ur,u
k
g,uk

b

)

, h(ur)=
1

2

(

(K⋆ur)−zr

)2
,

Jg(ug)= J
(

uk+1
r ,ug,uk

b

)

, h(ug)=
1

2

(

(K⋆ug)−zg

)2
,

Jb(ub)= J
(

uk+1
r ,uk+1

g ,ub

)

, h(ub)=
1

2

(

(K⋆ub)−zb

)2
.
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We then use the following evolution equations to solve (4.4)-(4.6):

ut+1
r =ut

r−τt

(

ut
r−uk

r +τ
(

∂Jr

(

ut
r

)

+λK∗
⋆

(

K⋆ut
r−zr

))

)

,

ut+1
g =ut

g−τt

(

ut
g−uk

g+τ
(

∂Jg

(

ut
g

)

+λK∗
⋆

(

K⋆ut
g−zg

))

)

,

ut+1
b =ut

b−τt

(

ut
b−uk

b+τ
(

∂Jb

(

ut
b

)

+λK∗
⋆

(

K⋆ut
b−zb

))

)

.

Meanwhile, we remark that solving Eqs. (4.4)-(4.6) are equivalent to deal with the follow-
ing minimizing problems:

uk+1
r =argmin

ur

{

Fr

(

ur,u
k
r

)

=
∫

Ω

u2
r

2
dxdy−

∫

Ω
uk

r urdxdy

+τ

(

Jr(ur)+λ
∫

Ω
h(ur)dxdy

)}

, (4.7)

uk+1
g =argmin

ug

{

Fr

(

ug,uk
g

)

=
∫

Ω

u2
g

2
dxdy−

∫

Ω
uk

gugdxdy

+τ

(

Jr(ug)+λ
∫

Ω
h(ug)dxdy

)}

, (4.8)

uk+1
b =argmin

ub

{

Fr

(

ub,uk
b

)

=
∫

Ω

u2
b

2
dxdy−

∫

Ω
uk

bubdxdy

+τ

(

Jr(ub)+λ
∫

Ω
h(ub)dxdy

)}

. (4.9)

4.2 Convergence analysis

In this section, we study the convergence of the proposed algorithm. We first give two
propositions about the energy functionals Jr, Jg and Jb.

Proposition 4.1. There exists uk+1
r ,uk+1

g ,uk+1
b ∈BV(Ω) satisfying (4.7)-(4.9). Moreover, we

have

Jr

(

uk
r

)

≤ Jr

(

u0
r

)

+λ
∫

Ω
h
(

u0
r

)

dxdy, (4.10)

Jr

(

uk
g

)

≤ Jg

(

u0
g

)

+λ
∫

Ω
h
(

u0
g

)

dxdy, (4.11)

Jr

(

uk
b

)

≤ Jb

(

u0
b

)

+λ
∫

Ω
h
(

u0
b

)

dxdy. (4.12)

Proof. We set

hk(ur)=τλh(ur)+
u2

r

2
−uk

r ur.
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Then we have

Fr

(

ur,u
k
r

)

=τ Jr(ur)+
∫

Ω
hkdxdy.

By using similar arguments as in the proof of Theorem 3.1, we can easily derive the
existence of uk+1

r ,uk+1
g , and uk+1

b . We then prove (4.10). By using formula (4.7), we have

Fr

(

uk+1
r ,uk

r

)

≤Fr

(

uk
r ,uk

r

)

.

It reads

τ

(

Jr

(

uk+1
r

)

− Jr

(

uk
r

)

+λ
∫

Ω

(

h
(

uk+1
r

)

−h
(

uk
r

))

dxdy

)

+
1

2

∫

Ω

(

uk+1
r −uk

r

)2
dxdy≤0.

Therefore, we have

Jr

(

uk+1
r

)

− Jr

(

uk
r

)

+λ
∫

Ω

(

h
(

uk+1
r

)

−h
(

uk
r

))

dxdy≤0.

