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Abstract. One of Korn’s scaled inequalities for shells asserts that the H1-norm
of a displacement field of a shell with thickness 2ε clamped on a portion of
its lateral boundary, once scaled to a domain independent of ε, is bounded
above by the L2-norm of the corresponding scaled infinitesimal strain tensor
field multiplied by a constant of order ε−1. We give a constructive proof to this
inequality, and to other two inequalities of this type, which is thus different
from the original proof of Ciarlet et al. [Arch. Rational Mech. Anal. 136 (1996),
163–190].
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1 Introduction

The notation used, but not defined, in this introduction is defined in Section 2.
Given a domain ω in R2 and a non-empty relatively open subset γ0 of the

boundary of ω, one of Korn’s scaled inequality for shells asserts that there exists
two constants ε0 = ε0(ω,θ)> 0 and C0 = C0(ω,θ,γ0) such that for all 0 < ε ≤ ε0
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and for all vector fields u = (ui) ∈ H1(Ω1;R3),Ω1 := ω×(−1,1), that vanish on
γ0×(−1,1),

‖u‖H1(Ω1)≤
C0

ε
‖e(ε,u)‖L2(Ω1), (1.1)

where e(ε,u) = (eij(ε,u)) ∈ L2(Ω1;S3) is the matrix field defined at each point

(y,x3)∈Ω1,y=(yα)∈ω by

eαβ(ε,u) :=
1

2

(

∂uα

∂yβ
+

∂uβ

∂yα

)

−Γk
αβ(ε)uk ,

eα3(ε,u)= e3α(ε,u) :=
1

2

(

∂u3

∂yα
+

1

ε

∂uα

∂x3

)

−Γ
β
α3(ε)uβ ,

e33(ε,u) :=
1

ε

∂u3

∂x3
,

(1.2)

Γk
αj(ε)∈C0(Ω1) are the unique functions such that

∂

∂yα

(

g j(ε)
)

=Γk
αj(ε)gk(ε),

where, for all (y,x3)∈Ω1,

gα(ε)(y,x3) :=aα(y)+εx3∂αa3(y),

g3(ε)(y,x3) :=a3(y)

with

aα :=
∂θ

∂yα
∈C2(ω,R3), a3 :=

a1∧a2

|a1∧a2|
∈C2(ω;R3).

This result is essential in shell theory to obtain two-dimensional shell models
from the three-dimensional model of elasticity by means of convergence theo-
rems when the thickness 2ε of the shell go to zero, see, e.g. Ciarlet [8].

Inequality (1.1) has been proved by Ciarlet et al. [10, Theorem 4.1] (see also
Ciarlet [8, Theorem 5.3.1]) by a contradiction argument, which we briefly sketch
below. Assume that no constants ε0 and C0 exist such that inequality (1.1) holds
for all 0 < ε ≤ ε0 and for all vector fields u = (ui) ∈ H1(Ω1;R3) that vanish on
γ0×(−1,1). Then there exist sequences εm >0 and um=(um

i )∈H1(Ω1;R3),m∈N

such that
εm → 0 when m → +∞,

um=0 on γ0×(−1,1), ∀m∈N,

‖um‖H1(Ω)=1, ∀m∈N,

1

εm
e
(

εm,um
)

→ 0 in L2(Ω1;S3) when m → +∞.

(1.3)
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Since the space H1(Ω1;R3) is reflexive and the trace operator from this space into
L2(γ0×(−1,1);R3) is linear and continuous, there exists a subsequence un,n∈N,
of the sequence um, m∈N, and a vector field u=(ui)∈H1(Ω1;R3) such that u=0
on γ0×(−1,1) and, when n→+∞,

un
⇀ u in H1(Ω;R3),

un → u in L2(Ω;R3).

Noting that

∂

∂x3

(

1

εn
e
(

εn,un
)

)

⇀ 0 in H−1(Ω;S3) when n → ∞,

and that the functions

ραβ(u
n) :=

(

∂2un

∂yα∂yβ
−Γσ

αβ(0)
∂un

∂yσ

)

·g3(0)∈H−1(Ω1)

satisfy the inequality
∥

∥

∥

∥

ραβ(u
n)+

1

εn

∂

∂x3

(

eαβ

(

εn,un
))

∥

∥

∥

∥

H−1(Ω)

≤C0

(

3

∑
i=1

∥

∥ei3

(

εn,un
)
∥

∥

L2(Ω)
+εn

2

∑
α=1

∥

∥un
α

∥

∥

L2(Ω)
+εn

∥

∥un
3

∥

∥

H1(Ω)

)

for some constant C0 independent of n, one infers from (1.3) that

ραβ(u
n) → 0 in H−1(Ω) when n → +∞,

that the field u= (ui)∈ H1(Ω1;R3) does not depend on the variable x3, that the
vector field

u :=(ui)∈H1(ω;R3), ui(y) :=
1

2

∫ 1

−1
ui(y,x3)dx3 for a.e. y∈ω

satisfies uα ∈H1(ω),u3∈H2(ω) and uα=u3=∂νu3=0 on γ0, and finally that the
functions

γαβ(u) :=
1

2
(∂αu·∂βθ+∂βu·∂αθ),

ραβ(u) :=

(

∂2u

∂yα∂yβ
−Γσ

αβ

∂u

∂yσ

)

·a3,
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where Γσ
αβ ∈ C1(ω) := aσ ·∂aα/∂yβ and aσ designate the dual basis of aα, both

vanish in ω.
That γαβ(u)=ραβ(u)=0 in ω mean that both the infinitesimal change of metric

tensor and the infinitesimal change of curvature tensor associated with the dis-
placement field u of the surface S=θ(ω) vanish, so that u is an infinitesimal rigid
displacement field of S. Since in addition u vanish on γ0, a well-known infinites-
imal rigid displacement lemma for surfaces in R3 (see, e.g. Ciarlet [8, 9]) shows
that u=0 in ω, on the one hand. On the other hand, since u is independent of x3,

√
2‖u‖H1(ω)=‖u‖H1(Ω)= lim

n→∞
‖un‖H1(Ω)=1

by (1.3). This is a absurd, so there exist two constants ε0 > 0 and C0 such that
inequality (1.1) holds for all 0<ε≤ε0 and for all vector fields u=(ui)∈H1(Ω1;R3)
that vanish on γ0×(−1,1).

The objective of this paper is to give a new, constructive proof to inequality
(1.1). Note that our proof yields a slightly stronger inequality than (1.1) (cf. Theo-
rem 4.1) and two other inequalities of similar type, and that it can be generalized
to domains ω⊂Rd in higher dimensions d≥2.

