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Abstract. Remote sensing images (RSIs) encompass abundant spatial and spec-
tral/temporal information, finding wide applications in various domains. However,

during image acquisition and transmission, RSI often encounter noise interference,
which adversely affects the accuracy of subsequent applications. To address this is-

sue, this paper proposes a novel non-local fully connected tensor network (NLFCTN)

decomposition algorithm for denoising RSI, aiming to fully exploit their global cor-
relation and non-local self-similarity (NSS) characteristics. FCTN, as a recently de-

veloped tensor decomposition technique, exhibits remarkable capability in captur-

ing global correlations and minimizing information loss. In addition, we introduce
an efficient algorithm based on proximal alternating minimization (PAM) to effi-

ciently solve the model and prove the convergence. The effectiveness of the pro-
posed method is validated through denoising experiments on both simulated and

real RSI data, employing objective evaluation metrics and subjective visual assess-

ments. The results of the experiment show that the proposed method outperforms
other RSI denoising techniques in terms of denoising performance.
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1. Introduction

Recently, remote sensing images (RSIs) [10] have gained widespread utilization

across various domains. However, in practical applications, RSIs inevitably suffer from
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noise contamination [17]. Noise presence markedly degrades image quality, conse-

quently impacting subsequent tasks, including classification [26], sparse unmixing,

target segmentation [25], and detection. Consequently, denoising emerges as an in-

evitable challenge during post-analysis and preprocessing of RSIs.

RSI exhibit rich spatial, spectral, or temporal features, which can be utilized to

aid in RSI denoising. In general, RSI denoising involves leveraging the global cor-

relations [23], non-local self-similarity (NSS) [5, 8], piecewise smoothness [7], and

deep priors [22, 32] of the data. Due to the vast amount of data, RSIs often con-

tain redundant information, namely global correlation. For instance, in hyperspectral

images (HSIs), there is notable correlation among their spectral bands, resulting in

the spectral vector residing in a lower-dimensional subspace [3]. Mathematically, we

can characterize this global correlation using a low-rank representation, representing

high-dimensional data based on learned lower-dimensional bases [34]. In the past

two decades, low-rank matrix approximation methods have received significant atten-

tion, providing a theoretical foundation for RSI denoising and achieving promising re-

sults [15, 16, 29]. For instance, Zhang et al. [30] proposed a low-rank matrix recovery

(LRMR) model, which achieved promising results by unfolding the RSI into a matrix.

He et al. [12] introduced the total variation (TV) and proposed a low-rank matrix de-

composition with total variation regularization (LRTV) method. However, matrix-based

approaches often disrupt the intrinsic structure of high-order RSI data when unfolding

it into matrices.

In recent years, tensor-based models have been proposed to recover RSI, draw-

ing inspiration from the successful application of tensors in image processing inverse

problems. These models enable effective exploration of the intrinsic properties of high-

dimensional data. RSI data can be considered as tensors, where HSIs and multispectral

images (MSIs) correspond to third-order tensors, while multi-temporal RSI are repre-

sented as fourth-order tensors. Liu et al. [14] used the PARAFAC model and statistical

performance analysis to efficiently reconstruct the noisy RSI. Guo et al. [11] recovered

RSI based on rank-1 tensor decomposition. Zhao et al. [35] proposed the constrained

tube rank and sparsity model (CTSD) for addressing the problem of mixed noise re-

moval in RSI. This model incorporates a low tube rank constraint, as well as ℓ0 and ℓ1
norm constraints, to effectively characterize the underlying clean RSI and sparse noise

components. Zhuang et al. [39] proposed a global local factorization (GLF) method

combining global matrix decomposition and local tensor decomposition, and achieved

good results. Chen et al. [6] proposed a non-local group sparsifying transform learning

(TLNLGS) method for HSI denoising. Nonetheless, t-SVD-based methods are limited

to third-order tensors and lack flexibility in handling tensor correlation across differ-

ent modes. Based on Tucker decomposition, Renard et al. [21] proposed a low-rank

tensor approximation (LRTA) method, which effectively mines the low-rank attributes

of different modes of data. However, the LRTA method only considers the global cor-

relation of data, and cannot reconstruct the details and edge information of RSI well.

To this end, Wang et al. [27] proposed a new method combining low-rank tensor de-

composition and total variation (LRTDTV), which can better restore the RSI damaged
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by mixed noise. Tu et al. [24] introduced a non-convex low-rank tensor approxima-

tion model (NLRTA) based on the γ-function, effectively addressing the issue of mixed

noise in RSI. However, the Tucker decomposition expands the tensor along a single

mode, making it impossible to mine correlations between different modes.

Recently, tensor network decomposition [18, 20, 33, 37, 38] has received consider-

able attention and has shown better performance in reconstructing high-dimensional

data. Tensor train (TT) decomposition [20] decomposes the N -order tensor into two

matrices and N − 2 third-order tensors, which can more accurately consider the corre-

lation between adjacent factors. Gong et al. [9] proposed the TT minimum description

length (TT-MDL) method, where they employed the minimum description length prin-

ciple to estimate the TT rank. The TT-MDL method theoretically reveals the potential

advantage of the TT model in characterizing latent low tensor ranks. Tensor ring (TR)

decomposition [33] decomposes the N -order tensor into N third-order tensors. Zhang

et al. [31] introduced the T-RSTR model, which combines reconcile sparsity and low

TR rank prior in the transformed domain, for RSI denoising. Chen et al. [5] proposed

a non-local tensor ring (NLTR) approximation method that utilizes the TR decomposi-

tion to simultaneously explore non-local self-similarity and global spectral correlations

for RSI denoising. However, both the TT and TR decompositions fail to effectively

explore the correlations between any two factors.

To address these concerns, we took inspiration from the highly successful fully con-

nected tensor network (FCTN) decomposition method as presented in [38]. This paper

presents a novel approach known as the Non-Local Fully Connected Tensor Network

Decomposition (NLFCTN) model for the denoising of RSI. Initially, we employ FCTN

decomposition to initialize the observed data, thereby unveiling global correlations

within the RSI dataset. Subsequently, we perform block-wise processing on the initial-

ized data, where similar blocks are superimposed and denoised using FCTN, resulting

in clear similar groups. Finally, we split and aggregate the clear similar groups to ob-

tain denoised data. Moreover, for the introduced RSI denoising model, we propose an

efficient iterative solution algorithm based on the Proximal Alternating Minimization

(PAM) method, and its convergence is proved. By conducting comprehensive experi-

ments on simulated and real datasets, we validate the efficacy of the NLFCTN approach.