We can get the following inequalities by using similar arguments:

Jr

(

uk
r

)

− Jr

(

uk−1
r

)

+λ
∫

Ω

(

h
(

uk
r

)

−h
(

uk−1
r

))

dxdy≤0,

Jr

(

uk−1
r

)

− Jr

(

uk−2
r

)

+λ
∫

Ω

(

h
(

uk−1
r

)

−h
(

uk−2
r

))

dxdy≤0,

··· ··· ··· ··· ······ ··· ··· ··· ······ ··· ··· ······ ··· ··· ··· ···

Jr

(

u1
r

)

− Jr

(

u0
r

)

+λ
∫

Ω

(

h
(

u1
r

)

−h
(

u0
r

))

dxdy≤0.

By taking the summation of both sides, we get

Jr

(

uk
r

)

− Jr

(

u0
r

)

+λ
∫

Ω

(

h
(

uk
r

)

−h
(

u0
r

))

dxdy≤0.

Notice that h(ur)≥0 always holds, we have

Jr

(

uk
r

)

− Jr

(

u0
r

)

−λ
∫

Ω
h
(

u0
r

)

dxdy≤0, i.e. Jr

(

uk
r

)

≤ Jr

(

u0
r

)

+λ
∫

Ω
h
(

u0
r

)

dxdy.

We can derive the other two inequalities (4.11) and (4.12) by using similar arguments.

Proposition 4.2. Assume that uk
r ,uk

g,uk
b∈BV(Ω) satisfy

uk
r

L1(Ω)−→ ũr, uk
g

L1(Ω)−→ ũg, uk
b

L1(Ω)−→ ũb,

then

liminf Jr

(

uk
r

)

≥ Jr(ũr), liminf Jr

(

u
g
r

)

≥ Jr(ũg), liminf Jr

(

ub
r

)

≥ Jr(ũb).
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Proof. Recall that Jr(ur)= J(ur ,uk0
g ,uk0

b ), where the index k0 is fixed. As

uk
r

L1(Ω)−→ ũr, uk0
g

L1(Ω)−→ uk0
g , uk0

b

L1(Ω)−→ uk0

b

naturally hold, we can easily deduce the following result by applying Proposition 3.2:

Jr(ũr)≤ liminf Jr

(

uk
r

)

.

We can derive the other two inequalities by using similar arguments.

Now we show the following convergence result of the proposed implicit scheme.

Theorem 4.1. There exists (ũr,ũg,ũb) in BV(Ω) satisfying that uk
r → ũr,u

k
g → ũg,uk

b → ũb (up

to subsequences) for the BV(Ω) weak* topology, where (uk
r ,uk

g,uk
b) are defined as in (4.4)-(4.6),

and (ũr,ũg,ũb) are the solutions of

0∈∂Jr(ũr)+λh
′
(ũr), 0∈∂Jg(ũg)+λh

′
(ũg), 0∈∂Jb(ũb)+λh

′
(ũb).

Proof. As in the proof of Proposition 4.1, we have the similar inequalities
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By taking summation of both sides where k<K, we have
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It implies that

uk+1
r −uk

r

L2(Ω)−→ 0. (4.13)

By using the estimation (4.10), and noting the boundedness of ur, we know that there
exists ũr in BV(Ω) such that up to a subsequence,

uk
r → ũr for BV(Ω) weak* topology.
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Moreover,

uk
r

L1(Ω)−→ ũr. (4.14)

By using formula (4.7), we have

0∈ uk+1
r −uk
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τ
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,

which means for vr ∈L2(Ω),
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r −uk
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.

Therefore, by using (4.14), and combining with Lebesgue’s dominated convergence the-
orem, we derive that up to a subsequence

uk
r

L2(Ω)−→ ũr. (4.15)

By using Proposition 4.2 and the convergence results (4.13) and (4.15), we derive

liminf Jr(u
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)
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→
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.