The paper is organised as follows. Section 2 states the notation and prelimi-
nary lemmas used in the paper. Section 3 establishes three inequalities of Korn’s
type in curvilinear coordinates on a domain dependent on the thickness 2ε> 0
of the shell, with constants in their right-hand sides depending explicitly on ε,
cf. Theorem 3.1. Section 4 establishes three inequalities of Korn’s type in curvilin-
ear coordinates on a domain independent of the thickness of the shell, cf. Theo-
rem 4.1. Such inequalities are useful in elasticity theory for the asymptotic analy-
sis when ε→0 of the three-dimensional model of elastic shells.

2 Preliminaries

Greek indices and exponents vary in the set {1,2}, Latin indices and exponents
vary in the set {1,2,3} unless stated otherwise, and the summation convention
with respect to repeated indices and exponents are used in conjunction with these
rules. Boldface letters denote vectors, matrices, vector fields and matrix fields to
distinguish them from scalars and (scalar-valued) functions.

The Euclidean scalar product in R3 and the Frobenius scalar product in Rk×n,
k,n≥1, are both denoted by · (a dot). The vector product in R3 is denoted by ∧.
The Euclidean norm of vectors, the Frobenius norm of matrices, Lebesgue’s mea-
sure and Haussdorff’s measure are all denoted by |·|. In particular, if Ω is a do-



C. Mardare and T. H. Nguyen / Commun. Math. Anal. Appl., x (2024), pp. 1-25 5

main in R
3 and Γ0 is a non-empty relatively open subset of its boundary Γ :=∂Ω,

then

|Ω|=
∫

Ω
dx, |Γ0|=

∫

Γ0

dΓ.

Besides, Sn := {S ∈ Rn×n;ST = S} and An := {A ∈ Rn×n;AT =−A} respectively
denote the space of all real symmetric matrices of order n and the space of all real
anti-symmetric matrices of order n.

A subset Ω⊂Rd,d≥2, is called domain if it is open, connected, bounded, and
has a Lipschitz-continuous boundary in the sense of Adams [2], the set Ω being
then locally on only one side of Γ :=∂Ω.

The gradient of a vector field u= (ui) : Ω ⊂R
d →R

k is the matrix field ∇u :
Ω → Rk×d with the partial derivative ∂ui/∂xj at its i-th row and j-th column.
When k=d,

div(u) :=Tr(∇u),

∇su :=
1

2

(

∇u+(∇u)T
)

,

∇au :=
1

2

(

∇u−(∇u)T
)

,

where (∇u)T denote the transpose matrix of ∇u.
The notation L2(Ω;Rk×n) denotes the Lebesgue space of matrix fields from

a domain Ω⊂Rd into the space Rk×n of k×n real matrices with components in
the usual Lebesgue space L2(Ω). The notation H1(Ω;Rk) denotes the Sobolev
space of vector fields from a domain Ω⊂R

d into R
k with components in H1(Ω).

The norms in these spaces are denoted and defined by

‖A‖L2(Ω) :=‖|A|‖L2(Ω), ∀A=(aij)∈L2(Ω;Rk×n),

‖u‖H1(Ω) :=
(

‖|u|‖2
L2(Ω)+‖|∇u|‖2

L2(Ω)

)1/2
, ∀u=(ui)∈H1(Ω;Rk),

where

|A| :=
(

∑
i,j

|aij|2
)1/2

, |u| :=
(

∑
i

|ui|2
)1/2

, |∇u| :=
(

∑
i,j

∣

∣

∣

∣

∂ui

∂xj

∣

∣

∣

∣

2
)1/2

.

Given any domain Ω⊂Rd and any non-empty relatively open subset Γ0 ⊂Γ,
there exists a linear and continuous function (see, e.g. Adams [2])

u∈H1(Ω;Rk)→u|Γ0
∈L2

(

Γ0;Rk
)

,
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called trace operator, that extends the usual restriction operator u∈C1(Ω;Rk)→
u|Γ0

∈C0(Γ0;Rk) defined by (u|Γ0
)(x) :=u(x) for all x∈Γ0. The kernel of this trace

operator is denoted

H1
Γ0
(Ω;Rk) :=

{

u∈H1(Ω); u|Γ0
=0
}

.

Since Ω is a domain, the space D(Ω;Rk) of infinitely differentiable fields from Ω

into Rk with compact support contained in Ω is dense in H1
∂Ω

(Ω;Rk). The dual

of the space H1
0(Ω) :=H1

∂Ω
(Ω) is denoted H−1(Ω).

Convergences in normed vector spaces with respect to the corresponding
strong and weak topologies are denoted respectively by → and ⇀.

We conclude this section by stating five classical lemmas that will be used in
this paper.

Lemma 2.1 (Divergence Equation). Given any domain Ω⊂Rd,d≥1, there exists a con-

stant K(Ω) with the following property: For every f ∈L2(Ω) satisfying
∫

Ω
f (x)dx=0,

there exists a vector field u∈H1(Ω;Rd) such that

div(u)= f in L2(Ω),

u|∂Ω =0 in L2(∂Ω),

and

‖∇u‖L2(Ω)≤K(Ω)‖ f‖L2(Ω).

Proof. See, e.g. Acosta et al. [1], Amrouche and Girault [3], Bogovskii [4] or

Borchers and Sohr [5], Bourgain and Brezis [6], Ciarlet [9], Dacorogna [11], Da-

corogna [12], Galdi [16], Ladyzhenskaya [23], Temam [30].

Lemma 2.2 (Poincaré-Wirtinger). Given any domain Ω⊂Rd, there exists a constant

W(Ω) such that, for all u∈H1(Ω;Rd),
∥

∥

∥

∥

u− 1

|Ω|
∫

Ω
u(x)dx

∥

∥

∥

∥

L2(Ω)

≤W(Ω)‖∇u‖L2(Ω).

Proof. See, e.g. Adams [2].

Lemma 2.3 (Poincaré). Given any domain Ω⊂Rd,d≥2, and any non-empty relatively

open subset Γ0 of the boundary of Ω, there exists a constant P(Ω,Γ0) such that, for all

u∈H1
Γ0
(Ω;Rd),

‖u‖L2(Ω)≤P(Ω,Γ0)‖∇u‖L2(Ω).

Proof. See, e.g. Adams [2].
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Lemma 2.4 (Trace Operator). Given any domain Ω⊂Rd and any non-empty relatively

open subset Γ0 of the boundary of Ω, there exists a constant T(Ω,Γ0) such that, for all

u∈H1(Ω;Rd),
‖u|Γ0

‖L2(Γ0)
≤T(Ω,Γ0)‖u‖H1(Ω).

Proof. See, e.g., Adams [2].

Lemma 2.5. Let X ,Y∈Sd be two symmetric matrices with eigenvalues −∞<x1≤x2≤
···≤ xd<∞ and −∞<y1≤y2≤···≤yd<∞. Then

X :Y ≥ x1yd+x2yd−1+···+xdy1.

Proof. See Mardare and Nguyen [25].