In summary, the contributions of this paper are as follows:

• We introduce a novel denoising model, NLFCTN, which considers correlations

among various modes of RSI data. This model effectively leverages global similar-

ity and prior NSS information within high-dimensional data, enhancing denoising

performance.

• We develop an iterative algorithm for NLFCTN model based on PAM method and

prove the convergence. Experiments on simulated and real datasets, whether

assessed quantitatively or qualitatively, illustrate the effectiveness of our proposed

method in reconstructing RSI.

Specific instructions for the remainder of this paper follow. In Section 2, we pro-

vide a concise introduction to the symbolic notation of tensors and offer a detailed
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explanation of the FCTN decomposition. Subsequently, in Section 3, we introduce the

NLFCTN model and present an iterative solution algorithm based on the PAM method.

In addition, Section 5 presents the numerical experimental results of our method and

comparative methods, which quantitatively and qualitatively demonstrate the effective-

ness of our method. In Section 6, we analyze the effects of parameters on the model

and algorithm. Finally, Section 7 summarizes the work.

2. Tensor notations and preliminaries

In this section, we first briefly introduce the framework of RSI denoising problem.

On this basis, we introduce the NLFCTN denoising model in detail.

2.1. Basic notations

In this paper, our symbol definitions can be referred to [38]. We adopt the follow-

ing notation: a scalar, vector, matrix, and tensor are represented as h,h,H, and H,

respectively. For the tensor H ∈ R
I1×I2×···×IN , its (i1, i2, · · · , iN ) element is defined as

H(i1, i2, · · · , iN ), and its Frobenius norm is defined as ‖H‖F =
√∑

|H(i1, i2, · · · , iN )|2.

To simplify notation, we use H1:d to refer to the subset (H1,H2, · · · ,Hd).

2.2. Basic definitions

Before introducing the FCTN decomposition, we first present three relevant defini-

tions. Among them, mode-k matricization and generalized tensor unfolding are two

ways of tensor unfolding, while tensor contraction defines the operation relating two

tensors.

Definition 2.1 (cf. Kolda & Bader [13]). The mode-k matricization of A ∈ R
I1×I2×···×IN

is A(k) ∈ R
Ik×(I1···Ik−1Ik+1···IN ). The corresponding operation and its inverse operation are

denoted as A(k) = unfoldk(A) and A = foldk(A(k)), respectively.

Definition 2.2 (cf. Zheng et al. [38]). Assume that n is a permutation of (1, 2, . . . , N).
For an N -th order tensor X ∈ R

I1×I2×···×IN , the generalized tensor unfolding operation

yields a matrix X[n1:d;nd+1:N ] ∈ R

∏d
i=1 Ini

×
∏N

i=d+1 Ini , defined as

X[n1:d;nd+1:N ] = reshape

(
Xn,

d∏

i=1

Ini
,

N∏

i=d+1

Ini

)
,

where Xn represents the n-based generalized tensor transposition of X , with dimensions

R
In1

×In2
×··· ×InN (for detailed information, refer to [38]). The operations of generalized

tensor unfolding and its inverse are denoted as

X[n1:d;nd+1:N ] = GenUnfold(X , n1:d;nd+1:N ),
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and

X = GenFold(X[n1:d;nd+1:N ], n1:d;nd+1:N ),

respectively.

Definition 2.3 (cf. Zheng et al. [38]). Let n and m be permutations of (1, 2, . . . , N)
and (1, 2, . . . ,M), respectively. Given X ∈ R

I1×I2×···×IN and Y ∈ R
J1×J2×···×JM , where

Ini
= Jmi

for i = 1, 2, . . . , d, the tensor contraction along the n1:d modes of X and the

m1:d modes of Y yields an (N +M − 2d)-th order tensor defined as

Z = X ×m1:d
n1:d

Y ⇔ Z[1:N−d;N−d+1:N+M−2d] = X[nd+1:N ;n1:d]Y[m1:d;md+1:M ].

2.3. FCTN decomposition

The FCTN decomposition [38] is a generalization of the TT and TR decompositions.

As shown in Fig. 1, FCTN decomposes an N -th order target tensor X ∈ R
I1×I2×···×IN

into N factor tensors G1:N . Each factor tensor Gk (k = 1, 2, . . . , N) has dimensions

Gk ∈ R
R1,k×R2,k×···×Rk−1,k×Ik×Rk,k+1×··· ×Rk,N . In contrast to TT and TR decompositions,

the FCTN decomposition exhibits transposition invariance and the ability to account for

correlations between each factor.

TT decomposition TR decomposition FCTN decomposition

Figure 1: A visual illustration of tensor network decomposition.

The elementwise form of the FCTN decomposition is expressed as

X (i1, i2, · · · , iN ) =

R1,2∑

r1,2=1

R1,3∑

r1,3=1

· · ·

R1,N∑

r1,N=1

R2,3∑

r2,3=1

· · ·

R2,N∑

r2,N=1

· · ·

RN−1,N∑

rN−1,N=1{
G1(i1, r1,2, r1,3, · · · , r1,N )G2 (r1,2, i2, r2,3, · · · , r2,N ) · · ·

Gk(r1,k, r2,k, · · · , rk−1,k, ik, rk,k+1, · · · , rk,N ) · · ·

GN (r1,N , r2,N , · · · , rN−1,N , iN )
}
.

The tensor product form of the FCTN decomposition can be expressed as

X =

R1,2∑

r1,2=1

R1,3∑

r1,3=1

· · ·

R1,N∑

r1,N=1

R2,3∑

r2,3=1

· · ·

R2,N∑

r2,N=1

· · ·

RN−1,N∑

rN−1,N{
G1 (:, r1,2, r1,3, · · · , r1,N ) ◦ G2 (r1,2, :, r2,3, · · · , r2,N ) ◦ · · · ◦
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Gk(r1,k, r2,k, · · · , rk−1,k, :, rk,k+1, · · · , rk,N ) ◦ · · · ◦

GN (r1,N , r2,N , · · · , rN−1,N , :)
}
,

where “◦” represents the outer product of tensor fibers. Additionally, the FCTN decom-

position is defined as X = FCTN(G1:N ) = FCTN (G1,G2, · · · ,GN ). The rank of FCTN

is denoted by a vector composed of Rk1,k2 (1 ≤ k1 < k2 ≤ N).