Let k→+∞, we have

Jr(vr)≥ Jr(ũr)+
〈

vr−ũr,−λh
′
(ũr)

〉

L2(Ω)
.

It implies

0∈∂Jr(ũr)+λh
′
(ũr).

We can derive the other two results by using similar arguments.

5 Numerical experiments

To demonstrate the effectiveness of the proposed restoration model, we present the nu-
merical results in this section. We compare the proposed HSV-TV model with C-TV [4],
V-TV [30], GV-TV [28], and SV-TV [21] on several testing methods. The quality of the
recovered images is measured by

• Peak signal-to-noise ratio (PSNR), an index to measure the ratio between the maxi-
mum possible power of a signal and the power of corrupting noise that affects the
fidelity of its representation.

• Structural Similarity (SSIM) [35], an index to measure the similarity of two images,
which has been proven to be consistent with human eye perception.
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• S-CIELAB color metric [40], which includes a spatial processing step and is useful
and efficient for measuring color reproduction errors of digital images.

In the following experiments, we report the best result in terms of the best PSNR
value corresponding to the optimal regularization parameter in some ranges. In the pro-
posed HSV-TV model, parameters α1 and α2 control STV and VTV respectively. There-
fore, higher α1 value leads to more saturation smoothing and higher α2 value results in
more value smoothing. For the proposed HSV-TV model, we set α1 = 0.35,α2 = 0.15 in
all the experiments, and the range of λ is set as [0.001,0.004]. For SV-TV model, we set
α= 0.15 and β= 0.1 in all the experiments, and the range of λ is set as [0.002,0.008]. For
C-TV model, we set β=0.1 in all the experiments, and the range of λ is set as [0.001,0.003].
For V-TV model and GV-TV model, the range of λ is also set as [0.001,0.003]. For the stop-
ping criteria, we break the iterations when the relative error of the successive iterates is
less than or equal to 1×10−6 for all the testing methods. The proposed main algorithm
is implemented in MATLAB. All the computations are performed on a PC with an AMD
Ryzen 7 5800H 3.20GHz CPU.

We make use of 80 images taken from the Berkeley Segmentation Database5 [24] to
test the proposed HSV-TV model for color image restoration with respect to different
levels of degradations. Several ground-truth images are shown in Fig. 3.

Figure 3: Ground truth images.

5.1 Image denoising I: Low noise level

In the first experiment, we artificially add Gaussian noise of standard deviation 0.1 to
degrade the ground-truth color images in each channel, and compute the PSNR, SSIM
values and S-CIELAB error pixel numbers for each restored result by comparing it with
the ground-truth image. By choosing the optimal value of the regularization parameter
in terms of PSNR value for each testing method, we obtained the optimal restored result
and the corresponding values of the measures.

As examples, we show several restored results in Figs. 4-7. We can clearly see from the
output images that HSV-TV model and SV-TV model are more effective in handling color
artifacts, see especially the color artifacts on the surface of the rock (Figs. 4, 5 and 7) and
the grass (Fig. 6). Meanwhile, the proposed HSV-TV model is more effective in satura-
tion retention compared with SV-TV model, see the high saturation parts of the restored
results such as the red jacket (Figs. 4 and 5), the fur of the lion (Fig. 6) and the cat (Fig. 7).
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Ground truth
and

Noise image

C-TV

V-TV

GV-TV

SV-TV

HSV-TV

Figure 4: From left to right: The restored results of noisy level σ=0.1, the corresponding zooming parts, and
the spatial distribution of S-CIELAB error pixel (exceeding 5 units).