3 Inequalities of Korn’s type in curvilinear

coordinates for shells

The objective of this section is to establish inequalities similar to Korn’s scaled
inequality (1.1) mentioned in the introduction, but for vector fields defined on
the “original” shell with thickness 2ε, instead of the “scaled one” in (1.1). Then
inequality (1.1) will be recovered from one of these inequalities in Section 4.

A shell is a three-dimensional domain Ω̂ε⊂R3 that lies within a given distance
ε>0 from a given (two-dimensional) surface S⊂R3. More specifically, this means
that

Ω̂ε :=
{

x̂=(x̂i)∈R
3; x̂=θ(y)+xε

3a3(y), y=(y1 ,y2)∈ω, xε
3∈ (−ε,ε)

}

,

where S= θ(ω) is a surface in R3 defined as the image of a domain ω ⊂R2 by
an embedding θ∈C3(ω;R3) and

a3 :=
a1∧a2

|a1∧a2|
∈C2(ω;R3), aα :=

∂θ

∂yα
∈C2(ω;R3).

Note that the assumption that θ be an embedding, hence an immersion, from
ω into R3 implies that the two vector fields aα are linearly independent at every
point of ω, which in turn implies that the vector field a3 : ω→R3 is well defined
and coincides with the positively-oriented unit normal vector field to the sur-
face S. Note the difference of notation between the variable xε

3 ∈ (−ε,ε) used in
this section and the variable x3∈ (−1,1) used in Sections 1 and 4, and the differ-
ence between the sets Ω̂ε above and Ωε below.
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Remark 3.1. We assumed for simplicity that the surface S is defined by a single

local chart θ and that the shell has constant thickness along S. The more general

case of shells with variable thickness and with a middle surface S defined by

several local charts can be considered as well by extending the arguments in this

paper as in, e.g. Busse [7] and Mardare [26].

As proven by Ciarlet [8], the assumption that θ is an embedding of class C3

from ω into R3 implies that there exists ε0 = ε0(ω,θ)> 0 such that the mapping
Θ : ω×R→R3, defined by

Θ
(

y,xε
3

)

:=θ(y)+xε
3a3(y)

for all y=(y1,y2)∈ω and all xε
3 ∈R, becomes an embedding when restricted to

the subset ω×[−ε0,ε0] of ω×R. Since a shell must satisfy the impenetrability of
matter axiom, we assume in all that follows that

0< ε≤ ε0.

It follows that the restriction of Θ to ω×[−ε,ε] is an embedding of class C2, so
that, for each ε, the set

Ω̂ε :=Θ(Ωε), where Ωε :=ω×(−ε,ε),

is a domain in R3, that is (the definition of a domain is given in Section 2), Ω̂ε is
bounded, connected, open, and its boundary is Lipschitz-continuous. This im-
plies that the following inequalities of Korn’s type hold in Ω̂ε.

Lemma 3.1 (Korn’s Inequalities in Cartesian Coordinates). Given any domain ω⊂
R2, any embedding θ∈C3(ω;R3), and any ε0 = ε0(ω,θ)> 0 such that the restriction

of Θ to ω×[−ε0,ε0] be an embedding, define for each 0< ε≤ ε0 the set

Ω̂ε :=
{

θ(y)+xε
3a3(y), y∈ω, xε

3 ∈ (−ε,ε)
}

.

(a) For each 0<ε≤ε0, there exists constants C1(ε),C2(ε) and C3(ε) such that, for all

û∈H1(Ω̂ε;R3),

‖û‖H1(Ω̂ε)≤C1(ε)‖∇̂s û‖L2(Ω̂ε)+C2(ε)‖û‖L2(Ω̂ε), (3.1)

inf
r̂∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)≤C3(ε)‖∇̂s û‖L2(Ω̂ε), (3.2)

where ∇̂sû denotes the symmetric matrix field with components (∂ûi/∂x̂j+∂ûj/∂x̂i)/2

at its i-th row and j-th column, x̂i denoting the Cartesian coordinates in the space R3

containing Ω̂ε, and

Rig(Ω̂ε) :=
{

r̂∈H1(Ω̂ε;R3); ∇̂s r̂=0 a.e. in Ω̂ε
}

.
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(b) Given in addition any non-empty relatively open subset γ0 of the boundary of ω,

for each 0< ε≤ ε0, there exists a constant C4(ε) such that

‖û‖H1(Ω̂ε)≤C4(ε)‖∇̂s û‖L2(Ω̂ε) (3.3)

for all û=(ûi)∈H1(Ω̂ε;R3) that vanish on the subset

Γ̂ε
0 :=

{

θ(y)+xε
3a3(y); y∈γ0, xε

3∈ (−ε,ε)
}

of the boundary of Ω̂ε.

Proof. See, e.g. Duvaut and Lions [13], Fichera [14], Friedrichs [15], Gobert [17],

Hlaváček [18], Hlaváček and Nečas [19], Horgan [20, 21], Kontradev and Oleinik

[22], Mardare and Nguyen [25], Miyoshi [27], Mosolov and Myasnikov [28], Nit-

sche [29], Temam [30].

Remark 3.2. A classical infinitesimal rigid displacement lemma for open sets (see,

e.g. Ciarlet [8]) shows that

Rig(Ω̂ε)= i(R3×A
3),

where i:R3×A
3→H1(Ω̂ε;R3) is the function defined for each (a,B)∈R

3×A
3 by

(i(a,B))(x̂):=a+Bx̂ for all x̂∈Ω̂ε, so that Rig(Ω̂ε) is a finite-dimensional subspace

of H1(Ω̂ε;R3).

Note that inequalities (3.1)-(3.3) of Lemma 3.1 estimate the partial derivatives
of the Cartesian components ûi of û with respect to the Cartesian coordinates x̂j

of a point x̂ ∈ Ω̂ε. This is not good enough in shell theory since the relevant
unknowns are defined in the curvilinear coordinates along the middle surface S
of the shell and across its thickness, and since the (covariant) components of the
symmetric part of the gradient are of different orders of magnitude with respect
to the thickness of the shell depending on whether they are tangential or normal
to S. So the objective of this section (which is achieved in Theorem 3.1 below) is
twofold: to show that inequalities of Korn’s type similar to those in Lemma 3.1
hold as well in curvilinear coordinates, and to estimate the order of magnitude of
the constants in these new inequalities with respect to ε. These are precisely the
inequalities used in shell theory to model the behavior of elastic shells.

