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Abstract. This paper is concerned with a C1-conforming Gauss collocation approxi-
mation to the solution of a model two-dimensional elliptic boundary problem. Super-
convergence phenomena for the numerical solution at mesh nodes, at roots of a spe-
cial Jacobi polynomial, and at the Lobatto and Gauss lines are identified with rigor-
ous mathematical proof, when tensor products of C1 piecewise polynomials of degree
not more than k,k ≥ 3 are used. This method is shown to be superconvergent with
(2k−2)-th order accuracy in both the function value and its gradient at mesh nodes,
(k+2)-th order accuracy at all interior roots of a special Jacobi polynomial, (k+1)-th
order accuracy in the gradient along the Lobatto lines, and k-th order accuracy in the
second-order derivative along the Gauss lines. Numerical experiments are presented
to indicate that all the superconvergence rates are sharp.
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1 Introduction

The C1-conforming Gauss collocation method, also known as orthogonal spline colloca-
tion (OSC) method or spline collocation at Gauss points, was first proposed and studied
by de Boor and Swartz [21] for solving two-point boundary value problems. Since then,
considerable advances have been made in the formulation, analysis and application of

∗Corresponding author. Email addresses: caowx@bnu.edu.cn (W. Cao), lljia@sdnu.edu.cn (L. Jia),
ag7761@wayne.edu) (Z. Zhang)

http://www.global-sci.org/csiam-am 1 ©2024 Global-Science Press



2 W. Cao, L. Jia and Z. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-30

this method, especially OSC for partial differential equations such as elliptic equations,
initial-boundary value problems for parabolic, hyperbolic and Schrödinger-type systems
(see, e.g. [22,25,28–30]) and so on. Comparing with the counterpart C1-conforming finite
element method, the most attractive feature of the C1 collocation method is the simple
and fast calculation of the coefficients of the mass and stiffness matrices since no inte-
grals need to be evaluated or approximated, as well as its desired superconvergence phe-
nomena not shared by the C1 finite element method. Compared to the C0 type such as
finite volume methods (FVMs) and finite element methods (FEMs) or L2 type such as the
discontinuous Galerkin (DG) method, the advantage of the C1-conforming method lies
in the continuity of the first-order derivative approximation across the element interface
and the higher order approximation in the second-order derivative approximation, with
the same or less degrees of freedom.

There are some theoretical a priori results for the C1-conforming Gauss collocation
method in the literature, we refer to [4,6,26,27] for an incomplete list of reference. In [4,27]
the authors analyzed the C1-conforming Gauss collocation method for two dimensional
elliptic equations on the rectangular mesh and established existence, uniqueness of the
numerical solution, and derived optimal error estimates in the H2, H1 and L2-norms.
Meanwhile, superconvergence property of the method has also been investigated. It
was proved in [5] that the solution of the C1-conforming Gauss collocation method for
the two-point boundary value problem is superconvergent at nodes with an order of
O(h2k−2). As for two dimensional elliptic problems, it was observed numerically in [7,8]
that the gradient value at the mesh nodes on rectangles has the same convergence rate
O(h2k−2). However, a theoretical proof of this remarkable property remains open. Only
for a very special case, i.e. k = 3 on uniform rectangular meshes, the authors in [3, 5]
proved a fourth-order accuracy for the gradient approximation at mesh nodes. Compar-
ing with other numerical methods such as FEMs (see, e.g. [2, 9, 23, 24, 31, 33]), FVMs (see,
e.g. [10, 14, 16, 19, 34]), DG methods (see, e.g. [1, 13, 15, 18, 35]), spectral Galerkin meth-
ods (see, e.g. [36,37]) in the literature, the superconvergence study for the C1-conforming
Gauss collocation methods is far from satisfied and developed.

The main purpose of our current work is to present a full picture for superconver-
gence properties of the C1 collocation method for second-order elliptic problems in the
two-dimensional setting. We prove that the method achieves convergence rate 2k−2 for
both solution and its gradient at mesh nodes under quasi-uniform rectangular meshes
for piecewise bi-k polynomial space. In other words, we extend the superconvergence
results in [3, 5] from a special case (i.e. k= 3 on uniform rectangular meshes) to a more
general case (i.e. any polynomial k≥3 on non-uniform rectangular meshes). In addition,
some new superconvergence points and lines are discovered, which are identified as Lo-
batto and Gauss lines and roots of a generalized Jacobi polynomial. To be more precise,
we prove that the method is superconvergent with order k+2 at roots of a generalized Ja-
cobi polynomial for the solution approximation; with order k+1 at interior Lobatto lines
for the gradient approximation; with order k at Gauss lines for the second-order deriva-
tive approximation. As a byproduct, a supercloseness result of the numerical solution
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towards a particular Jacobi projection of the exact solution is derived in all Hm-norms,
m=0,1,2.

To establish the superconvergence results for the C1-conforming Gauss collocation
method, we first construct suitable basis functions (i.e. a special class of Jacobi polyno-
mials) for the tensor product C1 piecewise polynomial space. With the help of the special
Jacobi polynomial, we then design a special Jacobi projection based on the truncated Ja-
cobi expansion of the exact solution. Finally, we adopt the idea of correction function to
prove that the numerical solution is superconvergent to this particularly designed Jacobi
projection and thus shares the same superconvergent results with it. The key ingredient
of our superconvergence analysis is the correction idea, which is motivated from its suc-
cessful applications to FEMs, FVMs, and DG methods (see, e.g. [15–17]). However, due
to the difference among these numerical schemes and different choice of approximation
spaces, the correction function for the C1 collocation method is very different from its C0

counterpart methods in [15–17].
The rest of the paper is organized as follows. In Section 2, we present a C1-conforming

Gauss collocation method for two-dimensional elliptic equations over rectangular me-
shes. In Section 3, we prove the existence and uniqueness of the numerical scheme.
In Section 4, we construct a C1-conforming Jacobi projection of the exact solution and
study the approximation and superconvergence properties of the special Jacobi projec-
tion. Section 5 is the main and most technical part, where optimal error estimates and
superconvergence behavior at the mesh points (function and first-order derivative value
approximations), at interior roots of Jacobi polynomials (function value approximation),
at Lobatto lines (first-order derivative value approximation) and Gauss lines (the second-
order derivative value approximation) are investigated. Numerical experiments support-
ing our theory are presented in Section 6. Some concluding remarks are provided in
Section 7.

Throughout this paper, we adopt standard notations for Sobolev spaces such as
Wm,p(D) on sub-domain D⊂Ω equipped with the norm ‖·‖m,p,D and semi-norm |·|m,p,D.
When D=Ω, we omit the index D; and if p=2, we set Wm,p(D)=Hm(D),‖·‖m,p,D=‖·‖m,D,
and |·|m,p,D = |·|m,D. Notation A.B implies that A can be bounded by B multiplied by
a constant independent of the mesh size h.

2 A C1-conforming Gauss collocation method

We consider the following convection-diffusion problem:

Lu :=−∇·(α∇u)+β·∇u+γu= f in Ω=(a,b)×(c,d),

u=0 on ∂Ω,
(2.1)

where α≥α0>0,γ−∇·β/2≥0,γ≥0, β=(β1,β2),γ∈L∞(Ω̄), and f is a real-valued function
defined on Ω̄. For simplicity, we assume that α, β,γ are all constants. The analysis can be
generalized to the variable coefficient cases without any difficulty.
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Let a= x0 < x1 < ···< xM = b and c= y0 < y1 < ···< yN = d. For any positive integer r,
we define Zr ={1,2,.. . ,r}, and denote by Th the rectangular partition of Ω. That is

Th =
{

τi,j=[xi−1,xi]×[yj−1,yj] : (i, j)∈ZM×ZN

}

.

For any τ∈Th, we denote by hx
τ ,h

y
τ the lengths of x- and y-directional edges of τ, respec-

tively. h is the maximal length of all edges, and hmin =minτ(hx
τ ,h

y
τ). We assume that the

mesh Th is quasi-uniform in the sense that there exists a constant c>0 such that

h≤ chmin.

We define the C1 finite element space as follows:

Vh :=
{

v∈C1(Ω) : v|τ ∈Qk(x,y)=Pk(x)×Pk(y),τ∈Th

}

,

where Pk denotes the space of polynomials of degree not more than k. Let

V0
h :={v∈Vh : v|∂Ω =0}.

Define reference element τ̂ = [−1,1]×[−1,1] and let Gj, j ∈ Zk−1 be Gauss points of

degree k−1 (i.e. zeros of the Legendre polynomial Lk−1) in [−1,1]. Then gτ̂
i,j = (Gi,Gj),

i, j∈Zk−1 constitute (k−1)2 Gauss points in τ̂. Given τ∈Th, let Fτ be the affine mapping
from τ̂ to τ. Then Gauss points of degree k−1 in τ are

Gτ =
{

gτ
i,j : gτ

i,j =Fτ(Gi,Gj), i, j∈Zk−1

}

.

The Gauss-collocation method to (2.1) is: Find a uh∈V0
h such that

(

−∇·(α∇uh)+β·∇uh+γuh

)(

gτ
i,j

)

= f
(

gτ
i,j

)

, (i, j)∈Zk−1×Zk−1, ∀τ∈Th. (2.2)

To end with this section, we would like to relate the above equation (2.2) to its equiv-
alent bilinear form, which serves as a basis in our later convergence analysis. For any
τ∈Th, denote by wτ

i,j the associated Gauss weights corresponding to the Gauss points gτ
i,j,

and (·,·)∗,τ the discrete inner product over τ, i.e.