Furthermore, we display the spatial distributions of S-CIELAB color errors in the third
column of each figure. The pixel with the error of 5 units or higher is marked by green.
We find from the resulting spatial distributions that the color error between the restored
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Ground truth
and

Noise image

C-TV

V-TV

GV-TV

SV-TV

HSV-TV

Figure 5: From left to right: The restored results of noisy level σ=0.1, the corresponding zooming parts, and
the spatial distribution of S-CIELAB error pixel (exceeding 5 units).

result and the ground-truth image by using the proposed HSV-TV model is the smallest
among all the testing methods, which implies the effectiveness in color artifacts removing
and saturation preserving.
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Ground truth
and

Noise image

C-TV

V-TV

GV-TV

SV-TV

HSV-TV

Figure 6: From left to right: The restored results of noisy level σ=0.1, the corresponding zooming parts, and
the spatial distribution of S-CIELAB error pixel (exceeding 5 units).

In Table 1, we present the measure values of the restored results in Figs. 4-7. The
best values are marked in black. Meanwhile, we display the distributions of PSNR, SSIM
values and the S-CIELAB color error values (pixel numbers exceeding 5 and 10 units)
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Ground truth
and

Noise image

C-TV

V-TV

GV-TV

SV-TV

HSV-TV

Figure 7: From left to right: The restored results of noisy level σ=0.1, the corresponding zooming parts, and
the spatial distribution of S-CIELAB error pixel (exceeding 5 units).

with respect to all 80 testing images in Fig. 8. The average measure values of different
testing methods are shown in the corresponding labels. We see from Table 1 and Fig. 8
that the proposed model has the best results among all the testing methods for almost all
the testing images in terms of all the testing measures.
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Table 1: Measure values of the restored results (σ=0.1) by using different methods.

Fig. Measure Noisy image C-TV V-TV GV-TV SV-TV HSV-TV

4

PSNR 20.3917 27.688 27.1395 27.5673 28.7029 28.89

SSIM 0.6313 0.8908 0.8754 0.8868 0.9174 0.9185

S-CIELAB Errors >5 46770 6378 7925 6937 8872 4701

S-CIELAB Errors >10 12582 411 566 424 432 310

5

PSNR 20.3733 27.5302 26.9868 27.3925 28.4387 28.6967

SSIM 0.6033 0.8609 0.8472 0.8577 0.891 0.896

S-CIELAB Errors >5 66907 9451 9211 10145 17664 7238

S-CIELAB Errors >10 17580 372 394 409 1659 419

6

PSNR 19.9927 31.42 30.644 31.2445 31.5805 32.1896

SSIM 0.4039 0.9055 0.8822 0.8976 0.9121 0.9191

S-CIELAB Errors >5 39844 1548 2115 1713 4204 1148

S-CIELAB Errors >10 1392 59 74 63 13 2

7

PSNR 20.496 27.518 27.0498 27.4864 28.5372 28.879

SSIM 0.5652 0.8836 0.8627 0.8759 0.8991 0.9082

S-CIELAB Errors >5 48191 6482 5311 6767 10651 3694

S-CIELAB Errors >10 6152 173 158 193 228 66

Figure 8: Distributions of measure values with respect to 80 testing images (σ=0.1).

5.2 Image denoising II: High noise level

In this experiment, we artificially add Gaussian noise of standard deviation 0.2 to de-
grade the ground-truth color images in each channel, and compute the PSNR, SSIM val-
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ues and S-CIELAB error pixel numbers for each reconstruction by comparing it with the
ground-truth image. By choosing the optimal value of the regularization parameter in
terms of PSNR value for each testing method, we obtained the optimal restored result
and the corresponding values of the measures.

As examples, we show several restored results in Figs. 9-12. We can clearly see from
the output images that HSV-TV model and SV-TV model are more effective in handling
color artifacts, see especially the color artifacts on the surface of the rock (Figs. 9 and 10),
the ground (Fig. 11) and the leaves in the background (Fig. 12). Meanwhile, the proposed
HSV-TV model is more effective in saturation retention compared with SV-TV model, see
especially the high saturation parts of the restored results such as the red jacket and the
boat (Fig. 9), the red coral (Fig. 10) and the yellow flower (Fig. 11).