The curvilinear coordinates used to describe the shell Ω̂ε are thus

(y,xε
3)∈Ωε :=ω×(−ε,ε),

where y=(y1,y2) are the curvilinear coordinates along the surface S=θ(ω) and
xε

3∈ (−ε,ε) is the abscissa along the normal line to S each point θ(y)∈S.
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Let (y,xε
3)∈Ωε be any point in Ωε. Since Θ :Ωε→R

3 is an embedding (remem-
ber that ε≤ ε0 as mentioned above), the three vectors

gα

(

y,xε
3

)

:=
∂Θ

∂yα

(

y,xε
3

)

=aα(y)+xε
3

∂a3

∂yα
(y),

g3

(

y,xε
3

)

:=
∂Θ

∂xε
3

(

y,xε
3

)

=a3(y)

form a basis of R
3, the three vectors gi(y,xε

3), i∈{1,2,3}, defined by the nine rela-
tions

gi
(

y,xε
3

)

·g j

(

y,xε
3

)

=δi
j,

where δi
j denotes Kronecker’s symbol, form its dual basis in R3, and the nine

matrices
gi
(

y,xε
3

)

⊗g j
(

y,xε
3

)

:= gi
(

y,xε
3

)[

g j
(

y,xε
3

)]T

form a basis in R3×3 (Note that gi(y,xε
3) is a column vector in R3. Consequently,

gi(y,xε
3)[g

j(y,xε
3)]

T is a 3×3 matrix). The basis formed by the vectors gi(y,xε
3) is

called the covariant basis, while the basis formed by the vectors gi(y,xε
3) is called

the contravariant basis, of R3 induced by Θ at the point (y,xε
3).

The (covariant) components of the vector field û∈H1(Ω̂ε;R3) associated with
these curvilinear coordinates are the functions

ui :=u·gi ∈H1(Ωε),

where
u := û◦Θ∈H1(Ωε;R3),

the (covariant) components of the matrix field ∇̂û are the functions

ui|j :=
∂u

∂xε
j

·gi =
∂ui

∂xε
j

−Γk
ijuk ∈L2(Ωε),

where xε
α :=yα and

Γk
ij :=

∂2
Θ

∂xε
i ∂xε

j

·gk ∈C0(Ωε),

and the (covariant) components of the matrix field ∇̂sû are the functions

eij(u) :=
1

2

(

∂u

∂xε
j

·gi+
∂u

∂xε
i

·g j

)
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=
1

2

(

∂ui

∂xε
j

+
∂uj

∂xε
i

)

−Γk
ijuk

=
1

2
(ui|j+uj|i)∈L2(Ωε).

Note that the above covariant components of the fields û,∇̂û and ∇̂sû are related
to their Cartesian components with respect to a Cartesian basis êi, i∈{1,2,3}, in
R3 by the following relations: At almost all points of Ωε,

uig
i =(ûi◦Θ)êi,

ui|jgi⊗g j=

(

∂ûi

∂x̂j
◦Θ

)

êi⊗ êj,

eij(u)g
i⊗g j=

1

2

(

∂ûi

∂x̂j
◦Θ+

∂ûj

∂x̂i
◦Θ

)

êi⊗ êj.

We are now in a position to state the main result of this section. Note that the
assumption about θ(γ0) can be omitted in the statement of the theorem below at
the expense of replacing 1/ε by 1/ε2 in the right-hand side of the last inequal-
ity (3.7).

Theorem 3.1 (Korn’s Unscaled Inequalities for Shells in Curvilinear Coordinates).

(a) Given any domain ω ⊂ R2 and any embedding θ∈ C3(ω;R3), there exist two

constants ε0 = ε0(ω,θ)> 0 and C0 = C0(ω,θ) such that, for all 0< ε≤ ε0 and for all

(ui)∈H1(Ωε;R3), Ωε :=ω×(−ε,ε),

‖(ui)‖H1(Ωε)≤C0

(

‖(ui)‖L2(Ωε)+
1

ε

∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)

)

, (3.4)

inf
(ri)∈Rig(Ωε)

‖(ui)−(ri)‖H1(Ωε)≤
C0

ε

∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)
, (3.5)

where

eij(u) :=
1

2
(ui|j+uj|i)=

1

2

(

∂ui

∂xε
j

+
∂uj

∂xε
i

)

−Γk
ijuk,

Rig(Ωε) :=
{

(ri)∈H1(Ωε;R3); eij(r)=0 a.e. in Ωε
}

.

(3.6)

(b) Given any domain ω⊂R
2, any embedding θ∈C3(ω;R3) and any non-empty rel-

atively open subset γ0 of the boundary of ω such that θ(γ0) is not contained in a straight

line, there exist two constants ε0 = ε0(ω,θ)> 0 and C0 =C0(ω,γ0,θ) such that, for all

0< ε≤ ε0 and for all (ui)∈H1(Ωε;R3) that vanish on Γε
0 :=γ0×(−ε,ε),

‖(ui)‖H1(Ωε)≤
C0

ε

∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)
. (3.7)
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Remark 3.3. A classical infinitesimal rigid displacement lemma in curvilinear co-

ordinates for open sets (see, e.g. Ciarlet [8]) shows that

Rig(Ωε) :=
{

(ri)∈H1(Ωε;R3); rig
i =a+BΘ|Ωε for some a∈R

3 and B∈A
3
}

,

so that Rig(Ωε) is a finite-dimensional subspace of H1(Ωε;R3).

Proof. The proof is divided for clarity into five parts, numbered (i) to (v).

(i) That θ is an embedding implies that there exists a constant ε0= ε0(ω,θ)>0

such that, for every 0 < ε ≤ ε0, the set Ω̂ε := Θ(Ωε) is a domain in R3. Then

Lemma 3.1 shows that there exit constants C1(ε),. . . ,C4(ε) such that, for all û ∈
H1(Ω̂ε;R3),

‖û‖H1(Ω̂ε)≤C1(ε)‖∇̂s û‖L2(Ω̂ε)+C2(ε)‖û‖L2(Ω̂ε), (3.8)

inf
r̂∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)≤C3(ε)‖∇̂s û‖L2(Ω̂ε), (3.9)

and that, for all û=(ûi)∈H1
Γ̂ε

0
(Ω̂ε;R3),

‖û‖H1(Ω̂ε)≤C4(ε)‖∇̂s û‖L2(Ω̂ε). (3.10)

Besides, the above inequalities hold with the following explicit constants in their

right-hand sides (cf. Mardare and Nguyen [25]):

C1(ε)=1+(AB+4
√

3Kε)

√

|Θ(Ωε)|
|Θ(BR,ε)|

,

C2(ε)=1+A1/2B

(

C1/2+8D1/2E1/2 1

R

)

√

|Θ(Ωε)|
|Θ(BR,ε)|

,

C3(ε)=(1+Wε)(1+2
√

3Kε),

C4(ε)=(1+Pε)(1+2
√

3Kε)

(

1+Tε(1+Wε)

√

3|Θ(Ωε)|
pε

1+pε
2

)

,

(3.11)

where the constants Kε :=K(Ω̂ε),Wε :=W(Ω̂ε), Pε :=P(Ω̂ε,Γ̂ε
0) and Tε :=T(Ω̂ε,Γ̂ε

0)
are those appearing in Lemmas 2.1-2.4, the constants pε

1 and pε
2 denote the two

smallest eigenvalues of the symmetric matrix

Mε :=
∫

Γ̂ε
0

(

x̂− x̂ε
0

)(

x̂− x̂ε
0

)T
dΓ̂ε, x̂ε

0 :=
1

|Γ̂ε
0|

∫

Γ̂ε
0

x̂ dΓ̂ε,
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R=R(ω)>0 is the radius of any fixed open ball ωR contained in ω, BR,ε :=ωR×
(−ε,ε), and A, B,C, D and E are any constants such that, at every point of Ωε0 ,

|∇Θ|2≤A, |(∇Θ)−1|2≤B,

∑
i,j

∣

∣

∣

∣

(∇Θ)−1 ∂2
Θ

∂xε
i ∂xε

j

∣

∣

∣

∣

2

≤C, D−1≤|det∇Θ|≤E.