(u,v)∗,τ =
k−1

∑
i,j=1

(uv)
(

gτ
i,j

)

wτ
i,j, ∀u,v.

We define

(u,v)∗ := ∑
τ∈Th

(u,v)∗,τ = ∑
τ∈Th

k−1

∑
i,j=1

(uv)
(

gτ
i,j

)

wτ
i,j,

and the bilinear form

a(u,v) := ∑
τ∈Th

k−1

∑
i,j=1

(

−∇·(α∇u)+β·∇u+γu
)(

gτ
i,j

)

v
(

gτ
i,j

)

wτ
i,j=(Lu,v)∗. (2.3)
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For any v∈Qk−2, we multiply v(gτ
i,j)w

τ
i,j in both side of (2.2) and sum up all elements to

obtain

a(uh,v)=( f ,v)∗= ∑
τ∈Th

k−1

∑
i,j=1

f
(

gτ
i,j

)

v
(

gτ
i,j

)

wτ
i,j, ∀v∈Qk−2. (2.4)

Similarly, if we choose v∈Qk−2 to be the associated Lagrange basis function correspond-
ing to gτ

i,j in (2.4), we get (2.2) immediately. In other words, the numerical scheme (2.2) is

equivalent to (2.4).

3 Weak coercivity of the bilinear form

In this section, we study the property of the bilinear form a(·,·), especially the weak coer-
civity of a(·,·). Our later superconvergence analysis is based on this important property.

In each element τ ∈Th, we note that any function v∈Vh is a polynomial and differ-

entiable, and thus ∂i
x∂

j
yv|τ exists for all i, j ≤ k. Without causing confusion, we use the

notation ∂i
x∂

j
yv to represent the piecewise derivative function of v imposed on each τ∈Th.

For any function v∈V0
h , we define

I(v) :=(v,vxxyy)−(v,vxxyy)∗, J(v) :=(△v,vxxyy)−(△v,vxxyy)∗, (3.1)

E(v) :=(β·∇v,vxxyy)∗−(β·∇v,vxxyy), (3.2)

where (u,v)=∑τ∈Th

∫

τ(uv)(x,y)dxdy denotes the inner product of u,v.

Lemma 3.1. For any v∈V0
h the following relations hold:

I(v)≤0, J(v)≥0, |E(v)|≤Ch
(

‖vxxy‖
2
0+‖vyyx‖

2
0

)

.

Here C is a constant independent of the mesh size h.

The proof of the above lemma is given in the Appendix, see Section A.1.

Proposition 3.1. The bilinear form a(·,·) defined in (2.3) is weak coercive in the sense that

|a(v,vxxyy)|≥
α

4

(

‖vxyy‖
2
0+‖vxxy‖

2
0

)

−C‖v‖2
1, ∀v∈V0

h , (3.3)

where the constant C is independent of the mesh size h.

Proof. Recalling the definition of a(·,·) and the conclusions in Lemma 3.1, we easily get

a(v,vxxyy)≥ (−α△v+β·∇v+γv,vxxyy)+E(v)

≥ (α−Ch)
(

‖vxyy‖
2
0+‖vxxy‖

2
0

)

+γ‖vxy‖
2
0+(β·∇v,vxxyy), (3.4)
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where E(v) is defined in (3.2), and in the second step, we have used the integration by
parts and the fact that

∂i
xv(x,c)=∂i

xv(x,d)=∂i
yv(a,y)=∂i

yv(b,y)=0, ∀ i≥0, v∈V0
h .

We next estimate the term (β·∇v,vxxyy). On the one hand, we have, from a direct
calculation that

|(β·∇v,vxxyy)|= |(vxy,β1vxxy+β2vxyy)|≤
c0

α
‖vxy‖

2
0+

α

4

(

‖vxxy‖
2
0+‖vxyy‖

2
0

)

with c0=max(β2
1,β2

2). On the other hand, by the integration by parts, the inverse inequal-
ity, and the Cauchy-Schwarz inequality, we have

(vxy,vxy)=−(vxyy,vx)≤ǫ‖vxyy‖
2
0+

1

4ǫ
‖v‖2

1.

Here ǫ is a positive constant. By choosing a special ǫ satisfying c0ǫ/α≤α/4, there exists
a positive constant c1 independent of h such that

|(β·∇v,vxxyy)|≤
α

2

(

‖vxxy‖
2
0+‖vxyy‖

2
0

)

+c1‖v‖2
1. (3.5)

Plugging the above inequality into (3.4) leads to

a(v,vxxyy)≥
(α

2
−Ch

)

(

‖vxyy‖
2
0+‖vxxy‖

2
0

)

+γ‖vxy‖
2
0−c1‖v‖2

1

≥
α

4

(

‖vxyy‖
2
0+‖vxxy‖

2
0

)

+γ‖vxy‖
2
0−c1‖v‖2

1,

provided that h is sufficiently small. This finishes our proof.

Remark 3.1. By using the weak coercivity of the bilinear form and some Poincaré inequal-
ity, we can prove the uniqueness of the numerical solution of (2.2). Since the uniqueness
of the numerical solution and the optimal error estimates have been studied in [4, 27],
we omit the proof here and focus our attention on the superconvergence property of the
numerical solution.

4 The truncated Jacobi projection

This section is dedicated to the introduction of a special C1 truncated Jacobi projection of
the exact solution u. The truncated Jacobi projection plays important role in our super-
convergence analysis.

We begin with some orthogonal polynomials. Denote by Ln the Legendre polyno-
mial of degree n on [−1,1], and φn+1 the Lobatto polynomial of degree n+1, which is
defined by

φn+1(s) :=
∫ s

−1
Ln(s)ds=

1

2n+1
(Ln+1−Ln−1)=

1

n(n+1)
(s2−1)L′

n(s), n≥1. (4.1)
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Define

Jn+1(s) :=
∫ s

−1
φn(s)ds=

1

2n−1
(φn+1−φn−1)(s), n≥3. (4.2)

Actually, the original function Jn+1(s) defined here is exactly the standard Jacobi poly-
nomial J−2,−2

n+1 (s) of degree n+1 (see, e.g. [32]), which is orthogonal with respect to the

Jacobi weight function ω(s) :=(1−s)−2(1+s)−2.
Define the four Hermite interpolation basis functions on the interval [−1,1] as follows:

J0(s)=
1

4
(s+2)(1−s)2, J1(s)=

1

4
(2−s)(1+s)2,

J2(s)=
1

4
(s+1)(1−s)2, J3(s)=

1

4
(s−1)(1+s)2.

Then {Jn}∞
n=0 constitutes the basis function of C1 over [−1,1]. For any function v∈C1(Ω),

we suppose v(x,y) has the following Jacobi expansion in each element τij,(i, j)∈ZM×ZN :

v(x,y)|τij
=

∞

∑
p=0

∞

∑
q=0

vpq Jx
i,p(x)J

y
j,q(y), (4.3)

where vpq are coefficients dependent on v, and

Jx
i,p(x)= Jp

(

2x−xi−xi−1

hi

)

= Jp(s), J
y
j,p(y)= Jp

(

2y−yj−yj−1

hj

)

= Jp(s), s∈ [−1,1],

denote the Jacobi polynomial of degree p on [xi−1,xi] and [yj−1,yj], respectively. Now we
define a truncated Jacobi projection Phv∈Vh of v as follows:

Phv(x,y)|τi,j
:=

k

∑
p=0

k

∑
q=0

vpq Jx
i,p(x)J

y
j,q(y). (4.4)

Note that when k=3, the truncated Jacobi projection Phv is exactly the Hermite interpo-
lation of v.

Denote by lp,p ∈ Zk the Lobatto points of degree k in [−1,1], (i.e. zeros of Lobatto
polynomial φk). By the affine mapping Fτ from τ̂ to τ, the k2 Lobatto points in τ are

lτ :=
{

lτ
i,j : lτ

i,j=Fτ(li,lj), i, j∈Zk

}

.

Then the Lobatto points on the whole domain Ω are defined as

L :={z∈ lτ , τ∈Th}.

Similarly, for k≥3, let Rp, p∈Zk−3 be the k−3 zeros of Jk+1(s) except the point s=−1,1,
and we define

Rτ :=
{

Rτ
i,j : Rτ

i,j=Fτ(Ri,Rj), i, j∈Zk−3

}

, R :={z=Rτ ,τ∈Th}.
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Denote by E
g
x ,E

g
y the Gauss line along the x-direction and the y-direction. That is,

E
g
x :=

{

z=Fτ(Gi,s) : s∈ [−1,1], i∈Zk−1 ,τ∈Th

}

,

E
g
y :=

{

z=Fτ(s,Gi) : s∈ [−1,1], i∈Zk−1 ,τ∈Th

}

.

Similarly, the Lottabo line along the x-direction E l
x and along the y-direction E l

y on the
whole domain Ω are defined as

E l
x :=

{

z=Fτ(li,s) : s∈ [−1,1], i∈Zk ,τ∈Th

}

,

E l
y :=

{

z=Fτ(s,li) : s∈ [−1,1], i∈Zk ,τ∈Th

}

.