Figure 9: Left: the ground truth image. Right (first row): the zoom-in parts of the noise image with noise level
σ= 0.2, the restored results by using C-TV and V-TV respectively. Right (second row): the zoom-in parts of
the restored results by using GV-TV, SV-TV and HSV-TV respectively.

Figure 10: Left: the ground truth image. Right (first row): the zoom-in parts of the noise image with noise
level σ=0.2, the restored results by using C-TV and V-TV respectively. Right (second row): the zoom-in parts
of the restored results by using GV-TV, SV-TV and HSV-TV respectively.
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Figure 11: Left: the ground truth image. Right (first row): the zoom-in parts of the noise image with noise
level σ=0.2, the restored results by using C-TV and V-TV respectively. Right (second row): the zoom-in parts
of the restored results by using GV-TV, SV-TV and HSV-TV respectively.

Figure 12: Left: the ground truth image. Right (first row): the zoom-in parts of the noise image with noise
level σ=0.2, the restored results by using C-TV and V-TV respectively. Right (second row): the zoom-in parts
of the restored results by using GV-TV, SV-TV and HSV-TV respectively.

In Table 2, we present the measure values of the restored results in Figs. 9-12. The
best values are marked in black. Meanwhile, we display the distributions of PSNR, SSIM
values and the S-CIELAB color error values (pixel numbers exceeding 5, 10 and 15 units)
with respect to all 80 testing images in Fig. 13. The average measure values of different
testing methods are shown in the corresponding labels. We see from Table 2 and Fig. 13
that the proposed model has the best results among all the testing methods for almost all
the testing images in terms of all the testing measures.

5.3 Image deblurring: Gaussian blur

In this experiment, we artificially convolute the ground truth image with a Gaussian
kernel of standard deviation 1, and we then add Gaussian noise of standard deviation 0.1
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Table 2: Measure values of the restored results (σ=0.2) by using different methods.

Fig. Measure Noisy image C-TV V-TV GV-TV SV-TV HSV-TV

9

PSNR 14.941 24.4299 23.9359 24.2732 24.8753 25.1743

SSIM 0.3199 0.7711 0.7437 0.7616 0.803 0.8161

S-CIELAB Errors >5 148663 70478 74725 72627 81499 59091

S-CIELAB Errors >10 100730 11551 13681 12175 14755 7642

S-CIELAB Errors >15 58632 2165 2654 2209 3676 1411

10

PSNR 15.3771 23.3935 23.2483 23.441 23.8754 24.2953

SSIM 0.2813 0.6969 0.6768 0.6917 0.7385 0.7544

S-CIELAB Errors >5 152865 32631 34284 32088 49718 20394

S-CIELAB Errors >10 124652 3009 3337 2627 6314 645

S-CIELAB Errors >15 68396 183 240 150 602 42

11

PSNR 14.4099 23.294 22.8965 23.1388 24.2423 24.2935

SSIM 0.3195 0.7393 0.7139 0.7262 0.7885 0.7948

S-CIELAB Errors >5 138949 38442 42704 40301 37132 31399

S-CIELAB Errors >10 67548 2658 3262 2897 2589 1661

S-CIELAB Errors >15 22807 216 300 246 147 121

12

PSNR 14.8559 23.5464 23.0042 23.3671 24.2858 24.6555

SSIM 0.3312 0.7949 0.7585 0.7671 0.8186 0.8378

S-CIELAB Errors >5 138786 60091 66194 63709 67147 42190

S-CIELAB Errors >10 103448 8626 11267 9751 8031 4509

S-CIELAB Errors >15 68790 1427 1855 1689 1308 754

Figure 13: Distributions of measure values with respect to 80 testing images (σ=0.2).
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to degrade the ground-truth color images in each channel, and compute the PSNR, SSIM
values and S-CIELAB error pixel numbers for each restored result by comparing it with
the ground-truth. By choosing the optimal value of the regularization parameter in terms
of PSNR value for each testing method, we obtained the optimal restored result and the
corresponding values of the measures.