It is clear from the above definitions that the constants A, B,C, D, E and R are

independent of ε and that the quotient |Θ(Ωε)|/|Θ(BR,ε)| is also independent

of ε.

Since Ω̂ε =Θ(ω×(−ε,ε)) is a (curved) cylinder with thickness 2ε, there exists

a constant C0 = C0(ω,θ) such that, for all 0< ε≤ ε0, the constants appearing in

Lemmas 2.1-2.4 satisfy (see, e.g. [2, 16, 24])

Kε ≤
C0

ε
, Wε ≤C0, Pε ≤C0, T(ε)≤C0.

Therefore, there exists a constant C0=C0(ω,θ) such that, for all 0< ε≤ ε0,

C1(ε)≤
C0

ε
, C2(ε)≤C0, C3(ε)≤

C0

ε
. (3.12)

The remaining constant C4(ε) is estimated below.

(ii) Since pε
1 and pε

2 are eigenvalues of the matrix Mε, which is symmetric, there

exist two unit orthogonal vectors v1∈R3 and v2∈R3 such that

Mεvα= pε
αvα.

Let

x̂0 :=
1

|θ(γ0)|
∫

θ(γ0)
x̂ dγ̂∈R

3,

where dγ̂ is the unit length along the curve γ̂ := θ(γ),γ := ∂ω, and |θ(γ0)| :=
∫

θ(γ0)
dγ̂. Note that x̂0 is independent of ε, by contrast to x̂ε

0 defined in part (i)

above.

Since the set θ(γ0) is not contained in a straight line, there exists a unit vector

v :=λ1v1+λ2v2 ∈R3,λ1,λ2 ∈R, and a point x̂1 ∈θ(γ0) such that (x̂1− x̂0)·v 6= 0.

Consequently, since the function θ is continuous and δ := |(x̂1− x̂0)·v|> 0, there
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exists a non-empty relatively open subset γ0,1 of γ0 such that

|(x̂− x̂0)·v|≥
δ

2
, ∀ x̂∈θ(γ0,1).

Let Γε
0,1 :=γ0,1×(−ε,ε) and Γ̂ε

0,1 :=Θ(Γε
0,1). Then

vT Mεv=
∫

Γ̂ε
0

vT
(

x̂− x̂ε
0

)(

x̂− x̂ε
0

)T
v dΓ̂ε =

∫

Γ̂ε
0

∣

∣

(

x̂− x̂ε
0

)

·v
∣

∣

2
dΓ̂ε

≥ 1

2

∫

Γ̂ε
0

∣

∣

(

x̂− x̂0

)

·v
∣

∣

2
dΓ̂ε−

∫

Γ̂ε
0

∣

∣

(

x̂ε
0− x̂0

)

·v
∣

∣

2
dΓ̂ε

≥ δ2

8

∣

∣Γ̂ε
0,1

∣

∣−
∣

∣Γ̂ε
0

∣

∣

∣

∣x̂ε
0− x̂0

∣

∣

2
,

so that, using that
∣

∣Γ̂ε
0,1

∣

∣= |θ(γ0,1)|
(

2ε+εo(1)
)

when ε → 0,
∣

∣Γ̂ε
0

∣

∣= |θ(γ0)|
(

2ε+εo(1)
)

when ε → 0,

∣

∣x̂ε
0− x̂0

∣

∣=

∣

∣

∣

∣

∣

1

|Γ̂ε
0|

∫

Γ̂ε
0

x̂ dΓ̂ε− 1

|θ(γ0)|
∫

θ(γ0)
x̂ dγ̂

∣

∣

∣

∣

∣

= o(1) → 0 when ε → 0,

there exists an ε0= ε0(ω,θ)>0 such that, for all 0< ε≤ ε0 ,

vT Mεv≥ δ2|θ(γ0,1)|
8

ε,

on the one hand.

Since v=λ1v1+λ2v2 and (λ1)
2+(λ2)

2=1, we have, for all 0< ε≤ ε0,

vT Mεv=(λ1v1+λ2v2)
T
(

λ1pε
1v1+λ2pε

2v2

)

= pε
1λ2

1+pε
2λ2

2≤ pε
2

(

λ2
1+λ2

2

)

= pε
2,

on the other hand. Therefore, for all 0< ε≤ ε0,

pε
2≥vT Mεv≥ δ2|θ(γ0,1)|

2
ε.

Note that the above estimate implies that, for all 0< ε≤ ε0 ,

|Ω̂ε|
pε

1+pε
2

≤

∣

∣

∣

∣

∫

Ωε

√

g(x)dx

∣

∣

∣

∣

pε
2

≤ 4E|ω|
δ2|θ(γ0,1)|

.
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Consequently, using in addition the estimates for the constants Kε,Wε, Pε and Tε

obtained in part (i), we deduce that there exist two constants ε0= ε0(ω,θ)>0 and

C0=C0(ω,γ0,θ) such that, for all 0< ε≤ ε0 ,

C4(ε)≤
C0

ε
. (3.13)

As a consequence of the estimates (3.12) and (3.13) of the constants appearing

in inequalities (3.8)-(3.10), we just proved that, for all û∈H1(Ω̂ε;R3),

‖û‖H1(Ω̂ε)≤C0

(

‖û‖L2(Ω̂ε)+
1

ε
‖∇̂sû‖L2(Ωε)

)

, (3.14)

inf
r̂∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)≤
C0

ε
‖∇̂sû‖L2(Ω̂ε), (3.15)

and that, for all û∈H1(Ω̂ε;R3) that vanish on Γ̂ε
0,

‖û‖H1(Ω̂ε)≤
C0

ε
‖∇̂sû‖L2(Ω̂ε). (3.16)

It remains to estimate the left-hand sides and the right-hand sides of these

inequalities, respectively from below and from above, in terms of the covariant

components (ui) and (eij(u)) of û and ∇̂sû.