We have the following approximation properties for the Jacobi projection (see [12]).

Proposition 4.1. For any function v∈W l,∞(Ω)∩C1, assume that Phv is the truncated Jacobi
projection of v defined by (4.4). Then for any r≤min(k+1,l),

‖v−Phv‖m,p.hm‖u‖m,p, m≤min(k+1,l), p=2,∞,

(v−Phv)(xi,yj)=0, |(v−Phv)(z0)|.hr‖u‖r,∞,

∇(v−Phv)(xi,yj)=0, |∂x(v−Phv)(z1)|+|∂y(v−Phv)(z2)|.hr−1‖u‖r,∞,
∣

∣∂2
xx(v−Phv)(z3)

∣

∣+
∣

∣∂2
yy(v−Phv)(z4)

∣

∣+
∣

∣∂2
xy(v−Phv)(z5)

∣

∣.hr−2‖u‖r,∞,

(4.5)

where z0∈R,z1 ∈E l
x,z2∈E l

y,z3∈E
g
x ,z4∈E

g
y ,z5∈L.

5 Superconvergence analysis

In this section, we study the superconvergence properties of the C1 Gauss collocation
method. Our analysis is along this line: We first prove that the numerical solution is
super-close to a special projection uI of the exact solution in the H2-norm, and thus shares
the same superconvergence properties of uI ; then we use the approximation properties
of uI and the supercloseness results between uh and uI to establish the superconvergence
results of the numerical solution uh.

5.1 Construction of a special projection uI

Define
Wh :=

{

v∈L2(Ω) : v|τ ∈Qk−2(x,y)=Pk−2(x)×Pk−2(y),τ∈Th

}

. (5.1)

To construct the special projection uI ∈Vh superclose to uh in the H2-norm, we notice
that ∂2

x∂2
y(uI−uh)∈Wh, and then use the homogenous boundary condition, (3.3) and the

orthogonality a(u−uh,θ)=0 for any θ∈Wh to get

|uh−uI |
2
2.‖△uI−△uh‖

2
0

. a
(

uI−uh,∂2
x∂2

y(uI−uh)
)

+‖uI−uh‖1

= a
(

uI−u,∂2
x∂2

y(uI−uh)
)

+‖uI−uh‖1.
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In other words, to achieve our superconvergence goal, we need to construct a uI such
that the right-hand side term a(u−uI ,θ),θ∈Wh is of high order.

Define
uI =Phu−wh, (5.2)

where wh∈V0
h is a function to be determined. Note that

a(u−uI ,θ)= a(u−Phu,θ)+a(wh,θ).

Consequently, our ultimate goal is to design a special function wh to correct the error
bound of a(u−Phu,θ). We also call wh the correction function.

The following theorem indicates the existence of the correction function wh.

Theorem 5.1. Let u∈W2k+1,∞(Ω) is the solution of (2.1). There exists a wh∈V0
h such that

‖wh‖0,∞.hmin(k+2,2k−2)‖u‖2k+1,∞, ‖wh‖1,∞+h‖wh‖2,∞.hk+1‖u‖2k+1,∞, (5.3)

|wh(xi,yj)|+|∇wh(xi,yj)|.h2k−2‖u‖2k+1,∞. (5.4)

Furthermore, for any θ∈Wh there holds

|a(u−uI ,θ)|= |a(u−Phu+wh,θ)|.h2k−2‖u‖2k+1,∞‖θ‖0. (5.5)

The proof of Theorem 5.1 is given in the next subsection.

5.2 Superconvergence results

Thanks to the constructions of the correction function wh and uI , we are ready to present
the superconvergence results for the numerical solution uh.

Define
ξ :=uI−uh. (5.6)

Lemma 5.1. Assume that u∈W2k+1,∞(Ω) is the solution of (2.1). Then

‖∇ξ‖0 .h2k−2‖u‖2k+1,∞+h(‖ξxxy‖0+‖ξyyx‖0). (5.7)

Proof. First, we consider the following dual problem: Given any ζ∈ [C1(Ω)]2, let ψ be the
solution of the following dual problem:

−∇·(α∇ψ)−β·∇ψ+γψ=−∇·ζ in Ω,

ψ=0 on ∂Ω.
(5.8)

Using the integration by parts, for any v∈V0
h , we have

(∇v,ζ)=−(v,∇·ζ)=
(

v,−∇·(α∇ψ)−β·∇ψ+γψ
)

=
(

−∇·(α∇v)+β·∇v+γv,ψ−ψ̄+ψ̄
)

,
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where ψ̄∈Q0 denotes the cell average of ψ, i.e.

ψ̄|τ =
1

|τ|

∫

τ
ψdxdy.

Since (−∇·(α∇v)+β·∇v+γv)ψ̄ ∈Qk and the (k−1)-point Gauss numerical quadrature
is exact for polynomial of degree 2k−3, then

(

−∇·(α∇v)+β·∇v+γv, ψ̄
)

=
(

−∇·(α∇v)+β·∇v+γv, ψ̄
)

∗
= a(v,ψ̄), (5.9)

and thus

|(∇v,ζ)|.h(‖vxx‖0+‖vyy‖0+‖v‖1)‖ψ‖1+|a(v,ψ̄)|

.h(‖vxx‖0+‖vyy‖0+‖v‖1)‖ψ‖1+|a(v,ψ̄)|, ∀v∈V0
h . (5.10)

Now we choose v= ξ∈V0
h in the above inequality and use (5.5) to obtain

|(∇ξ,ζ)|.h(‖ξxx‖0+‖ξyy‖0+‖ξ‖1)‖ψ‖1+|a(u−uI ,ψ̄)|

.h(‖ξxx‖0+‖ξyy‖0+‖ξ‖1)‖ζ‖0+h2k−2‖u‖2k+1,∞‖ζ‖0,

where in the last step, we have used regularity result ‖ψ‖1 . ‖∇·ζ‖−1 . ‖ζ‖0. Since the
set of all such ζ is dense in L2(Ω), the above inequality indicates that

‖∇ξ‖0 .h(‖ξxx‖0+‖ξyy‖0)+h2k−2‖u‖2k+1,∞ (5.11)

for sufficiently small h. On the other hand, note that for any function v∈V0
h ,∂i

xv, i≥ 1 is
continuous about y satisfying ∂i

xv(x,c)= ∂i
xv(x,d)=0. Similarly, ∂i

yv, i≥1 is a continuous

function about x satisfying ∂i
yv(a,y)=∂i

yv(b,y). Then

vxx(x,y)=
∫ y

c
vxxy(x,y)dy, vyy(x,y)=

∫ x

a
vyyx(x,y)dx.

By the Poincaré inequality,

‖vxx‖0+‖vyy‖0.‖vxxy‖0+‖vyyx‖0. (5.12)

Then the desired result (5.7) follows by substituting (5.12) into (5.11).

Theorem 5.2. Assume that u∈W2k+1,∞(Ω) is the solution of (2.1), and uh is the solution of
(2.2). The following superconvergence properties hold true.

1. Supercloseness results between uh and the special truncated Jacobi projection of Phu in all
H2, H1, L2-norms

‖uh−Phu‖1+h‖uh−Phu‖2.hk+1‖u‖2k+1,∞,

‖uh−Phu‖0.hmin(k+2,2k−2)‖u‖2k+1,∞.
(5.13)
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2. Superconvergence of the function value and the first-order derivative at nodes, i.e.

eu,n+e∇u,n.h2k−2‖u‖2k+1,∞, (5.14)

where

ev,n=

(

1

MN

M

∑
i=1

N

∑
j=1

(v−vh)
2(xi,yj)

)
1
2

, v=u,∇u.

3. Superconvergence of function value approximation on roots of J−2,−2
k+1 (x)J−2,−2

k+1 (y), i.e.

eu,J :=

(

1

NM ∑
z∈R

(u−uh)
2(z)

)
1
2

.hmin(k+2,2k−2)‖u‖2k+1,∞. (5.15)

4. Superconvergence of first and second derivative value approximations on Lobatto and Gauss
line, respectively. That is,

e∇u,l.hk+1‖u‖2k+1,∞, e△u,g.hk‖u‖2k+1,∞, (5.16)

where

e∇u,l =

(

1

Nx
∑

z0∈E l
x

∂x(u−uh)
2(z0)+

1

Ny
∑

z1∈E l
y

∂y(u−uh)
2(z1)

)

1
2

,

e△u,g=

(

1

Mx
∑

z0∈E
g
x

∂2
xx(u−uh)

2(z0)+
1

My
∑

z1∈E
g
y

∂2
yy(u−uh)

2(z1)

)

1
2

.

Here Nx, Ny, Mx, My denote the cardinalities of E l
x,E l

y,E
g
x ,E

g
x , respectively.