3. Proposed model and solving algorithm

In this section, we first briefly introduce the framework of RSI denoising problem.

On this basis, we introduce the NLFCTN denoising model in detail.

3.1. Problem formulation

Due to the inevitable noise pollution in RSI, the degradation model can be expressed

as

Y = X +N ,

where Y represents the observed image, X represents the clean image, and N corre-

sponds to Gaussian noise. Our objective is to reconstruct clean data from observational

data. Nevertheless, the estimation of a clean image X from observational data Y poses

a challenging ill-posed inverse problem. Employing regularization methods to address

this inverse problem proves to be an effective solution strategy. Typically, the model is

expressed as follows:

min
X ,N

ϕ1(X ) + λ1ϕ2(N )

s.t. Y = X +N ,

where λ1 represents a regularization parameter that balances two regularization terms,

ϕ1(X ) and ϕ2(N ), which capture the global correlation of X and the Gaussian distri-

bution of N , respectively. In the subsequent discussion, we will delve into the details

of ϕ1(X ) and ϕ2(N ).

3.2. Proposed model and solving algorithm

Fig. 2 illustrates the flowchart of the proposed NLFCTN model. To leverage the

global correlation inherent in RSI data, we employ FCTN decomposition as an initial

step to process the observed image. Subsequently, we partition the initialized image

into small blocks exhibiting similar characteristics, which are then stacked to form non-

local similar groups. This approach enables us to fully harness the remarkable global

correlation representation capabilities of FCTN, while intelligently capitalizing on the
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Figure 2: Flowchart of the NLFCTN method. Our method first uses the FCTN method for initialization,
then blocks the initialized image, and combines similar blocks to obtain noise similarity groups. Here it can
be seen that the noise similarity group is one order higher than the original observed image. For example,
the third-order observation image will get the fourth-order noise similarity group. Next, we employ FCTN
for decomposition to better extract the inherent features of the original data, resulting in the reconstructed
clean image.

benefits offered by NSS-based tensor-order incremental operations for handling high-

order tensors [36]. Finally, we disassemble and aggregate the recovered clean non-local

similarity groups to their original positions, completing the denoising process.

For observation data Y of order N , we examine its noise similarity group denoted

as Ŷl. As depicted in Fig. 2, it is evident that Ŷl possesses an order of N +1. To address

the denoising problem of the noise similarity group Ŷl, we employ FCTN and establish

the NLFCTN model

min
X̂l,Gl,k,N̂l

1

2
‖X̂l − FCTN(Gl,1,Gl,2, . . . ,Gl,N )‖2F +

λ

2
‖N̂l‖

2
F

s.t. Ŷl = X̂l + N̂l,

(3.1)

where FCTN(Gl,1,Gl,2, . . . ,Gl,N ) represents the FCTN decomposition, and Gl,k repre-

sents the k-th factor of the X̂l FCTN decomposition. Additionally, Ŷl, X̂l, and N̂l repre-

sent the l-th NSS groups of Y, X , and N , respectively.

We consider the following penalty function of problem (3.1):

min
X̂l,Gl,k,N̂l

1

2
‖X̂l − FCTN(Gl,1,Gl,2, . . . ,Gl,N )‖2F +

λ

2
‖N̂l‖

2
F +

β

2
‖Ŷl − X̂l − N̂l‖

2
F , (3.2)

where β is penalty parameter. Given the interdependence of all optimization variables,

we employ the PAM framework [1] to solve the aforementioned equation. The solution
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is obtained through iterative updates of X̂l, Gl,k, and N̂l, as illustrated below





X̂
(t+1)
l = argmin

X̂l

f
(
X̂l,G

(t)
l,k , N̂

(t)
l

)
+ ρ

2

∥∥X̂l − X̂
(t)
l

∥∥2
F
,

G
(t+1)
l,k = argmin

Gl,k

f
(
X̂

(t+1)
l ,G

(t+1)
l,1:k−1,Gl,k,G

(t)
l,k+1:N , N̂

(t)
l

)
+ ρ

2

∥∥Gl,k − G
(t)
l,k

∥∥2
F
,

N̂
(t+1)
l = argmin

N̂l

f
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂l

)
+ ρ

2

∥∥N̂l − N̂
(t)
l

∥∥2
F
.

(3.3)

1. Update X̂
(t+1)
l .

The subproblem of X̂
(t+1)
l can be simplified to

X̂
(t+1)
l = argmin

X̂l

1

2

∥∥X̂l − FCTN(G
(t)
l,1 ,G

(t)
l,2 , . . . ,G

(t)
l,N )

∥∥2
F

+
β

2

∥∥Ŷl − X̂l − N̂
(t)
l

∥∥2
F
+
ρ

2

∥∥X̂l − X̂
(t)
l

∥∥2
F

= argmin
X̂l

1 + β + ρ

2

∥∥∥∥∥∥
X̂l −

FCTN({Gl,k}
(t)
1:N ) + β(Ŷl − N̂l

(t)
) + ρX̂

(t)
l

1 + β + ρ

∥∥∥∥∥∥

2

F

.

This is a least squares problem, and the following closed solution can be obtained

by deriving X̂l and setting the derivative equal to 0:

X̂
(t+1)
l =

FCTN({Gl,k}
(t)
1:N ) + β(Ŷl − N̂l

(t)
) + ρX̂

(t)
l

1 + β + ρ
. (3.4)

2. Update G
(t+1)
l,k .

As stated in [38] (refer to Theorem 4), the subproblem of G
(t+1)
l,k can be reformu-

lated as follows:

G
(t+1)
l,k = argmin

Gl,k

1

2

∥∥(X̂l,k)
(t+1)
(k) − (Gl,k)(k)(Ml,k)[m1:N−1;n1:N−1]

∥∥2
F

+
β

2

∥∥(Gl,k)(k) − (Gl,k)
(t)
(k)

∥∥2
F
,

where M
(t)
l,k = FCTN(G

(t+1)
l,1:k−1,G(l,k),G

(t)
l,k+1:N , /G(l,k)). The above problem can be

directly solved as

(
G

(t+1)
l,k

)
(k)

=
[
X

(t+1)
l,k (M

(t)
l,k)[n1:N−1;m1:N−1] + β(Gl,k)

(t)
(k)

]

[
(M

(t)
l,k)[m1:N−1;n1:N−1](M

(t)
l,k)[n1:N−1;;m1:N−1] + βI

]−1
, (3.5)

and G
(t+1)
l,k = GenFold((G

(t+1)
l,k )(k), k; 1, · · · , k − 1, k + 1, · · · , N).
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3. Update N̂l.