(iii) Let gij := gi ·g j∈C1(Ωε0) and gij := gi ·g j∈∈C1(Ωε0) respectively denote the

covariant and contravariant components of the metric tensor field associated with

the immersion Θ : Ωε0 →R3, and let C :=(gij)∈C1(Ωε0 ,S3). Then C−1=(gij) and

g :=det(C)= |det∇Θ|2.

Given any û∈H1(Ω̂ε;R3), let u :=û◦Θ∈H1(Ωε;R3) and let ui :=u·gi∈H1(Ωε).
Then u=uig

i in Ωε, so that

‖û‖2
L2(Ω̂ε)

=
∫

Ω̂ε
|û|2 d x̂=

∫

Ωε

(

uig
i
)

·
(

ujg
j
)√

g dx

=
∫

Ωε
gijuiuj

√
gdx

=
∫

Ωε
(C−1u)·u√gdx.

Consequently,

1

λ3D
‖(ui)‖2

L2(Ωε)≤‖û‖2
L2(Ω̂ε)

≤ E

λ1
‖(ui)‖2

L2(Ωε), (3.17)
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where

λ1 := inf
x∈Ωε

λ1

(

C(x)
)

, λ3 := inf
x∈Ωε

λ3

(

C(x)
)

,

λ1(C(x)) and λ3(C(x)) denoting respectively the smallest and the largest eigen-

values of the matrix C(x) (remember that 0<D<E are constants such that D−1≤
|det(∇Θ(x))|≤E for all x∈Ωε0 ).

Let ui|j :=∂ui/∂xε
j−Γk

ijuk∈L2(Ωε) denote the covariant derivatives of the func-

tions ui. Then (∇̂sû)◦Θ=ui|jgi⊗g j in Ωε, so that

‖∇̂û‖2
L2(Ω̂ε)

=
∫

Ω̂ε
|∇̂sû|2 d x̂=

∫

Ωε

(

ui|kgi⊗gk
)

·
(

uj|lg j⊗gl
)√

gdx

=
∫

Ωε
gijgklui|kuj|l

√
g dx.

Thus,

‖∇̂û‖2
L2(Ω̂ε)

=
∫

Ωε
(C−1 ·S)√g dx,

where C−1=(gij)∈C1(Ωε0 ,S3) and S∈ L2(Ωε;S3) is the matrix field with compo-

nents [S]ij := ui|kgkluj|l at its i-th row and j-th column. Note that S =UC−1UT,

where U ∈ L2(Ωε;R3×3) denotes the matrix field with components [U ]ij = ui|j at

its i-th row and j-th column.

The matrix field C−1 is symmetric and positive definite, so its eigenvalues

are positive. The matrix fields S and UTU are both symmetric and semi-positive

definite, so their eigenvalues are non-negative. Then Lemma 2.5 implies that, at

almost all points of Ωε,

C−1 ·S≥ 1

λ3(C)
Tr(S)=

1

λ3(C)
Tr(UC−1UT)

=
1

λ3(C)
Tr(C−1UTU)=

1

λ3(C)
C−1 ·(UTU)

≥ 1
(

λ3(C)
)2

Tr(UTU)=
1

(

λ3(C)
)2
|U |2

≥ 1

(λ3)2
|U|2= 1

(λ3)2 ∑
i,j

(ui|j)2,

which combined with the previous in equality yields

‖∇̂û‖2
L2(Ωε)≥

1

(λ3)2

∫

Ωε
∑
i,j

(ui|j)2√gdx
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≥ D−1

(λ3)2 ∑
i,j

∫

Ωε
(ui|j)2 dx

≥ D−1

(λ3)2 ∑
i,j

∫

Ωε

{

1

2

(

∂ui

∂xε
j

)2

−
(

Γk
ijuk

)2

}

dx.

Since Γk
ij= gk ·∂2

Θ/(∂xε
i ∂xε

j) in Ωε0 , we have

∑
i,j

∑
k

(

Γk
ij

)2
=∑

i,j

∣

∣

∣

∣

(∇Θ)−1 ∂2
Θ

∂xε
i ∂xε

j

∣

∣

∣

∣

2

≤C

in Ωε0 (thanks to the definition of the constant C in part (i) of the proof). Then the

above inequality implies that

‖∇̂û‖2
L2(Ωε)≥

D−1

2(λ3)2

∥

∥

∥

∥

(

∂ui

∂xε
j

)
∥

∥

∥

∥

2

L2(Ωε)

−CD−1

(λ3)2
‖(uk)‖2

L2(Ωε),

then that, in view of inequalities (3.17),

‖(ui)‖2
H1(Ωε)=‖(ui)‖2

L2(Ωε)+

∥

∥

∥

∥

(

∂ui

∂xε
j

)
∥

∥

∥

∥

2

L2(Ωε)

≤‖(ui)‖2
L2(Ωε)+2D(λ3)

2‖∇̂û‖2
L2(Ω̂ε)

+2C‖(uk)‖2
L2(Ωε)

≤ (1+2C)λ3D‖û‖2
L2(Ω̂ε)

+2D(λ3)
2‖∇̂û‖2

L2(Ω̂ε)

≤F‖û‖2
H1(Ω̂ε)

, (3.18)

where

F :=λ3Dmax
{

1+2C, 2λ3

}

.

(iv) Given any û∈H1(Ω̂ε;R3), let

u := û◦Θ∈H1(Ωε;R3), ui :=u·gi ∈H1(Ωε),

ui|j :=
∂ui

∂xε
j

−Γk
ijuk ∈L2(Ωε), eij(u) :=

1

2
(ui|j+uj|i).

Then (∇̂sû)◦Θ=eij(u)g
i⊗g j in Ωε, so that, by a series of computations similar to

those in part (iii) of the proof, we obtain that

‖∇̂sû‖2
L2(Ω̂ε)

=
∫

Ωε
gijgkleik(u)ejl(u)

√
gdx
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≤ 1

λ1

∫

Ωε
gkleik(u)eil(u)

√
g dx

≤ 1

(λ1)2

∫

Ωε
∑
i,k

|eik(u)|2
√

gdx

≤ E

(λ1)2

∥

∥

(

eij(u)
)
∥

∥

2

L2(Ωε)
, (3.19)

where E is the constant defined in part (i) of the proof.

(v) First, using estimates (3.17)-(3.19) in inequality (3.14), we deduce that, for

all (ui)∈H1(Ωε;R3),

‖(ui)‖H1(Ωε)≤F1/2‖û‖H1(Ω̂ε)

≤F1/2C0

(

‖û‖L2(Ω̂ε)+ε−1‖∇̂sû‖L2(Ωε)

)

≤ F1/2C0E1/2

λ1

(

(λ1)
1/2‖(ui)‖L2(Ωε)+ε−1

∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)

)

,

which is precisely inequality (3.4) of the theorem.