Proof. First, by choosing v= ξ in (3.3) and using the orthogonality a(u−uh,θ)=0,θ∈Wh

and (5.5), we have

‖ξxxy‖
2
0+‖ξxyy‖

2
0.‖ξ‖2

1+a(u−uI ,ξxxyy)

.‖ξ‖2
1+h2k−3‖u‖2k+1,∞‖ξxxy‖0, (5.17)

where in the last step, we have used the inverse inequality ‖ξxxyy‖0.h−1‖ξxyy‖0. Substi-
tuting (5.7) into (5.17), we have

‖ξxxy‖0+‖ξxyy‖0.h2k−3‖u‖2k+1,∞,

which yields, together with (5.7) and (5.12) that

‖∇ξ‖0 .h2k−2‖u‖2k+1,∞,

‖ξ‖2 .‖ξxx‖0+‖ξyy‖0.h2k−3‖u‖2k+1,∞.
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Since ξ=0 on ∂Ω, we have from the Poincaré inequality,

‖ξ‖0 .‖ξ‖1 .h2k−2‖u‖2k+1,∞.

Then (5.13) follows from (5.3) and the triangle inequality.
By (4.5), (5.4) and the inverse inequality, we get

|(u−uh)(xi,yj)|= |(Phu+wh−uh)(xi,yj)−wh(xi,yj)|

.h−1‖ξ‖0,τi,j
+h2k−2‖u‖2k+1,∞,

and thus
eu,n.‖ξ‖0+h2k−2‖u‖2k+1,∞ .h2k−2‖u‖2k+1,∞.

Following the same argument, we have from (4.5) and (5.3)-(5.4) that

e∇u,n.‖∇ξ‖0+h2k−2‖u‖2k+1,∞,

eu,J.‖ξ‖0+hmin(k+2,2k−2)‖u‖2k+1,∞,

e∇u,l.‖∇ξ‖0+‖wh‖1,∞+hk+1‖u‖k+2,∞,

e△u,g.‖ξ‖2+‖wh‖2,∞+hk‖u‖k+2,∞.

Then (5.14)-(5.16) follow from the estimates of ‖ξ‖m ,m≤2. This finishes our proof.

For k≥4, we have the following point-wise superconvergent error estimates.

Corollary 5.1. Assume that u ∈ W2k+1,∞(Ω) is the solution of (2.1), and uh is the solution
of (2.2). Then for sufficiently small h,

|(u−uh)(z)|.hk+2 max
(

1,hk−4lnh
1
2
)

‖u‖2k+1,∞,

|∂x(u−uh)(z0)|+|∂y(u−uh)(z1)|.hk+1‖u‖2k+1,∞,
∣

∣∂2
xx(u−uh)(z2)

∣

∣+
∣

∣∂2
yy(u−uh)(z3)

∣

∣+
∣

∣∂2
xy(u−uh)(z4)

∣

∣.hk‖u‖2k+1,∞

with z∈R,z0 ∈E l
x,z1∈E l

y,z2∈E
g
x ,z3∈E

g
y ,z4∈L.

Here we omit the proof and refer to [12] for the same argument.

5.3 Proof of Theorem 5.1

To construct the correction function wh∈V0
h satisfying the conclusion of Theorem 5.1, we

first note that, from (4.3)-(4.4),

(u−Phu)(x,y)|τij
=

∞

∑
p=k+1

∞

∑
q=k+1

upq Jx
i,p(x)J

y
j,q(y)=(Exu+Eyu−ExEyu)(x,y), (5.18)
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where

Exu(x,y)|τij
=

∞

∑
p=k+1

∞

∑
q=0

upq Jx
i,p(x)J

y
j,q(y),

Eyu(x,y)|τij
=

∞

∑
p=0

∞

∑
q=k+1

upq Jx
i,p(x)J

y
j,q(y),

EyExu(x,y)|τij
=

∞

∑
p=k+1

∞

∑
q=k+1

upq Jx
i,p(x)J

y
j,q(y).

It has been proved in [12] that the term EyExu is of high-order, i.e.

‖ExEyu‖0,m+h‖ExEyu‖1,m+h2‖ExEyu‖2,m.hk+1+l‖u‖k+1+l,m, 0≤ l≤ k+1. (5.19)

Then
a(u−Phu+wh,θ)= a(Exu,θ)+a(Eyu,θ)+a(wh,θ)+O(hk+1+l)‖θ‖0.

In other words, the key ingredient in the proof of Theorem 5.1 is to design a correction
function wh to improve the error bound a(Exu,θ)+a(Eyu,θ). In the rest of this subsection,
we separately construct a function wx

h and w
y
h such that wh=wx

h+w
y
h and both the errors

a(Exu+wx
h,θ) and a(Eyu+w

y
h,θ) are of high-order.

5.3.1 Construction of the function wx
h for a(Exu,θ)

We begin with some preliminaries. First, let

L1 :=−α∂yy+β·∇+γ, L2 :=−α∂yy+β2∂y+γ. (5.20)

Second, we denote by

Bx
i =[xi−1,xi]×[c,d], i∈ZM,

B
y
j =[a,b]×[xj−1 ,xj], j∈ZN

the element band along the x-direction and y-direction, respectively. Denoting hx
i = xi−

xi−1,h
y
j =yj−yj−1 and (u,v)∗,τx

i
and (u,v)∗,τ

y
j

the (k+1)-point Gauss numerical quadrature

on τx
i and τ

y
j , respectively. That is,

(u,v)∗,τx
i

:=
k−1

∑
m=1

(uv)(Gx
i,m,y)wx

i,m, (u,v)∗,τ
y
j

:=
k−1

∑
m=1

(uv)(x,G
y
j,m)w

y
j,m,

where Gx
i,m and wx

i,m denote the Gauss points and corresponding Gauss weights over τx
i .

Similarly for G
y
j,m and w

y
j,m.

For any p≥ k, we denote by I x
p v∈Pp∩C0 the interpolation function of v satisfying

I x
p v|τx

i

(

Gx
i,m,y

)

=v
(

Gx
i,m,y

)

, m∈Zk−1, y∈ [c,d]. (5.21)
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Third, we define

W
y
h :=

{

v(y)∈C1([c,d]) : v|τy
j
∈Pk(y),v(c)=v(d)=0, j∈ZN

}

. (5.22)

Lemma 5.2 ( [11]). Given any smooth function g, assume that v(y)∈W
y
h is the solution of the

following problem:

−
N

∑
j=1

(v,θ)∗,τ
y
j
=

N

∑
j=1

(ζ,θ)∗,τ
y
j
, ∀ θ∈Pk−2(τ

y
j ). (5.23)

Then v(y) is well defined. Moreover, there holds

‖∂n
yv‖0,∞,[c,d].‖∂n

yζ‖0,∞,[c,d], ∀n≤ k. (5.24)

Now we are ready to construct the correction function wx
h. Given any l, where 1≤ l≤

k−2, we define a sequence of function wl ∈Vh for 1≤ l≤ k−2 as follows:

∂xxwl|Bx
i
=

k−2

∑
p=1

cl
i,p(y)Li,p(x), ∂xwl(xi,y)=0, i∈ZM , wl(a,y)=0, ∀y∈ [c,d], (5.25)

where Li,p(x) denotes the Legendre polynomial of degree p on τx
i , and cl

i,p(y)∈Pk(y) is

the solution of (5.23) with the right-hand function

ζ= ζ l
i,p(y) :=















2p+1

αhx
i

(

LExu,Li,p

)

∗,τx
i
, if l=1,

2p+1

αhx
i

(

L1wl−1,Li,p

)

∗,τx
i
, if 1< l≤ k−2.

(5.26)

Using (5.25) and properties of Legendre and Lobatto polynomials in (4.1)-(4.2), we have

∂xwl|Bx
i
=
∫ x

xi−1

∂xxwldx=
hx

i

2

k−1

∑
p=2

cl
i,p−1(y)φi,p(x), (5.27)

wl|Bx
i
=
∫ x

a
∂xwldx=

hx
i

2
cl

i,1(y)
∫ x

a
φi,2(x)dx+

(

hx
i

2

)2 k−1

∑
p=3

cl
i,p−1(y)Jx

i,p+1(x). (5.28)

Here φi,p, Jx
i,p separately denotes the Lobatto and Jacobi polynomials of degree p on τx

i .

We have the following properties for the specially defined functions wl, 1≤ l≤ k−2.

Lemma 5.3. Let wl,1≤ l ≤ k−2, be the sequence of functions defined by (5.25)-(5.28). If u∈
W2k+1,∞(Ω), then

∥

∥∂n
y cl

i,p

∥

∥

0,∞
.hm

∥

∥∂n
yu
∥

∥

m+2,∞
, m≤µl,p=max(2k−2−p,k+l−1), ∀n (5.29)

with cl
i,p the same as that in (5.25). Consequently,

|wl(xi,yj)|+|∇wl(xi,yj)|.h2k−2‖u‖2k+1,∞, (5.30)
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‖∇wl‖0,∞.hk+l‖u‖k+l+1,∞,
∥

∥∂n
ywl

∥

∥

0,∞
.hm′∥

∥∂n
yu
∥

∥

m′,∞
(5.31)

with m′≤min(k+l+1,2k−2).

The proof of Lemma 5.3 is given in the Appendix, see Section A.2.

Define

wx
h(x,y) :=

k−2

∑
l=1

wl(x,y). (5.32)

Proposition 5.1. Let u ∈ W2k+1,∞ be the solution of (2.1), and wx
h ∈ Vh be defined in (5.32),

(5.28). Then
∣

∣a(Exu+wx
h,θ)

∣

∣.h2k−2‖u‖2k+1,∞‖θ‖0, ∀ θ∈Wh. (5.33)

Proof. First, note that any function θ∈Wh can be decomposed into two terms, i.e. θ=θ0+θ1

with

θ1|τ ∈
(

Pk−2(x)\P0(x)
)

×Pk−2(y), θ0|τ ∈P0(x)×Pk−2(y).