The subproblem of N̂l can be reformulated as follows:

N̂
(t+1)
l = argmin

N̂l

λ

2

∥∥N̂l

∥∥2
F
+
β

2

∥∥Ŷl − X̂
(t+1)
l − N̂l

∥∥2
F
+
ρ

2

∥∥N̂l − N̂
(t)
l

∥∥2
F
. (3.6)

Solving the subproblem N̂l is also a least squares problem, which can be solved

similarly to X̂l

N̂
(t+1)
l =

β(Ŷl − X̂
(t+1)
l ) + ρN̂

(t)
l

λ+ β + ρ
. (3.7)

See Algorithm 3.1 for the algorithm flow of NLFCTN model.

Algorithm 3.1 Optimization process of NLFCTN solution

1: Input: Observation data Y, regularization parameter λ, penalty parameter β and

penalty parameter ρ.

2: Use FCTN decomposition to get initialized Ŷ.

3: while not converged do

4: Divide Ŷ into blocks, match similar blocks, and then superimpose to obtain a sim-

ilar group Ŷl;

5: Update X̂l by Eq. (3.4);

6: Update Gl,k by Eq. (3.5);

7: Update N̂l by Eq. (3.7);

8: Check the convergence condition ‖X̂
(t+1)
l − X̂

(t)
l ‖F /‖X̂

(t)
l ‖F < 10−4.

9: end while

10: Reorganize the reconstructed clean similarity group X̂l to obtain clean similar

blocks, and aggregate these clean similar blocks to obtain a clean image X .

11: Output: The clean image X .

3.3. Computational complexity analysis

In this section, we analyze the computational complexity of the proposed NLFCTN

method. For an N -order noise similar group Ŷl, the FCTN rank Rk1,k2 (1 ≤ k1 ≤ k2 ≤
N) is assumed to be R. The computational complexity of NLFCTN can be divided

into three parts, namely 1) update X̂l, 2) update Ĝl,k (k = 1, 2, . . . , N) and 3) update

N̂l. In Eq. (3.4), it costs O(
∑N

k=2 Î
kRk(N−k)+k−1) to update the subproblem of X̂l. In

Eq. (3.5), it costs O(N
∑N

k=2 Î
k Rk(N−k)+k−1 +NÎN−1R2(N−1) +NR3(N−1)) to update

the subproblem of Ĝl,k (k = 1, 2, . . . , N). In Eq. (3.7), updating the subproblem of N̂l

requires an O(Îk) cost. Thus, the cost of fully calculating a noise similarity group is

O(
∑N

k=2 Î
kRk(N−k)+k−1+N

∑N
k=2 Î

kRk(N−k)+k−1+NÎN−1R2(N−1)+NR3(N−1)+ Îk).
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4. Convergence analysis of NLFCTN algorithm

In this section, we prove the global convergence of NLFCTN method under PAM

framework. Let Hl = {X̂l,Gl,k, N̂l}, we define the following function:

F (Hl) = F
(
X̂l,Gl,k, N̂l

)
=

1

2

∥∥X̂l − FCTN(Gl,1,Gl,2, . . . ,Gl,N )
∥∥2
F

+
λ

2

∥∥N̂l

∥∥2
F
+
β

2

∥∥Ŷl − X̂l − N̂l

∥∥2
F
. (4.1)

In addition, we introduce some definitions and lemmas to prove convergence.

Definition 4.1 (cf. Attouch et al. [2]). The function F (x) : Rn → R∪+∞ is said to have

the Kurdyka-Łojasiewicz (K-Ł) property at x∗ ∈ dom(∂F (x)) if there exist η ∈ (0,+∞],
a neighborhood U of x∗, and a continuous concave function ψ(x) : [0, η) → R+ such that

• ψ(0) = 0,

• ψ(x) is C1 on (0, η],

• ψ′(x) > 0 for any x ∈ (0, η),

• for any x in U ∩ [F (x∗) < F (x) < F (x∗) + η], the following K-Ł inequality holds:

ψ′
(
F (x)− F (x∗)

)
dist

(
0, ∂F (x)

)
≥ 1,

where ∂F (x) denotes the subdifferential of F (x). Furthermore, proper lower semi-

continuous functions are called K-Ł functions when they satisfy the K-Ł property at

every point within the domain of their subdifferential ∂F (x).

Definition 4.2 (cf. Attouch et al. [2]). If there exists a series of real polynomial functions

mij and nij satisfying S = ∩j ∪i {x ∈ R
n : mij(x) = 0, nij(x) < 0}, then the subset

S ∈ R is a semi-algebraic set. If the graph {(x, y) ∈ R
n × R, F (x) = y} of the function F

is a semi-algebraic set, then F is a semi-algebraic function.

Remark 4.1. A semi-algebraic real valued function F satisfies K-Ł property at each x ∈
dom(F ), i.e., F is a K-Ł function.

Lemma 4.1 (Sufficient Decrease Lemma). Assume that H
(t)
l , {X̂

(t)
l ,G

(t)
l,k , N̂

(t)
l } gener-

ated by Eq. (3.3). Then, H
(t)
l satisfies the following formula:

F
(
H

(t+1)
l

)
+
ρ

2

∥∥H(t+1)
l −H

(t)
l

∥∥2
F
≤ F

(
H

(t)
l

)
.

Proof. Suppose X̂
(t+1)
l , G

(t+1)
l,k and N̂

(t+1)
l represent the optimal solutions of the

respective subproblems in Eq. (3.3). Then, the following holds:




F
(
X̂

(t+1)
l ,G

(t)
l,k , N̂

(t)
l

)
+
ρ

2

∥∥X̂ (t+1)
l − X̂

(t)
l

∥∥2
F
≤ F

(
X̂

(t)
l ,G

(t)
l,k , N̂

(t)
l

)
,

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t)
l

)
+
ρ

2

∥∥G(t+1)
l,k − G

(t)
l,k

∥∥2
F
≤ F

(
X̂

(t+1)
l ,G

(t)
l,k , N̂

(t)
l

)
, k = 1, 2, . . . , N,

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+
ρ

2

∥∥N̂ (t+1)
l − N̂

(t)
l

∥∥2
F
≤ F

(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t)
l

)
.
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By combining the above inequalities, we have

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+
ρ

2

∥∥X̂ (t+1)
l − X̂

(t)
l

∥∥2
F

+
ρ

2

∥∥G(t+1)
l,k − G

(t)
l,k

∥∥2
F
+
ρ

2

∥∥N̂ (t+1)
l − N̂

(t)
l

∥∥2
F

≤ F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ),

i.e.,

F
(
H

(t+1)
l

)
+
ρ

2

∥∥H(t+1)
l −H

(t)
l

∥∥2
F
≤ F

(
H

(t)
l

)
.