Second, using estimate (3.19) in inequality (3.15), we deduce that, for all (ui)∈
H1(Ωε;R3),

inf
r∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)≤
C0

ε
‖∇̂sû‖L2(Ωε)≤

C0E1/2

λ1
ε−1
∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)
,

on the one hand.

The space Rig(Ω̂ε) being finite-dimensional, there exists q̂ = q̂(û)∈ Rig(Ω̂ε)
such that

inf
r∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)=‖û− q̂‖H1(Ω̂ε).

Then estimate (3.18) implies that

inf
r∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)=‖û− q̂‖H1(Ω̂ε)≥F−1/2‖(ui−qi)‖H1(Ωε),

where ui := u·gi ∈ H1(Ωε), u := û◦Θ, and qi := q·gi ∈ H1(Ωε), q := q̂◦Θ. Noting

that q̂∈Rig(Ω̂ε) implies that ∇̂sq̂=0 in Ω̂ε, and that (∇̂sq̂)◦Θ=eij(q)g
i⊗g j in Ωε,

we deduce that

eij(q)=0 in Ωε,
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which next implies that (qi)∈Rig(Ωε). Hence,

inf
r∈Rig(Ω̂ε)

‖û− r̂‖H1(Ω̂ε)≥F−1/2‖(ui−qi)‖H1(Ωε)

≥F−1/2 inf
(ri)∈Rig(Ωε)

‖(ui−ri)‖H1(Ωε),

on the other hand. Therefore, for all (ui)∈H1(Ωε;R3),

F−1/2 inf
(ri)∈Rig(Ωε)

‖(ui)−(ri)‖H1(Ωε)≤
C0E1/2

λ1
ε−1
∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)
,

which is precisely inequality (3.5) of the theorem.

Third, using estimates (3.18) and (3.19) in inequality (3.16), we deduce that,

for all (ui)∈H1(Ωε;R3) that vanish on Γε
0,

‖(ui)‖H1(Ωε)≤F1/2‖û‖H1(Ω̂ε)≤F1/2 C0

ε
‖∇̂sû‖L2(Ωε)

≤ F1/2C0E1/2

λ1
ε−1
∥

∥

(

eij(u)
)
∥

∥

L2(Ωε)
,

which is precisely inequality (3.7) of the theorem.

4 Korn’s scaled inequalities in curvilinear

coordinates for shells

We proved in the previous section that the constants appearing in Korn’s inequal-
ities in curvilinear coordinates on a shell-like domain with thickness 2ε>0 are of
order 1/ε. But the norms appearing in these inequalities are defined by means of
integrals defined over the domain Ωε := ω×(−ε,ε), so they themselves depend
on ε. This is why it is necessary, in view of their applications in shell theory, to
transform these inequalities into inequalities defined over a fixed domain (that is,
a domain independent of ε).

To this end, assume without losing in generality that the constant ε0 appearing
in Theorem 4.1 is equal to one, let

Ω1 :=ω×(−1,1),

and, for each ε>0, let πε : Ω1→Ωε be the function defined by

πε(y,x3)=(y,εx3), ∀(y,x3)∈Ω1.
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Generic points in Ωε and Ω1 are respectively denoted xε=(xε
i )∈Ωε and x=(xi)∈

Ω1, so that xε=πε(x) if and only if there exists y=(yα)∈ω such that

xε
α= xα=yα, xε

3= εx3.

Note that Ω1 is a domain independent of ε and that πε allows to associate with
each function or field defined on Ωε a function or field defined on Ω1 by function
composition. Thus, given any û∈H1(Ω̂ε;R3), we associate with the vector field

u := û◦Θ∈H1(Ωε;R3)

the “scaled” vector field

u(ε) :=u◦πε∈H1(Ω1;R3);

with the covariant components

ui :=u·gi∈H1(Ωε), gi :=
∂Θ

∂xε
i

,

of û, we associate the “scaled” covariant components

ui(ε) :=ui ◦πε∈H1(Ω1);

and, with the covariant components

eij(u) :=
1

2

(

∂u

∂xε
j

·gi+
∂u

∂xε
i

·g j

)

=
1

2

(

∂ui

∂xε
j

+
∂uj

∂xε
i

)

−Γk
ijuk ∈L2(Ωε),

Γk
ij :=

∂gi

∂xε
j

·gk

of ∇̂sû, we associate the “scaled” covariant components

eij(ε,u) := eij(u)◦πε∈H1(Ω1).

Note that the above definition of the functions eij(ε,u) is equivalent to the
following relations:

eαβ(ε,u)=
1

2

(

∂u(ε)

∂yα
·gβ(ε)+

∂u(ε)

∂yβ
·gα(ε)

)

=
1

2

(

∂uα(ε)

∂yβ
+

∂uβ(ε)

∂yα

)

−Γk
αβ(ε)uk(ε),
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eα3(ε,u)= e3α(ε,u)=
1

2

(

∂u(ε)

∂yα
·g3(ε)+

1

ε

∂u(ε)

∂x3
·gα(ε)

)

=
1

2

(

∂u3(ε)

∂yα
+

1

ε

∂uα(ε)

∂x3

)

−Γ
β
α3(ε)uβ(ε),

e33(ε,u)=
1

ε

∂u(ε)

∂x3
·g3(ε)=

1

ε

∂u3(ε)

∂x3
,

where gi(ε) := g i◦πε and Γk
ij(ε) :=Γk

ij◦πε.

We are now in a position to establish inequalities of Korn’s type similar to
those of Theorem 3.1, but this time with norms independent of ε:

Theorem 4.1 (Korn’s Scaled Inequalities for Shells in Curvilinear Coordinates).

(a) Given any domain ω ⊂ R2 and any immersion θ∈ C3(ω;R3), there exist two

constants ε0 = ε0(ω,θ) and C0 =C0(ω,θ) independent of ε such that, for all 0< ε≤ ε0

and for all u∈H1(Ω1;R3),Ω1 :=ω×(−1,1),

‖(ui)‖H1(Ω1)+
1

ε

∥

∥

∥

∥

∂(ui)

∂x3

∥

∥

∥

∥

L2(Ω1)

≤C0

(

‖(ui)‖L2(Ω1)+
1

ε

∥

∥

(

eij(ε,u)
)
∥

∥

L2(Ω1)

)

, (4.1)

inf
(ri)∈Rig(Ω1)

(

‖(ui−ri)‖H1(Ω1)+
1

ε

∥

∥

∥

∥

∂(ui−ri)

∂x3

∥

∥

∥

∥

L2(Ω1)

)

≤ C0

ε

∥

∥

(

eij(ε,u)
)
∥

∥

L2(Ω1)
, (4.2)

where

eαβ(ε,u) :=
1

2

(

∂uα

∂yβ
+

∂uβ

∂yα

)

−Γk
αβ(ε)uk ,

eα3(ε,u)= e3α(ε,u) :=
1

2

(

∂u3

∂yα
+

1

ε

∂uα

∂x3

)

−Γ
β
α3(ε)uβ ,

e33(ε,u) :=
1

ε

∂u3

∂x3
,

(4.3)

and

Rig(Ω1) :=
{

(ri)∈H1(Ω1;R3); eij(ε,r)=0 a.e. in Ω1
}

.