By letting θ1= Li,q(x)v(y),q=1,2,.. . ,k−2,vp(y)∈Pk−2(y) and using (5.23), (5.26) and the
fact that the k−1 point Gauss numerical quadrature is exact for polynomials of degree
2k−3, we get for all 1≤ l≤ k−2 that

α(∂xxwl,θ1)∗,τi,j
=α

k−2

∑
p=1

(

cl
i,p(y),v(y)

)

∗,τ
y
j
(Li,p,Lj,q)∗,τx

i
=

αhx
i

2q+1

(

cl
i,q(y),v(y)

)

∗,τ
y
j

=
αhx

i

2q+1

(

ζ l
i,q,v(y)

)

∗,τi,j
=

{
(

LExu,θ1

)

∗,τi,j
, if l=1,

(L1wl−1,θ1)∗,τi,j
, if 1< l≤ k−2.

Consequently,

∣

∣a
(

Exu+wx
h,θ1

)
∣

∣=

∣

∣

∣

∣

(

LExu,θ1

)

∗
+

k−2

∑
l=1

(−α∂xxwl,θ1)∗+(L1wl,θ1)∗

∣

∣

∣

∣

= |(L1wk−2,θ1)∗|.h2k−2‖u‖2k+1,∞‖θ1‖0.

Here in the last step, we have used (5.31).

On the other hand, for all θ0∈P0(x)×Pk−2(y), we use the property of Gauss numerical
quadrature to obtain that

a
(

Exu+wx
h,θ0

)

=
(

LExu,θ0

)

∗
+

k−2

∑
l=1

(Lwl,θ0)∗

=
(

I
y
2k−3I

x
2k−3LExu,θ0

)

+
k−2

∑
l=1

(

I
y
2k−3Lwl ,θ0

)

=
4

∑
i=1

Ii,
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where

I1=
(

I
y
2k−3I

x
2k−3LExu−LExu,θ0

)

, I2=
(

LExu,θ0

)

,

I3=
k−2

∑
l=1

(

I
y
2k−3Lwl−Lwl,θ0

)

, I4=
k−2

∑
l=1

(Lwl,θ0).

We next estimate Ii, i≤4, respectively. Note that the function Exu(·,y)∈C1(·,y) is contin-
uous about y and there hold (see [12])

∂n
xExv(xi,y)=0, ∂2

xxExv⊥Pk−2(x), ∂n
y Exv(x,y)=Ex

(

∂n
yv
)

, ∀n, (5.34)

‖Exv‖0,m+h
∥

∥∂xExv
∥

∥

0,m
+h2

∥

∥∂2
xxExv

∥

∥

0,m
.hl‖v‖l,m, l≤ k+1. (5.35)

Then

|I2|=
∣

∣

(

LExu,θ0

)
∣

∣=
∣

∣

(

L2Exu,θ0

)
∣

∣≤

{

hk+1‖u‖k+2‖θ‖0, if k=3,

0, if k≥4.

By the approximation property of interpolation function I x
2k−3,I

y
2k−3, we have

|I1|.h2k−2‖LExu‖2k−2‖θ0‖0.h2k−2‖u‖2k‖θ0‖0.

Similarly, in light of (5.31), we get

|I3|.h2k−2
∥

∥∂2k−2
y Lwl

∥

∥

0,∞
‖θ0‖0.h2k−2‖u‖2k+1,∞‖θ0‖0.

As for I4, we use the integration by parts, (5.29), (5.28), and the fact that Jn⊥P0(x),n≥5
to obtain that

|I4|=

∣

∣

∣

∣

∣

k−2

∑
l=1

(L2wl,θ0)

∣

∣

∣

∣

∣

.
k−1

∑
l=1

M

∑
i=1

(

h
∥

∥L2cl
i,1

∥

∥

0,∞
+h2

∥

∥L2cl
i,2

∥

∥

0,∞

)

‖θ‖0

.h2k−2‖u‖2k+1,∞‖θ0‖0.

We combine all the estimates of Ii, 1≤ i≤4 together and then get

∣

∣a
(

Exu+wx
h,θ0

)
∣

∣.h2k−2‖u‖2k+1,∞‖θ0‖0.

Consequently,

a
(

Exu+wx
h,θ
)

= a
(

Exu+wx
h,θ0+θ1

)

.h2k−2‖u‖2k+1,∞‖θ‖0, ∀ θ∈Wh.

This finishes the proof of (5.33). The proof of Proposition 5.1 is complete.
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5.3.2 Construction of the function w
y
h for a(Eyu,θ)

Following the same argument, we can define a sequence of function w̄l∈Vh, 1≤1≤l≤k−2
on the element band B

y
j . Noticing that ∂yyw̄l|By

j
∈Pk−2(y), we define w̄l as follows:

∂yyw̄l|By
j
=

k−2

∑
p=1

dl
j,p(x)Lj,p(y), ∂yw̄l(x,yj)=0, j∈ZN , w̄l(x,c)=0, ∀ x∈ [a,b], (5.36)

where dl
j,p(x)∈Pk(x) is the solution of the following equation:

−
M

∑
i=1

(v,θ)∗,τx
i
=

M

∑
i=1

(ζ̄,θ)∗,τx
i
, ∀ θ∈Pk−2

(

τx
i

)

, v(a)=v(b)=0 (5.37)

with

ζ̄= ζ̄ l
j,p(y) :=



















2p+1

αh
y
j

(

LEyu,Lj,p

)

∗,τ
y
j
, if l=1,

2p+1

αh
y
j

(

(α∂xx+fi·∇+γ)w̄l−1,Lj,p

)

∗,τ
y
j
, if 1< l≤ k−2.

Define

w
y
h(x,y) :=

k−2

∑
l=1

w̄l(x,y). (5.38)

By the same argument as what we did in Lemma 5.3 and Proposition 5.1, we have

|w̄l(xi,yj)|+|∇w̄l(xi,yj)|.h2k−2‖u‖2k+1,∞, (5.39)

‖∇w̄l‖0,∞.hk+l‖u‖2k−1,∞,
∥

∥∂n
xw̄l

∥

∥

0,∞
.hm

∥

∥∂n
xu
∥

∥

m,∞
, (5.40)

∣

∣a
(

Eyu+w
y
h,θ
)
∣

∣.h2k−2‖u‖2k+1,∞‖θ‖0 (5.41)

with m≤min(k+l+1,2k−2).

5.3.3 Construction of wh and proof of Theorem 5.1

Now we define the correction function wh∈V0
h as follows:

wh(x,y)=
(

wx
h+w

y
h

)

(x,y)−
x−a

b−a
wx

h(b,y)−
y−c

d−c
w

y
h(x,d),

where wx
h,w

y
h are defined by (5.32) and (5.38).

We are ready to prove Theorem 5.1.

Proof. First, by the first equation of (5.29) and the definition of wx
h in (5.32) and (5.25),

we get
wx

h(x,c)=wx
h(x,d)=wx

h(a,y)=0, ∀ x∈ [a,b], y∈ [c,d].
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Similarly, there holds

w
y
h(a,y)=w

y
h(b,y)=wx

h(x,c)=0, ∀ x∈ [a,b], y∈ [c,d].

Then
wh(x,y)=0, ∀ (x,y)∈∂Ω.

Second, in light of (5.25), (5.27)-(5.28) and the estimates of cl
i,1 in (5.29), we have

∣

∣Lwx
h(b,y)

∣

∣=

∣

∣

∣

∣

∣

hx
M

2

k−1

∑
l=1

L2cl
M,1(y)

∫ b

a
φM,2(x)dx

∣

∣

∣

∣

∣

.h2k−2‖u‖2k+1,∞.

Following the same argument, there holds
∣

∣Lw
y
h(x,d)

∣

∣.h2k−2‖u‖2k+1,∞.

Consequently, by denoting

w̃h(x,y)=
x−a

b−a
wx

h(b,y)+
y−c

d−c
w

y
h(x,d),

we have
‖Lw̃h‖0,∞.

∣

∣Lwx
h(b,y)

∣

∣+
∣

∣Lw
y
h(x,d)

∣

∣.h2k−2‖u‖2k+1,∞.

Then for all θ∈Wh,

|a(w̃h,θ)|.‖Lw̃h‖0,∞‖θ‖0 .h2k−2‖u‖2k+1,∞‖θ‖0,

which yields, together with (5.33), (5.41) and the estimate of ExEyu in (5.19) that

|a(u−Phu+wh,θ)|=
∣

∣a
(

Exu+wx
h,θ
)

+a
(

Eyu+w
y
h,θ
)

−a(EyExu,θ)−a(w̃h,θ)
∣

∣

.h2k−2‖u‖2k+1,∞‖θ‖0.

The proof is complete.