The proof of the sufficient decrease lemma is complete. �

Lemma 4.2 (Relative Error Lemma). Assume that H
(t)
l , {X̂

(t)
l ,G

(t)
l,k , N̂

(t)
l } is generated

by Eq. (3.3). Then, {H
(t)
l } is bounded, and there exists dk+1 ∈ ∂F (H

(t+1)
l ), satisfies the

following formula:

‖d(t+1)‖F ≤ ρ
∥∥H(t+1)

l −H
(t)
l

∥∥
F
.

Proof. First, we prove H
(t)
l is bounded. Since





lim
‖X̂l‖F→+∞

β

2

∥∥Ŷl − X̂l − N̂l

∥∥
F
= +∞,

lim
‖Gl,k‖F→+∞

1

2

∥∥X̂l − FCTN(Gl,1,Gl,2, . . . ,Gl,N )
∥∥
F
= +∞,

lim
‖N̂l‖F→+∞

λ

2

∥∥N̂l

∥∥
F
= +∞,

we can respectively obtain




lim
‖X̂l‖F→+∞

F
(
X̂l,Gl,k, N̂l

)
= +∞,

lim
‖Gl,k‖F→+∞

F
(
X̂l,Gl,k, N̂l

)
= +∞,

lim
‖N̂l‖F→+∞

F
(
X̂l,Gl,k, N̂l

)
= +∞.

Therefore, we can conclude that F (Hl) tends to infinity if the sequence H
(t)
l is un-

bounded. In other words, if F (H
(t+1)
l ) is finite, then the sequence J k is bounded.

Consequently, we establish the finiteness of F (H
(t+1)
l ) as demonstrated below. Refer-

ring to Lemma 4.1, we obtain the following:

F (H
(t+1)
l ) ≤ F

(
H

(t+1)
l

)
+
ρ

2

∥∥H(t+1)
l −H

(t)
l

∥∥2
F

≤ F
(
H

(t)
l

)
≤ F

(
H

(t)
l

)
+
ρ

2

∥∥H(t)
l −H

(t−1)
l

∥∥2
F

≤ · · · ≤ F
(
H

(0)
l

)
,
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then F (H
(t+1)
l ) is finite. Consequently, we can infer that H(t) is bounded. Next, con-

sider the optimal solutions of problem Eq. (3.3), denoted as X̂
(t+1)
l , G

(t+1)
l,k and N̂

(t+1)
l .

By applying the Karush-Kuhn-Tucker (KKT) conditions, the following formulas are ob-

tained:




0 = ∇X̂l
F
(
X̂

(t+1)
l ,G

(t)
l,k , N̂

(t)
l

)
+ ρ
(
X̂

(t+1)
l − X̂

(t)
l

)
,

0 = ∇Gl,k
F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t)
l

)
+ ρ
(
G
(t+1)
l,k − G

(t)
l,k

)
, k = 1, 2, . . . , N,

0 = ∇N̂l
F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+ ρ
(
N̂

(t+1)
l − N̂

(t)
l

)
.

(4.2)

Then, we define A(t+1), B
(t+1)
k , and C(t+1) as





A(t+1) = −∇X̂l
F
(
X̂

(t+1)
l ,G

(t)
l,k , N̂

(t)
l

)
− ρ
(
X̂

(t+1)
l − X̂

(t)
l

)
,

B
(t+1)
k = −∇Gl,k

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t)
l

)
− ρ
(
G
(t+1)
l,k − G

(t)
l,k

)
, k = 1, 2, . . . , N,

C(t+1) = −∇N̂l
F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
− ρ
(
N̂

(t+1)
l − N̂

(t)
l

)
.

By Eq. (4.2), we have A(t+1) = 0, B
(t+1)
k = 0 and C(t+1) = 0. We define





d
(t+1)
1 = ∇X̂l

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+A(t+1),

d
(t+1)
2k = ∇Gl,k

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+ B

(t+1)
k , k = 1, 2, . . . , N,

d
(t+1)
3 = ∇N̂l

F
(
X̂

(t+1)
l ,G

(t+1)
l,k , N̂

(t+1)
l

)
+ C(t+1).

It is easy to check that dk+1 , {d
(t+1)
1 , d

(t+1)
2k , d

(t+1)
3 } ∈ ∂F (H

(t+1)
l ). Since ∇F is

Lipschitz continuous on any bounded set. By the boundedness of H
(t)
l and Lipschitz

continuity of ∇F , we have

‖dk+1‖F ≤ ρ
∥∥H(t+1)

l −H
(t)
l

∥∥
F
.

The proof of the relative error lemma is complete. �

Subsequently, we provide the theoretical convergence guarantee of Algorithm 3.1.

Theorem 4.1. The bounded sequence {X̂l,Gl,k, N̂l} generated by Algorithm 3.1 globally

converges to a critical point of Eq. (3.2).

Proof. In order to establish the global convergence of {X̂l,Gl,k, N̂l} to a critical point

of F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ), we need to satisfy the following three key conditions:

1. F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ) is a proper lower semi-continuous function.

2. F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ) satisfies the K-Ł property at each {X̂l,Gl,k, N̂l} ∈ dom(F ).
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3. The sequence {X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l } satisfies the sufficient decrease and relative error

conditions.

First, F is composed of five Frobenius norm functions that its gradient is Lipschitz con-

tinuous. Therefore, F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ) is a proper and lower semi-continuous function.

Second, the Frobenius norm function 1
2‖X̂l − FCTN(Gl,1,Gl,2, . . . ,Gl,N )‖2F , λ

2‖N̂l‖
2
F

and β
2 ‖Ŷl − X̂l − N̂l‖

2
F are semi-algebraic [4] functions. According to Remark 4.1, they

are K-Ł functions.