As examples, we show several restored results (zoom-in parts of the restored results)
in Fig. 14. Again we can clearly see from the output images that HSV-TV model and
SV-TV model are more effective in handling color artifacts and detail recovery, see es-
pecially the texture structure of the rock and grass (Figs. 14(b)-14(d)). Meanwhile, the
proposed HSV-TV model is more effective in saturation retention compared with SV-TV
model, see especially the high saturation parts of the restored results such as the red
jacket (Figs. 14(a) and 14(b)), the fur of the lion (Fig. 14(c)) and the cat (Fig. 14(d)).

In Table 3, we present the measure values of the restored results in Fig. 14. The best
values are marked in black. Meanwhile, we also display the distributions of PSNR, SSIM
values and the S-CIELAB color error values (pixel numbers exceeding 5 and 10 units)
with respect to all 80 testing images in Fig. 15. The average measure values of different
testing methods are shown in the corresponding labels. Again we see from Table 3 and
Fig. 15 that the proposed model has the best results among all the testing methods for
almost all the testing images in terms of all the testing measures.

5.4 Image deblurring: Motion blur

In the last experiment, we artificially convolute the ground truth image with a motion
kernel of motion length 3 (Fig. 16(a)) or 5 (Fig. 16(b)) and motion angle 45. We then
add Gaussian noise of standard deviation 0.1 and 0.2 to degrade the ground-truth color
images in each channel, and compute the PSNR, SSIM values and S-CIELAB error pixel
numbers for each restored result by comparing it with the ground-truth. By choosing the
optimal value of the regularization parameter in terms of PSNR value for each testing
method, we obtained the optimal restored result and the corresponding values of the
measures.

As examples, we show several restored results (zoom-in parts of the restored results)
in Fig. 16. Again we can clearly see from the output images that HSV-TV model and SV-
TV model are more effective in handling color artifacts, see especially the surface of the
rock and the texture structure of the sea urchin. Meanwhile, the proposed HSV-TV model
is more effective in saturation retention compared with SV-TV model, see especially the
high saturation parts of the restored results such as the red jacket, the red coral and the
purple sea urchin.

In Table 4, we present the measure values of the restored results in Fig. 16. The best
values are marked in black. We see from Table 4 that the proposed model has the best
results among all the testing methods for all the testing images in terms of all the testing
measures.
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Degraded
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V-TV

GV-TV
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HSV-TV

Ground
truth

(a) (b) (c) (d)

Figure 14: The corresponding zoom-in parts of the restored results of Gaussian blur level σ=1 and noise level
σ=0.1.
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Table 3: Measure values of the restored results (Gaussian blur) by using different methods.

Measure Methods Fig. 14a Fig. 14b Fig. 14c Fig. 14d

PSNR

C-TV 25.6307 25.62 30.4293 25.4641
V-TV 25.4927 25.4976 29.8058 25.381

GV-TV 25.2857 25.1973 30.0394 25.0932
SV-TV 25.8325 26.0975 30.2892 25.7529

HSV-TV 26.3196 26.2082 30.7693 26.4486
Noisy image 19.6457 19.6919 19.8119 19.8131

SSIM

C-TV 0.8442 0.799 0.8878 0.8525
V-TV 0.8365 0.7927 0.869 0.8378

GV-TV 0.8313 0.7865 0.8837 0.831
SV-TV 0.8553 0.8244 0.8882 0.8671

HSV-TV 0.8625 0.8252 0.8949 0.8733
Noisy image 0.5576 0.5164 0.3733 0.5158

S-CIELAB Errors >5

C-TV 13188 19026 3817 17422
V-TV 13264 18212 5193 16065

GV-TV 16377 20199 5506 20430
SV-TV 13474 16029 4030 10558

HSV-TV 9038 13717 1999 10765
Noisy image 41842 53693 34474 39805

S-CIELAB Errors >10

C-TV 2174 2161 196 2056
V-TV 2151 1933 264 1848

GV-TV 2246 2308 238 2519
SV-TV 1440 1392 62 799

HSV-TV 915 1071 61 892
Noisy image 9288 11193 1535 4831

Figure 15: Distributions of measure values with respect to 80 testing images of Gaussian deblurring experiment.
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Degraded
image