6 Numerical experiments

In this section, we shall present some numerical examples to verify our theoretical find-
ings in previous sections. The C1-conforming Gauss collocation method is adopted for
solving the convection-diffusion equation (2.1) with k = 3,4,5. Non-uniform meshes of
M×N rectangles are obtained by randomly and independently perturbing each node in
the x- and y- axes of a uniform mesh as

xi=
i

M
+ε

1

M
sin

(

iπ

M

)

randn(), 0≤ i≤M,

yj =
j

N
+ε

1

N
sin

(

jπ

N

)

randn(), 0≤ j≤N,



W. Cao, L. Jia and Z. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-30 19

where randn() returns a uniformly distributed random number in (0,1). For simplicity,
we always choose M=N and ε=0.001 in the following experiments.

We shall measure various errors between the exact solution u and the numerical so-
lution uh as defined in Theorem 5.2, including eu,n (i.e. the function value error at mesh
nodes), e∇u,n (i.e. the gradient value error at mesh nodes), eu,J (i.e. the function value

error on roots of J−2,−2
k+1 (x)J−2,−2

k+1 (y)), e∇u,l (i.e. the gradient value error on the Lobotto
lines), and e∆u,g (i.e. the second-order derivative error on the Gauss lines). Errors be-

tween uh and the special truncated Jacobi projection Phu in all L2, H1,H2-norms are also
presented.

Example 6.1. We consider the problem (2.1) in Ω=(0,1)×(0,1) with the following con-
stant coefficients:

α=γ=1, β=(1,1).

The right-hand side function f (x,y) is chosen such that the exact solution is

u(x,y)= xy(1−x)(1−y)ex+y .

To test the superconvergence phenomena of uh, we present in Table 1 various ap-
proximation errors of u−uh for k=3,4,5. We observe that both convergence rates of the
function value error (i.e. eu,n) and the gradient value error (i.e. e∇u,n) at mesh nodes
are O(h2k−2). Moreover, the convergence rates of average errors eu,J, e∇u,l and e∆u,g can

reach O(hmin(k+2,2k−2)),O(hk+1), and O(hk), respectively. All these numerical results are
consistent with the theoretical results established in (5.14)-(5.16).

Table 1: Errors, corresponding convergence rates of u−uh for k=3,4,5 in Example 6.1.

k M
eu,n e∇u,n eu,J e∇u,l e∆u,g

Error Order Error Order Error Order Error Order Error Order

3

2 8.60e-04 - 2.09e-03 - - - 2.17e-03 - 1.32e-02 -

4 4.21e-05 4.35 1.11e-04 4.23 - - 1.47e-04 3.88 1.40e-03 3.24

8 2.28e-06 4.22 7.66e-06 3.86 - - 9.93e-06 3.89 1.67e-04 3.07

16 1.33e-07 4.09 5.21e-07 3.87 - - 6.48e-07 3.93 2.06e-05 3.01

4

2 5.13e-06 - 3.00e-05 - 3.22e-06 - 8.79e-05 - 6.10e-04 -

4 6.17e-08 6.39 4.37e-07 6.11 4.93e-08 6.04 3.11e-06 4.83 3.18e-05 4.27

8 8.33e-10 6.21 6.69e-09 6.03 7.71e-10 6.00 8.87e-08 5.13 1.94e-06 4.04

16 1.21e-11 6.11 1.04e-10 6.01 1.21e-11 6.01 2.70e-09 5.05 1.18e-07 4.04

5

2 3.12e-08 - 1.27e-07 - 6.26e-08 - 2.33e-06 - 1.90e-05 -

4 1.21e-10 8.01 4.98e-10 8.00 4.82e-10 7.03 3.43e-08 6.09 5.41e-07 5.14

8 4.70e-13 8.01 1.96e-12 7.98 3.75e-12 7.00 5.62e-10 5.93 1.66e-08 5.03

16 1.75e-15 8.08 7.78e-15 8.00 2.92e-14 7.02 8.82e-12 6.00 5.18e-10 5.01
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Table 2: Errors, corresponding convergence rates of uh−Phu for k=3,4,5 in Example 6.1.

k M
‖uh−Phu‖0 ‖uh−Phu‖1 ‖uh−Phu‖2

Error Order Error Order Error Order

3

2 3.04e-04 - 2.14e-03 - 2.34e-02 -

4 2.87e-05 3.40 1.79e-04 3.57 3.16e-03 2.89

8 1.93e-06 3.90 1.19e-05 3.92 4.16e-04 2.93

16 1.23e-07 3.96 7.58e-07 3.97 5.27e-05 2.98

4

2 4.03e-06 - 2.26e-05 - 2.33e-04 -

4 7.62e-08 5.73 5.62e-07 5.34 1.23e-05 4.25

8 1.25e-09 5.93 1.48e-08 5.24 7.29e-07 4.08

16 1.99e-11 5.99 4.37e-10 5.09 4.47e-08 4.03

5

2 2.80e-08 - 2.81e-07 - 7.40e-06 -

4 2.47e-10 6.82 4.89e-09 5.85 2.13e-07 5.12

8 1.81e-12 7.09 8.37e-11 5.87 6.60e-09 5.01

16 1.33e-14 7.10 1.35e-12 5.97 2.07e-10 5.01

Listed in Table 2 are the errors of uh−Phu in all L2, H1 and H2-norms. As we may
observe, the convergence rates for errors ‖uh−Phu‖0,‖uh−Phu‖1 and ‖uh−Phu‖2 are
O(hmin(k+2,2k−2)),O(hk+1) and O(hk), respectively. These results verify the convergence
orders predicted in (5.13). In other words, the C1-conforming Gauss collocation solution
uh is superconvergent towards the particular Jacobi projection Phu of the exact solution u.

Example 6.2. We consider the problem (2.1) in Ω=(0,1)×(0,1) with variable coefficients
of two cases

Case 1: Continuous α with α(x,y)= exy.

Case 2: Piecewise continuous α with α(x,y)=

{

1, 0≤ x<0.3, 0≤y≤1,

4, 0.3≤ x≤1, 0≤y≤1.

In both cases, the coefficients β,γ are taken as

β(x,y)=(x2y,xy2), γ(x,y)=2xy.

The right-hand side function f (x,y) is chosen such that the exact solution is

u(x,y)=sin(πx)sin(πy).

Presented in Tables 3 and 4 are various errors and corresponding convergence rates
of u−uh with k=3,4,5 in Cases 1 and 2, respectively. Just the same as that for the constant
coefficient problem in Example 6.1, we observe a convergence order of O(h2k−2) for the
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errors eu,n and e∇u,n, and a convergence order of O(hmin(k+2,2k−2)) for eu,J, and O(hk+1)
for e∇u,l, and O(hk) for e∆u,g, which indicates that all the theoretical findings in (5.14)-
(5.16) are also valid for variable coefficient problems and piecewise constant coefficient
problems.

Table 3: Errors, corresponding convergence rates of u−uh in Example 6.2 (Case 1) with k=3,4,5.

k M
eu,n e∇u,n eu,J e∇u,l e∆u,g

Error Order Error Order Error Order Error Order Error Order

3

2 1.17e-02 - 6.63e-03 - - - 1.46e-02 - 5.95e-02 -

4 4.74e-04 4.63 8.05e-04 3.05 - - 9.33e-04 3.98 4.42e-03 3.76

8 2.51e-05 4.24 4.97e-05 4.02 - - 5.59e-05 4.06 4.79e-04 3.21

16 1.46e-06 4.11 3.08e-06 4.01 - - 3.51e-06 4.00 5.88e-05 3.03

4

2 1.48e-05 - 1.10e-06 - 1.20e-04 - 1.11e-03 - 4.32e-03 -

4 4.06e-07 5.19 3.13e-06 −1.51 2.11e-06 5.83 3.56e-05 4.96 2.09e-04 4.37

8 6.17e-09 6.03 5.26e-08 5.89 3.39e-08 5.95 1.18e-06 4.91 1.07e-05 4.2

16 9.29e-11 6.07 8.41e-10 5.98 5.33e-10 6.00 3.51e-08 5.08 6.47e-07 4.06

5

2 1.11e-06 - 9.01e-07 - 2.69e-06 - 5.46e-05 - 2.59e-04 -

4 2.71e-09 8.68 5.87e-09 7.26 2.19e-08 6.94 8.59e-07 5.99 6.70e-06 5.27

8 8.87e-12 8.26 2.38e-11 7.95 1.73e-10 6.99 1.57e-08 5.78 1.98e-07 5.09

16 3.25e-14 8.11 9.34e-14 8.00 1.36e-12 7.01 2.46e-10 6.01 6.07e-09 5.03

Table 4: Errors, corresponding convergence rates of u−uh in Example 6.2 (Case 2) with k=3,4,5.