Thirdly, by referring to Lemmas 4.1 and 4.2, the sequence F (X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l ) satis-

fies both the sufficient decrease and relative error conditions.

In conclusion, combining these three key conditions, Algorithm 3.1 satisfies [2, The-

orem 6.2]. Therefore, we can conclude that the sequence {X̂
(t)
l ,G

(t)
l,k , N̂

(t)
l } generated

by Algorithm 3.1 converges to a critical point of F .

5. Experiments

In this section, we conducted distinct simulation experiments and real experiments

to validate the effectiveness of our RSI denoising method. Additionally, we compared

it with five state-of-the-art methods, namely BM4D [19], LRTA [21], LRTDTV [27],

NLRTA [24], and FCTN [38]. These are RSI reconstruction methods based on matrix

approximation or tensor approximation, respectively. The source code for the afore-

mentioned comparative methods was obtained from the authors’ respective websites,

and all parameters in the code were set as per the provided settings or manually ad-

justed to achieve the best results following reference recommendations. All experi-

ments were conducted on a desktop workstation running the Windows 10 operating

system and MATLAB R2021b. The workstation was equipped with a Core i7 3.20 GHz

CPU and 64 GB of memory.

5.1. Evaluation indexes

The assessment of image recovery quality involves the use of essential metrics,

namely the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)

[28]. These metrics are widely employed in the field of image processing to quantita-

tively evaluate the fidelity. In the context of image restoration, a higher PSNR value

indicates a more faithful and less noisy reconstruction, with the optimal value being

infinity, representing a perfect restoration devoid of any noise distortion.

Similarly, the SSIM index gauges the structural similarity between two images by

considering luminance, contrast, and structure. Its value ranges from −1 to 1, with 1 in-

dicating a perfect similarity and −1 representing complete dissimilarity. A higher SSIM

value signifies a closer resemblance between the reconstructed and original images,

signifying better preservation of image structures and details. It is important to note
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that the combination of PSNR and SSIM evaluations provides a robust and balanced

assessment of the restoration results.

5.2. Simulation experiments on multitemporal data

In this subsection, we conducted simulation experiments using two datasets, namely

France† and Jiangsu†, to evaluate the robustness of the NLFCTN method on multi-

temporal RSI datasets. Unlike HSI datasets, multi-temporal RSI datasets not only have

spatial and spectral properties, but also have temporal properties.

Benchmark DataSet: The France dataset was obtained through Landsat-8 imaging

over the airspace of France. It comprises four time points, each consisting of four

spectral bands (B1, B2, B3, and B4). The dataset has a spatial resolution of 30 me-

ters and a size of 400 × 400 × 4 × 4, with 10m/pixel spatial resolution. In addition,

the Jiangsu dataset was acquired using Sentinel-2 imaging over the Jiangsu region in

China. Similar to the France dataset, it consists of four time points, with each time

point encompassing four spectral bands (B2, B3, B4, and B8). The dataset has a spatial

resolution of 10 meters and a size of 400×400×4×4, with 10m/pixel spatial resolution.

These datasets were specifically chosen to simulate realistic multi-temporal scenarios

and provide a comprehensive evaluation of the NLFCTN method’s performance across

varying spatial and spectral resolutions.

Experimental results: We added Gaussian noise with different mean values to the

multitemporal RSI dataset to evaluate the effectiveness of our NLFCTN method. This

step is intended to simulate different noise levels that may be encountered in real-world

application scenarios, so as to more comprehensively assess the practicality and adapt-

ability of the NLFCTN method. Specifically, we generated three noise datasets with

different variances corresponding to σ = 0.06, σ = 0.08 and σ = 0.10. By introduc-

ing these different levels of noise data, we were able to test and analyze the NLFCTN

method in more complex and diverse noise environments to fully understand how its

denoising effect performs under different noise conditions.

For the France dataset, we have compiled the quantitative results of various meth-

ods under different variances of Gaussian noise in Table 1. The best-performing out-

comes from the comparison experiment are denoted in bold, enabling easy identifica-

tion. Upon thorough examination, it becomes evident that the reconstruction results of

the NLFCTN method exhibit higher MPSNR and MSSIM values. This significant finding

suggests that the RSI reconstructed by our proposed NLFCTN method achieves a closer

resemblance to the clean RSI in quantitative evaluation. In Fig. 3, we showcase the re-

covery results achieved on the France dataset, illustrating a compelling demonstration

of the superiority of our NLFCTN method over the alternative approaches. Our method

†https://theia.cnes.fr/atdistrib/rocket/#/home
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Table 1: Numerical results of France and Jiangsu datasets. The larger the value of MPSNR and MSSIM,
the better the reconstruction effect, which is emphasized in bold. The smaller the running time (seconds),
the faster the running speed.

Dataset σ Index Noisy BM4D LRTA LRTDTV NLRTA FCTN NLFCTN

France

0.06

MPSNR 24.429 36.004 34.470 35.297 24.440 34.114 36.509

MSSIM 0.3345 0.8683 0.8227 0.8770 0.3349 0.8091 0.8965

Time - 49.066 2.1632 33.597 45.597 388.34 799.50

0.08

MPSNR 21.936 33.119 33.337 34.063 21.928 31.398 34.133

MSSIM 0.2277 0.7680 0.7829 0.8051 0.2274 0.6954 0.8391

Time - 49.131 1.7451 33.673 34.844 381.18 785.46

0.1

MPSNR 20.005 32.038 32.421 32.429 20.000 29.229 33.001

MSSIM 0.1624 0.7046 0.7488 0.7395 0.1623 0.5824 0.7939

Time - 49.107 1.5671 35.372 32.213 381.70 788.81

Jiangsu

0.06

MPSNR 24.435 31.789 30.363 30.508 24.438 31.485 32.273

MSSIM 0.5572 0.8045 0.8107 0.8305 0.5573 0.8575 0.8840

Time - 49.216 3.8802 34.287 37.522 384.98 808.71

0.08

MPSNR 21.939 30.410 28.812 29.946 21.930 30.047 31.202

MSSIM 0.4344 0.8057 0.7499 0.8099 0.4340 0.8081 0.8518

Time - 49.245 3.1621 34.782 32.706 382.59 797.34

0.1

MPSNR 20.002 29.341 27.944 29.259 19.996 28.578 30.074

MSSIM 0.3432 0.8092 0.7084 0.7814 0.3429 0.7485 0.8125

Time - 49.318 2.7361 34.546 32.546 412.61 989.87

excels in preserving crucial image structures and intricate details, as clearly observed

in the magnified regions.