C-TV

V-TV

GV-TV

SV-TV

HSV-TV

Ground
truth

Figure 16: The corresponding zoom-in parts of the restored results by using different methods. First column
(image a): the restored results of Motion blur with len= 3 and noise level σ= 0.1; Second column (image a):
the restored results of Motion blur with len= 3 and noise level σ= 0.2; Third column (image b): the restored
results of Motion blur with len= 5 and noise level σ= 0.1; Fourth column (image b): the restored results of
Motion blur with len=5 and noise level σ=0.2.
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Table 4: Measure values of the restored results (Motion blur) by using different methods.

Measure Methods Fig. 16(a) Fig. 16(b)

PSNR

C-TV 26.2449 24.1587 24.8261 22.6891

V-TV 25.9759 23.7442 24.5871 22.5672

GV-TV 25.9171 23.9069 24.2353 22.3864

SV-TV 26.4253 24.5276 25.1367 22.9548

HSV-TV 27.0619 24.723 25.3245 23.0126

Noisy image 19.8809 14.7722 19.585 15.0001

SSIM

C-TV 0.8591 0.8007 0.7668 0.6524

V-TV 0.8459 0.7728 0.7498 0.632

GV-TV 0.8472 0.7902 0.7346 0.6242

SV-TV 0.8673 0.8243 0.7866 0.6814

HSV-TV 0.8789 0.8276 0.7917 0.683

Noisy image 0.5795 0.3078 0.4315 0.2103

S-CIELAB Errors >5

C-TV 10960 54118 21470 39113

V-TV 12699 61112 27394 42844

GV-TV 12995 59024 34732 43220

SV-TV 14787 50563 26135 49943

HSV-TV 7487 42082 15550 36496

Noisy image 41492 135420 53878 148755

S-CIELAB Errors >10

C-TV 1275 4872 2879 5403

V-TV 1665 6772 3604 6164

GV-TV 1496 6133 5377 6411

SV-TV 873 3959 1725 5410

HSV-TV 711 3072 1444 4327

Noisy image 9559 63387 4393 116699

Meanwhile, we make use of the examples in Fig. 16 to show the energy curves with
respect to iterations in Fig. 17. We see from the curves that the proposed algorithm con-
verges in about 150 iterations for low noise level (σ = 0.1), and converges in about 250
iterations for high noise level (σ=0.2), which demonstrates the effectiveness of the pro-
posed algorithm.

6 Concluding remarks

As a summary, we have proposed a novel hue-saturation-value total variation regular-
ization and a corresponding color image restoration model. We give a detailed deriva-
tion about the hue, saturation, and value components of a color image in the quaternion
framework based on the geometric meaning. Meanwhile, we study the dual formula-
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Figure 17: The energy curves with respect to iterations.

tion, lower semi-continuity, approximation and compactness properties of the proposed
HSV-TV regularization. We then develop a color image restoration model and study
the existence of the minimizer of the proposed minimization problem. Numerically we
give an efficient algorithm to solve the proposed minimization problem, and we show
the convergence of the proposed algorithm. Numerical results have demonstrated that
the performance of the proposed HSV-TV regularization and the proposed color image
restoration model is better than that of other testing methods.

Appendix A

We have defined Hr,Hg, and Hb in (3.15), we then give the detailed calculations as fol-
lows:
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Hg
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=
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∂u
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1
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where
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Therefore, we have
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,

which gives that

Hr=β1β2
ub−ug√
3‖Cu‖2

, Hg=β1β2
ur−ub√
3‖Cu‖2

, Hb=β1β2
ug−ur√
3‖Cu‖2

.
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