k M
eu,n e∇u,n eu,J e∇u,l e∆u,g

Error Order Error Order Error Order Error Order error Order

3

2 1.16e-02 - 5.41e-04 - - - 4.33e-02 - 4.44e-01 -

4 4.74e-04 4.62 7.65e-04 −0.50 - - 2.44e-03 4.15 4.96e-02 3.16

8 2.51e-05 4.23 4.79e-05 3.99 - - 1.47e-04 4.05 5.52e-03 3.17

16 1.46e-06 4.11 2.97e-06 4.02 - - 8.45e-06 4.13 6.62e-04 3.06

4

2 1.10e-05 - 6.72e-06 - 1.25e-04 - 3.39e-03 - 5.15e-02 -

4 3.68e-07 4.90 3.08e-06 1.13 3.68e-06 5.09 1.26e-04 4.76 3.62e-03 3.83

8 5.71e-09 6.01 5.14e-08 5.90 6.67e-08 5.78 4.14e-06 4.93 2.42e-04 3.91

16 8.56e-11 6.06 8.19e-10 5.97 1.07e-09 5.97 1.37e-07 4.92 1.53e-05 3.98

5

2 1.18e-06 - 7.80e-08 - 4.10e-06 - 1.97e-04 - 3.37e-03 -

4 2.77e-09 8.72 3.01e-09 4.69 3.08e-08 7.05 2.92e-06 6.07 8.59e-05 5.29

8 9.10e-12 8.26 1.47e-11 7.68 2.46e-10 6.97 4.13e-08 6.15 2.55e-06 5.08

16 3.30e-14 8.12 7.56e-14 7.62 1.90e-12 7.03 6.36e-10 6.03 7.62e-08 5.07
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Table 5: Errors, corresponding convergence rates of uh−Phu in Example 6.2 (Case 1) with k=3,4,5.

k M
‖uh−Phu‖0 ‖uh−Phu‖1 ‖uh−Phu‖2

Error Order Error Order Error Order

3

2 4.34e-03 - 2.35e-02 - 1.79e-01 -

4 3.26e-04 3.74 1.71e-03 3.78 2.52e-02 2.83

8 2.15e-05 3.92 1.12e-04 3.94 3.26e-03 2.95

16 1.36e-06 3.98 7.05e-06 3.99 4.10e-04 2.99

4

2 9.91e-05 - 6.68e-04 - 8.24e-03 -

4 2.00e-06 5.63 2.06e-05 5.02 5.30e-04 3.96

8 3.41e-08 5.87 6.47e-07 4.99 3.34e-05 3.98

16 5.45e-10 5.98 2.02e-08 5.01 2.10e-06 4.00

5

2 2.56e-06 - 3.30e-05 - 6.57e-04 -

4 2.13e-08 6.90 5.67e-07 5.86 2.17e-05 4.92

8 1.73e-10 6.95 9.17e-09 5.96 6.97e-07 4.96

16 1.36e-12 7.00 1.44e-10 6.00 2.19e-08 5.00

Table 6: Errors, corresponding convergence rates of uh−Phu in Example 6.2 (Case 2) with k=3,4,5.

k M
‖uh−Phu‖0 ‖uh−Phu‖1 ‖uh−Phu‖2

Error Order Error Order Error Order

3

2 4.41e-03 - 2.36e-02 - 1.72e-01 -

4 3.29e-04 3.74 1.69e-03 3.80 2.32e-02 2.89

8 2.16e-05 3.93 1.10e-04 3.95 2.96e-03 2.97

16 1.36e-06 3.99 6.89e-06 4.00 3.70e-04 3.00

4

2 1.02e-04 - 6.85e-04 - 8.39e-03 -

4 2.01e-06 5.68 2.05e-05 5.07 5.18e-04 4.02

8 3.37e-08 5.90 6.34e-07 5.01 3.26e-05 3.99

16 5.35e-10 5.98 1.97e-08 5.01 2.04e-06 4.00

5

2 2.38e-06 - 3.11e-05 - 6.22e-04 -

4 2.01e-08 6.88 5.35e-07 5.86 2.04e-05 4.93

8 1.63e-10 6.96 8.63e-09 5.96 6.55e-07 4.97

16 1.28e-12 7.00 1.36e-10 6.00 2.06e-08 5.00

To demonstrate the supercloseness between uh and Phu for variable coefficient prob-
lems, we present in Tables 5 and 6 the errors of uh−Phu under L2, H1, and H2-norms.
Again, we see that the convergence rates for ‖uh−Phu‖m, 0≤m≤2 are O(hmin(k+2,2k−2)),
O(hk+1),O(hk), respectively. These results are consistent with the theoretical findings
in (5.13).
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7 Conclusion

In this work, we have studied superconvergence properties of C1-conforming Gauss col-
location methods for two-dimensional elliptic equations. A unified approach has been
presented to prove that: The C1 Gauss collocation solution is (2k−2)-th order of su-
perconvergence in the function value and first-order derivative value approximations at
mesh nodes; and (k+2)-th order of superconvergence at roots of the Jacobi polynomial
J−2,−2
k+1 (x)

⊗

J−2,−2
k+1 (y), and (k+1)-th order of superconvergence in the first-order deriva-

tive at Lobatto lines; and k-th order of superconvergence in the second-order derivative
at Gauss lines. An unexpected discovery is that the superconvergence of the first-order
derivative at mesh points can reach as high as 2k−2, which almost doubles the optimal
convergence rate k. The superconvergence points for the second-order derivative approx-
imation are novel. As we may recall, all the superconvergence results are similar to these
for the counterpart C1 Petrov-Galerkin method.

Comparing with the traditional C0 Galerkin method, the major gain of the C1 Gauss
collocation method discussed in this work is the (2k−2)-th convergence rate in the first-
order approximation at nodes and k-th convergence rate in the second-order approx-
imation at Gauss lines, with the sacrifice of function value convergence rate at nodes
dropping from 2k to 2k−2.

Appendix A

In this section, we give the proofs of some lemmas used in the paper.

A.1 Proof of Lemma 3.1

Proof. Let

Iτ =
∫

τ
vvxxyydxdy−

k−1

∑
m,n=1

(vvxxyy)
(

gτ
m,n

)

wτ
m,n.

Denote Gi,wi, i≤ k−1 be the k−1 Gauss points and the wights in [−1,1]. By the error of
Gauss numerical quadrature (see, e.g. [20, p. 98 (2.7.12)], we have

∫ 1

−1
f (s)ds−

k−1

∑
i=1

f (Gi)wi=
22k−1[(k−1)!]4

(2k−1)[(2k−2)!]3
∂2k−2

s f (θ)= ck∂2k−2
s f (θ),

where θ∈ (−1,1) and

ck =
22k−1[(k−1)!]4

(2k−1)[(2k−2)!]3
. (A.1)
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Then

∫ 1

−1

∫ 1

−1
f (s,t)dsdt−

k−1

∑
i=1

k−1

∑
j=1

f (Gi,Gj)wiwj

=
∫ 1

−1

(

∫ 1

−1
f (s,t)ds−

k−1

∑
i=1

f (Gi,t)wi

)

dt+
k−1

∑
i=1

wi

(

∫ 1

−1
f (Gi,t)dt−

k−1

∑
j=1

f (Gi,Gj)wj

)

= ck

∫ 1

−1
∂2k−2

s f (θ,t)dt+ck

∫ 1

−1
∂2k−2

t f (s,η)ds−(ck)
2∂2k−2

s ∂2k−2
t f (ζ,η),

where θ,ζ,η are some points in (−1,1). Consequently, by scaling from (−1,1) to τx
i :=

(xi−1,xi) and τ
y
j :=(yj−1,yj), there exist some ζi,θi ∈ (xi−1,xi),ηj ∈ (yj−1,yj) such that for

all τ=τi,j

Iτ =
∫

τ
(vvxxyy)(x,y)dxdy−

k−1

∑
m=1

k−1

∑
n=1

(vvxxyy)
(

gτ
m,n

)

wτ
m,n

= cx
i

∫ yj

yj−1

∂2k−2
x (vvxxyy)(θi,y)dy+c

y
j

∫ xi

xi−1

∂2k−2
y (vvxxyy)(x,ηj)dx− Īi,j,

where

cx
i = ck

(

xi−xi−1

2

)2k−1

, c
y
j = ck

(

yj−yj−1

2

)2k−1

,

Īi,j= cx
i c

y
j

∂4k−4(vvxxyy)

∂2k−2
x ∂2k−2

y

(ζi,ηj)= cx
i c

y
j

(

∂2kv

∂xk∂yk

)2

(ζi,ηj)≥0.

(A.2)

Consequently,

I(v)=
M

∑
i=1

N

∑
j=1

Iτi,j
≤

M

∑
i=1

cx
i

∫ d

c
∂2k−2

x (vvxxyy)(θi,y)dy+
N

∑
j=1

c
y
j

∫ b

a
∂2k−2

y (vvxxyy)(x,ηj)dx

=−
M

∑
i=1

cx
i

∫ d

c

(

∂k+1v

∂xk∂y

)2

(θi,y)dy−
N

∑
j=1

c
y
j

∫ b

a

(

∂k+1v

∂x∂yk

)2

(x,ηj)dx≤0.

Here in the second step, we have used the integration by parts. Similarly, let

Jτ =
∫

τ
△(vvxxyy)dxdy−

k−1

∑
m,n=1

(△vvxxyy)
(

gτ
m,n

)

wτ
m,n.

By using the error of Gauss numerical quadrature in (A.2), and the equation

∂2k−2
x ∂2k−2

y (vvxxyy)=0,



W. Cao, L. Jia and Z. Zhang / CSIAM Trans. Appl. Math., x (2024), pp. 1-30 25

and a scaling from (−1,1) to τx
i :=(xi−1,xi) and τ

y
j :=(yj−1,yj) again, we get for all τ=τi,j,

Jτ = cx
i

∫ yj

yj−1

∂2k−2
x (△vvxxyy)(θi,y)dy+c

y
j

∫ xi

xi−1

∂2k−2
y (△vvxxyy)(x,ηj)dx

= cx
i

∫ yj

yj−1

(

∂k
x∂2

yv(θi,y)
)2

dy+
∫ xi

xi−1

(

∂k
y∂2

xv(x,ηj)dx
)2

dx≥0

with θi ∈τx
i ,ηj ∈τ

y
j being some constants. Consequently,

J(v)= ∑
τ∈Th

Jτ ≥0.