Similarly, Table 1 provides comprehensive MPSNR, MSSIM, and runtime results

for all competing methods on the Jiangsu dataset. Once again, the highest MPSNR

and MSSIM values, along with the lowest runtime values, are marked in bold for easy

reference. Remarkably, our proposed NLFCTN method consistently outperforms the

alternative approaches in terms of MPSNR and MSSIM metrics. To further validate the

effectiveness of our method in preserving image quality, Fig. 4 presents the recovery

results obtained on the Jiangsu dataset. The visual comparison convincingly supports

the superiority of our NLFCTN method, as it faithfully retains image quality and exhibits

superior performance compared to other methods.

5.3. Simulation experiments on HSI data

In this subsection, we perform simulation experiments using two datasets, Pavia

Centre‡ (PaC) and Washington DC Mall‡ (WDC), to evaluate the robustness of the

NLFCTN method on HSI.

‡https://rslab.ut.ac.ir/data
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Clean Noisy BM4D LRTA

LRTDTV NLRTA FCTN NLFCTN

Figure 3: Experimental results on the France dataset. Gaussian noise with variance σ = 0.06 was added to
the simulation experiment. For a better view of the visualization, we performed a double local magnification,
where the blue and green boxes correspond to the enlarged area.

Clean Noisy BM4D LRTA

LRTDTV NLRTA FCTN NLFCTN

Figure 4: Experimental results on the Jiangsu dataset. Gaussian noise with variance σ = 0.06 was added to
the simulation experiment. For a better view of the visualization, we performed a double local magnification,
where the blue and green boxes correspond to the enlarged area.
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Benchmark DataSet: In our experiments, we select a subimage with dimensions

200 × 200 × 80 from the PaC dataset, where these 80 bands are noise-free bands, with

1.3m/pixel spatial resolution. In addition, we select a subimage of size 256× 256× 191
from the WDC dataset, where these 191 bands are noise-free bands, with 2m/pixel spa-

tial resolution. Both PaC and WDC datasets are HSI datasets, which contain rich spatial

and spectral information.

Experimental results: Table 2 presents the results for MPSNR, MSSIM, and runtime

of all comparative methods on the PaC dataset, enabling a quantitative assessment.

The highest values for MPSNR and MSSIM, as well as the lowest runtime values, are

highlighted in bold. Remarkably, the NLFCTN method proposed in this study exhibits

significantly superior MPSNR and MSSIM scores compared to the other compet-

ing methods. Specifically, at the noise level of σ = 0.08, NLFCTN demonstrates an

approximate 2.79dB improvement in MPSNR compared to the second-best LRTDTV

method. This improvement can be attributed to the ability of FCTN decomposition to

preserve more intrinsic tensor structure, resulting in enhanced denoising performance

for NLFCTN. To conduct a visual quality assessment, Fig. 5 presents the pseudo-color

images illustrating the noisy result at a noise level of σ = 0.10. To facilitate a compre-

Clean Noisy BM4D LRTA

LRTDTV NLRTA FCTN NLFCTN

Figure 5: Experimental results on the PaC dataset. Gaussian noise with variance σ = 0.1 was added to the
simulation experiment. For a better view of the visualization, we performed a double local magnification,
where the blue and green boxes correspond to the enlarged area.
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Table 2: Numerical results of PaC and WDC datasets. The larger the value of MPSNR and MSSIM, the
better the reconstruction effect, which is emphasized in bold. The smaller the running time (seconds), the
faster the running speed.

Dataset σ Index Noisy BM4D LRTA LRTDTV NLRTA FCTN NLFCTN

PaC

0.06

MPSNR 24.436 36.780 35.940 35.903 37.671 36.681 39.575

MSSIM 0.6530 0.9660 0.9581 0.9601 0.9690 0.9630 0.9821

Time - 68.418 1.0871 30.529 33.615 156.64 1189.9

0.08

MPSNR 21.933 35.016 34.284 35.006 34.186 34.116 37.790

MSSIM 0.5330 0.9500 0.9411 0.9512 0.9460 0.9361 0.9730

Time - 68.461 1.2840 30.044 30.055 156.25 1187.9

0.1

MPSNR 20.006 33.680 33.192 34.094 32.840 32.031 36.255

MSSIM 0.4370 0.9340 0.9271 0.9400 0.9271 0.9030 0.9622

Time - 68.320 2.0371 30.252 30.119 157.91 1205.9

WDC

0.06

MPSNR 24.439 36.197 37.256 33.160 38.993 36.62 37.521

MSSIM 0.6771 0.9651 0.9700 0.9340 0.9780 0.9680 0.9761

Time - 345.63 2.9821 98.633 127.41 400.83 4814.7

0.08

MPSNR 21.939 34.343 35.142 33.004 35.931 35.703 37.168

MSSIM 0.5661 0.9471 0.9542 0.9311 0.9565 0.9602 0.9741

Time - 340.62 3.1151 98.032 147.01 389.33 4604.0

0.1

MPSNR 20.000 32.924 33.792 32.822 33.267 34.609 36.624

MSSIM 0.4741 0.9271 0.9405 0.9291 0.9232 0.9505 0.9711

Time - 344.61 2.5891 99.766 199.25 393.18 4616.5

hensive comparison, we employed the double local magnification technique to select

two representative regions of the dataset for magnification comparison. The same ar-

eas in each subgraph are highlighted with blue and green boxes. As depicted in Fig. 5,

the NLFCTN method effectively eliminates Gaussian noise, yielding clearer and more

detailed results.

Table 2 shows the results of comparison experiments on WDC simulation dataset.

The NLFCTN method proposed in this paper demonstrates superior results in terms of

MPSNR and MSSIM measurement metrics, particularly under high noise levels. Com-

pared with matrix method, NLFCTN has better effect under MPSNR. This demonstrates

that tensors are more effective in capturing the global data correlation compared to

matrices. By observing Fig. 6, it can be seen that NLFCTN is more effective in recon-

structing the contaminated spectral curve on PaC dataset than other methods. More-

over, our proposed NLFCTN method outperforms the alternative method, particularly

at high noise levels, showcasing its enhanced robustness for RSI denoising. Fig. 7

presents the visualization results of the reconstruction obtained by our method along-

side the comparison method, providing visual evidence of the efficacy of our approach.