(b) Given any domain ω⊂R2, any embedding θ∈C3(ω;R3) and any non-empty rel-

atively open subset γ0 of the boundary of ω such that θ(γ0) is not contained in a straight

line, there exist two constants ε0 = ε0(ω,θ) and C0=C0(ω,θ,γ0) independent of ε such

that, for all 0< ε≤ ε0 and for all (ui)∈H1(Ω1;R3) that vanish on Γ1 :=γ0×(−1,1),

‖(ui)‖H1(Ω1)+
1

ε

∥

∥

∥

∥

∂(ui)

∂x3

∥

∥

∥

∥

L2(Ω1)

≤ C0

ε

∥

∥

(

eij(ε,u)
)
∥

∥

L2(Ω1)
. (4.4)
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Proof. Given any vector field (ui)∈H1(Ω1;R3), let uε
i :=ui◦(πε)−1∈H1(Ωε) and

eij(u
ε) :=

1

2

(

uε
i |j+uε

j |i
)

=
1

2

(

∂uε
i

∂xε
j

+
∂uε

j

∂xε
i

)

−Γk
iju

ε
k ∈L2(Ωε), (4.5)

where Γk
ij :=(∂gi/∂xε

j )·gk ∈C0(Ωε). Then Theorem 3.1 shows that, for some con-

stant C0 independent of ε,

‖(ui)‖H1(Ωε)≤C0

(

∥

∥

(

uε
i

)
∥

∥

L2(Ωε)
+

1

ε

∥

∥

(

eij(u
ε)
)
∥

∥

L2(Ωε)

)

,

inf
(rε

i )∈Rig(Ωε)

∥

∥

(

uε
i

)

−
(

rε
i

)∥

∥

H1(Ωε)
≤ C0

ε

∥

∥

(

eij(u
ε)
)∥

∥

L2(Ωε)
,

∥

∥

(

uε
i

)
∥

∥

H1(Ωε)
≤ C0

ε

∥

∥

(

eij(u
ε)
)
∥

∥

L2(Ωε)
if uε

i =0 on γ0×(−ε,ε).

(4.6)

Since ui =uε
i ◦πε in Ω1, we have (remember that xε

α= xα=yα and xε
3= εx3)

∂ui

∂yα
=

∂uε
i

∂yα
◦πε,

∂ui

∂x3
= ε

∂uε
i

∂xε
3

◦πε in Ω1, (4.7)

so that, by using the change of variable xε=πε(x) in the integrals below,

∫

Ω1
|ui(x)|2 dx= ε−1

∫

Ωε

∣

∣uε
i (x

ε)
∣

∣

2
dxε,

∫

Ω1

∣

∣

∣

∣

∂ui

∂yα
(x)

∣

∣

∣

∣

2

dx= ε−1
∫

Ωε

∣

∣

∣

∣

∂uε
i

∂yα
(xε)

∣

∣

∣

∣

2

dxε,

∫

Ω1

∣

∣

∣

∣

∂ui

∂x3
(x)

∣

∣

∣

∣

2

dx= ε
∫

Ωε

∣

∣

∣

∣

∂uε
i

∂xε
3

(xε)

∣

∣

∣

∣

2

dxε,

on the one hand.

Definitions (4.3) and (4.5) of the functions eij(ε,u) and eij(u
ε), combined with

relations (4.7), imply that eij(ε,u)=(eij(u
ε))◦πε in Ωε, so that we have

∫

Ω1

∣

∣

(

eij(ε,u)
)

(x)
∣

∣

2
dx= ε−1

∫

Ωε

∣

∣

(

eij(u
ε)
)

(xε)
∣

∣

2
dxε,

on the other hand.
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Consequently,

∥

∥

(

uε
i

)
∥

∥

2

L2(Ωε)
=∑

i

∥

∥uε
i

∥

∥

2

L2(Ωε)
=∑

i

ε‖ui‖2
L2(Ω1)= ε‖(ui)‖2

L2(Ω1),

∥

∥

(

eij(u
ε)
)
∥

∥

2

L2(Ωε)
=∑

i,j

∥

∥eij(u
ε)
∥

∥

2

L2(Ωε)
=∑

i,j

ε‖eij(ε,u)‖2
L2(Ω1)

= ε
∥

∥

(

eij(ε,u)
)
∥

∥

2

L2(Ω1)
,

(4.8)

and

∥

∥

(

uε
i

)
∥

∥

2

H1(Ωε)
=∑

i

∥

∥uε
i

∥

∥

2

H1(Ωε)

=∑
i

∥

∥uε
i

∥

∥

2

L2(Ωε)
+∑

i,α

∥

∥

∥

∥

∂uε
i

∂yα

∥

∥

∥

∥

2

L2(Ωε)

+∑
i

∥

∥

∥

∥

∂uε
i

∂xε
3

∥

∥

∥

∥

2

L2(Ωε)

=∑
i

ε‖ui‖2
L2(Ω1)+∑

i,α

ε

∥

∥

∥

∥

∂ui

∂yα

∥

∥

∥

∥

2

L2(Ω1)

+∑
i

ε−1

∥

∥

∥

∥

∂ui

∂x3

∥

∥

∥

∥

2

L2(Ω1)

= ε‖(ui)‖2
L2(Ω1)+ε∑

α

∥

∥

∥

∥

∂(ui)

∂yα

∥

∥

∥

∥

2

L2(Ω1)

+ε−1

∥

∥

∥

∥

∂(ui)

∂x3

∥

∥

∥

∥

2

L2(Ω1)

≥ ε

3

(

‖(ui)‖L2(Ω1)+∑
α

∥

∥

∥

∥

∂(ui)

∂yα

∥

∥

∥

∥

L2(Ω1)

+ε−1

∥

∥

∥

∥

∂(ui)

∂x3

∥

∥

∥

∥

L2(Ω1)

)2

. (4.9)

Besides, the last inequality also holds with (uε
i ) and (ui) replaced respectively by

(uε
i +rε

i ) and (ui+ri), where rε
i := ri◦(πε)−1 ∈Rig(Ωε) for any given vector field

(ri)∈Rig(Ω1).
Then inequalities (4.1), (4.2) and (4.4) appearing in the statement of the theo-

rem are deduced from inequalities (4.6) established above by using relations (4.8)

in their right-hand sides and the lower bound (4.9) in their left-hand sides.

The proof is complete.
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