As for the Gauss numerical quadrature error E(v), we use (A.2) again to obtain

E(v)= ∑
τi,j∈Th

(

cx
i β2

∫ yj

yj−1

(

∂k
x∂2

yv
)(

∂k
x∂yv

)

(θi,y)dy+c
y
j β1

∫ xi

xi−1

(

∂k
y∂2

xv
)(

∂k
y∂xv

)

(x,ηj)dx

)

= ∑
τi,j∈Th

(

cx
i β2

2

∫ yj

yj−1

∂y

(

∂k
x∂yv

)2
(θi,y)dy+

c
y
j β1

2

∫ xi

xi−1

∂x

(

∂k
y∂xv

)2
(x,ηj)dx

)

=
M

∑
i=1

cx
i β2

2

(

∂k
x∂yv

)2
(θi,y)

∣

∣

d

y=c
+

N

∑
j=1

c
y
j β1

2

(

∂k
y∂xv

)2
(x,ηj)

∣

∣

b

x=a
,

where cx
i , c

y
j are the same as that in (A.2), and f (s)|s2

s=s1
= f (s2)− f (s1). By using the inverse

inequality, we have

∣

∣

∣

(

∂k
x∂yv

)2
(θi,c)

∣

∣

∣
.h−2

∫ xi

xi−1

∫ d

c

(

∂k
x∂yv

)2
dxdy.h−2k+2

∫ xi

xi−1

∫ d

c

(

∂2
x∂yv

)2
dxdy.

Similarly, there holds

∣

∣

∣

(

∂k
y∂xv

)2
(a,ηj)

∣

∣

∣
.h−2

∫ yj

yj−1

∫ b

a

(

∂k
y∂xv

)2
dxdy.h−2k+2

∫ yj

yj−1

∫ b

a

(

∂2
y∂xv

)2
dxdy.

Substituting the above two inequalities into the formula of E(v) yields

|E(v)|.h
(

‖vxyy‖
2
0+‖vxxy‖

2
0

)

.

The proof is complete.

A.2 Proof of Lemma 5.3

Proof. We only prove (5.29) for n=0. The same argument can be applied to any positive n.
First, by (5.26) and the fact that (k−1)-point Guass numerical quadrature is exact for
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polynomial of degree 2k−3, we have

αhx
i

(2p+1)
ζ1

i,p(y)=
(

I x
2k−3−pLExu,Li,p

)

∗,τx
i
=
∫ xi

xi−1

(

I x
2k−3−pLExu

)

(x,y)Li,p(x)dx

=
∫ xi

xi−1

LExu(x,y)Li,p(x)dx+
∫ xi

xi−1

(

I x
2k−3−pLExu−LExu

)

(x,y)Li,p(x)dx

= J1+ I1.

As for J1, we have, from the integration by parts and the fact that ∂xxExu⊥Pk−2(x)

J1=
∫ xi

xi−1

L2Exu(x,y)Li,p(x)dx−
hx

i

2

∫ xi

xi−1

β1Exu(x,y)φi,p+1(x)dx.

Using the estimate of Exu in (5.34)-(5.35) and the fact that Exu⊥Pk−4(x), there holds

‖J1‖0,∞.











h
∥

∥L2Exu
∥

∥

0,∞
+h2‖Exu‖0,∞, if k−3≤ p≤ k−2,

h2‖Exu‖0,∞, if p= k−4,

0, if p< k−4.

On the other hand, by the approximation property of the interpolation function,

‖I1‖0,∞ ≤h
∥

∥I x
2k−3−pLExu−LExu

∥

∥

0,∞
.hm+1‖LExu‖m,∞, k≤m≤2k−2−p.

Consequently,

∥

∥c1
i,p

∥

∥

0,∞
.
∥

∥ζ1
i,p

∥

∥

0,∞
.h−1(‖J1‖0,∞+‖I1‖0,∞).hm‖u‖m+2,∞

for k ≤ m ≤ 2k−2−p. Noticing that 2k−2−p ≥ k, then (5.29) holds true for l = 1. This
finishes the proof of (5.29) for k=3.

When k≥ 4, we use the method of mathematical induction to prove (5.29). We first
suppose (5.29) is valid for all i≤l−1 and then show that it also holds for l with 2≤l≤k−2.
By (5.26) and the error of Gauss numerical quadrature, we have

αhx
i ζ l

i,p

2p+1
=
∫ xi

xi−1

(L1wl−1)(x,y)Li,p(x)dx−ck

(

hx
i

2

)2k−1

∂2k−2
x (L1wl−1Li,p)(ρi,y)= J+ I,

where ck is given in (A.1), and ρi is some point in τx
i . We next estimate I and J, respec-

tively. Since L1wl−1Li,p∈Pk−2(x) for all p≤ k−2 and ∂m
x Li,p=O(h−m), we have

‖I‖0,∞.h2k−1
∥

∥∂k
x(L1wl−1)∂

k−2
x Li,p

∥

∥

0,∞
.

{

h3
∥

∥L2cl−1
i,k−2

∥

∥

0,∞
, if p= k−2,

0, if p< k−2.
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When it comes to J, we have that, from (5.27) and the integration by parts,

J=
∫ xi

xi−1

(L1wl−1)(x,y)Li,p(x)dx

=
hx

i

2

∫ xi

xi−1

∂x(L2wl−1)(x,y)φi,p+1(x)dx+β1

∫ xi

xi−1

∂xwl−1(x,y)Li,p(x)dx

=

(

hx
i

2

)2 k−2

∑
q=1

L2cl−1
i,q

∫ xi

xi−1

(φi,q+1φi,p+1)(x)dx+β1
hx

i

2

k−2

∑
q=1

cl−1
i,q

∫ xi

xi−1

(φi,q+1Li,p)(x)dx.

By the properties of Legendre and Lobatto polynomials, we get

‖J‖0,∞ .h3 ∑
q=p,p+2,p−2

∥

∥L2cl−1
i,q

∥

∥

0,∞
+h2 ∑

q=p−1,p+1

∥

∥cl−1
i,q

∥

∥

0,∞
, (A.3)

and thus

∥

∥cl
i,p

∥

∥

0,∞
.h−1(‖J‖0,∞+‖I‖0,∞)

.h2 ∑
q=p,p+2,p−2

∥

∥L2cl−1
i,q

∥

∥

0,∞
+h ∑

q=p−1,p+1

∥

∥cl−1
i,q

∥

∥

0,∞
+h2

∥

∥cl−1
i,k−2

∥

∥

0,∞
δp,k−2,

where δi,j is the Kronecker delta with value 1 when i= j and 0 otherwise.

Noticing that µl−1,p−1 ≥ µl−1,p+1, by the inductive hypothesis, there holds for any
m1∈ [0,µl−1,p−1],m2∈ [0,µl−1,p+1] that

h ∑
q=p−1,p+1

∥

∥cl−1
i,q

∥

∥

0,∞
.hm1+1‖u‖m1+2,∞+hm2+1‖u‖m2+2,∞

.hm2+1‖u‖m2+2,∞=hm′
‖u‖m′+1,∞, (A.4)

where

m′=m2+1≤1+µl−1,p+1=1+max(2k−p−3,k+l−2)=µl,p .

Similarly, there holds for any m1∈ [0,µl−1,p−2],m2∈ [0,µl−1,p+2] such that

h2 ∑
q=p−2,p+2

∥

∥L2cl−1
i,q

∥

∥

0,∞
.hm1+2‖L2u‖m1+2,∞+hm2+2‖L2u‖m2+2,∞

.hm2+2‖u‖m2+4,∞=hm′
‖u‖m′+2,∞, (A.5)

where

m′=m2+2≤2+µl−1,p+2=max(2k−p−2,k+l)∈ [µl,p ,µl,p+1].

Following the same arguments, there holds for any m≤µl−1,p such that

h2
∥

∥L2cl−1
i,p

∥

∥

0,∞
.hm+2‖L2u‖m+2,∞.hm+2‖u‖m+4,∞ ≤hm′

‖u‖m′+2,∞ (A.6)
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with
m′=m2+2≤2+µl−1,p=max(2k−p,k+l)∈ [µl,p ,µl,p−1+1].

Combining (A.4)-(A.6) together yields
∥

∥cl
i,p

∥

∥

0,∞
.hm‖u‖m+2,∞, ∀ p∈Zk−2, m≤µl,p.

In other words, (5.29) is also valid for l. This completes proof of the induction for k≥4.
By (5.27)-(5.29), we have

∂xwl(xi,yj)=0,
∣

∣∂n
ywl(xi,yj)

∣

∣=

∣

∣

∣

∣

hx
i

2
∂n

ycl
i,1(yj)

∣

∣

∣

∣

.h2k−2‖u‖2k,∞, n=0,1.

Then (5.30) follows. By choosing m=µl,p in (5.29) and using (5.27)-(5.28), we obtain the
desired result (5.31) immediately. The proof is complete.
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