By observing Fig. 8, it can be seen that the NLFCTN method effectively reconstructs the

spectral curve polluted by noise.
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Figure 6: Spectral curves reconstructed by the NLFCTN method and other comparison methods on the PaC
dataset.

Clean Noisy BM4D LRTA

LRTDTV NLRTA FCTN NLFCTN

Figure 7: Experimental results on the WDC dataset. Gaussian noise with variance σ = 0.1 was added to the
simulation experiment. For a better view of the visualization, we performed a double local magnification,
where the blue and green boxes correspond to the enlarged area.

5.4. Real experiments on HSI data

In order to ascertain the efficacy of our proposed method, we conducted a compar-

ative analysis against existing techniques using two real-noise HSIs. Since real-noise
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Figure 8: Spectral curves reconstructed by the NLFCTN method and other comparison methods on the
WDC dataset.

HSIs typically lack corresponding noise-free reference images, we are constrained to

solely conduct qualitative assessments of the denoising performance using real data.

We assess the performance of our proposed NLFCTN method on real datasets by utiliz-

ing the Indian Pines§ and Urban§ datasets.

Benchmark DataSet: The Indian Pines dataset was acquired using AVIRIS and con-

sists of 145 × 145 pixels and 224 bands. In our experiments, we utilized sub-images

with a size of 145 × 145 × 200, with 20m/pixel spatial resolution. The Urban dataset

was collected using HYDICE and comprises 307 × 307 pixels and 210 spectral bands,

with 2m/pixel spatial resolution. In our experiments, we employed the entire image of

the Urban dataset.

Experimental results: Fig. 9 depicts the pseudo-color images of the original Indian

Pines dataset and the corresponding denoised results. It can be seen from Fig. 9 that

the noise reduction effect of LRTA method is poor, the image reconstructed by BM4D

method is too smooth, while the noise reduction effect of LRTDTV, NLRTA, FCTN and

our proposed NLFCTN method is better. For a detailed comparison, we employed the

double local magnification technique to magnify the same region in each sub-map.

The denoising results of the LRTA show edge distortion or blurring, while the BM4D,

LRTDTV, NLRTA, FCTN, and NLFCTN retain sharp edge details. Fig. 10 presents the

pseudo-color images of the Urban dataset. It can be observed from Fig. 10 that the

original image is contaminated with Gaussian noise and streaks. The results from LRTA

and NLRTA retained some traces of blue noise and streaks, while the results from BM4D

§https://rslab.ut.ac.ir/data
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Observed BM4D LRTA LRTDTV

NLRTA FCTN NLFCTN

Figure 9: Experimental results on the Indian Pines dataset. For a better view of the visualization, we
performed a double local magnification, where the blue and green boxes correspond to the enlarged area.

Observed BM4D LRTA LRTDTV

NLRTA FCTN NLFCTN

Figure 10: Experimental results on the Urban dataset. For a better view of the visualization, we performed
a double local magnification, where the blue and green boxes correspond to the enlarged area.
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and LRTDTV smoothed the image excessively. On the other hand, FCTN and our pro-

posed NLFCTN method successfully remove Gaussian noise and blue stripes.

6. Discussion

In this section, we quantitatively analyze the influence of parameters on the NLFCTN

method. There are two types of parameters in our model, one is the regularization pa-

rameter λ, and the other is the penalty parameter β and ρ. Next, we analyze the

influence of these two types of parameters on the model respectively.

Regularization parameter λ: This parameter is used to adjust the weight of the reg-

ular term ‖N̂l‖
2
F . The larger the regularization parameter λ, the greater the weight

of the regular term ‖N̂l‖
2
F . We conducted experiments on the France and Jiangsu

datasets. The Gaussian noise variance σ = 0.06 added to the experiment, and the

value of λ was selected from {0.001, 0.01, 0.1, 1, 10, 100, 1000}. By observing Fig. 11(a),

it can be seen that the model is not very sensitive to the regularization parameter λ.

As the value of λ changes, the PSNR value of the simulated experiment fluctuates

in a stable interval. Therefore, we suggest that λ can be selected in the range of

{0.001, 0.01, 0.1, 1, 10, 100, 1000}.

Penalty parameter β and ρ: The penalty parameters β and ρ are used to balance the

increased penalty term. Similar to the regularization parameter λ analysis, the penalty

parameters β and ρ were also subjected to parameter sensitivity experiments on the

France and Jiangsu datasets, and the experimental settings and parameter selection

ranges were consistent. By observing Fig. 11(b), we can find that the performance

of the NLFCTN method decreases when the parameter β is large. Especially when

β = 1000, our proposed method has limited recovery performance on both datasets.

Therefore, we recommend β to be selected between {0.001, 0.01, 0.1, 1, 10}, and the

RSI reconstruction effect is better. In addition, Fig. 11(c) shows the effect of parameter

ρ on the model. It can be seen that the PSNR values of the two data sets have a process

(a) (b) (c)

Figure 11: Parameter sensitivity analysis on France and Jiangsu datasets, Gaussian noise level σ = 0.06.
(a) The PSNR value varies with the regularization parameter λ. (b) The PSNR value changes with the
penalty parameter β. (c) The PSNR value changes with the penalty parameter ρ.
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of rising first and then falling with the parameter ρ. For this reason, we recommend

that the parameter ρ be selected between {0.1, 1, 10}.

7. Conclusions

Compared with conventional images, RSIs contain more spectral information and

spatial features with a higher number of bands, and they play an increasingly impor-

tant role in the fields of feature identification and military operations. In this paper,

we first apply the FCTN algorithm to the global image for initial denoising, and then

perform NSS image block finding on the initial denoised image, and recombine the

image blocks with NSS to form NSS image blocks, which improves the dimensionality

of the input data of the subsequent FCTN algorithm. The FCTN algorithm is continued

for subsequent NSS image blocks, which both exploits the similar image information of

NSS image blocks and the ability of FCTN to not destroy tensor potential information

on higher-order tensors. Finally, each group of noise reduced NSS image blocks is re-

assembled to form the final denoised global image. In this process we utilize the PAM

algorithm for model solving, which ensures the convergence of the results. The final

experimental results show that the proposed NLFCTN denoising algorithm can achieve

significant improvement in MPSNR and MSSIM data indexes for remote sensing images

with high noise pollution.
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