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Abstract

In this paper, we study a posteriori error estimates of the L1 scheme for time discretiza-

tions of time fractional parabolic differential equations, whose solutions have generally the

initial singularity. To derive optimal order a posteriori error estimates, the quadratic re-

construction for the L1 method and the necessary fractional integral reconstruction for

the first-step integration are introduced. By using these continuous, piecewise time re-

constructions, the upper and lower error bounds depending only on the discretization

parameters and the data of the problems are derived. Various numerical experiments for

the one-dimensional linear fractional parabolic equations with smooth or nonsmooth exact

solution are used to verify and complement our theoretical results, with the convergence

of α order for the nonsmooth case on a uniform mesh. To recover the optimal convergence

order 2−α on a nonuniform mesh, we further develop a time adaptive algorithm by means

of barrier function recently introduced. The numerical implementations are performed on

nonsmooth case again and verify that the true error and a posteriori error can achieve the

optimal convergence order in adaptive mesh.

Mathematics subject classification: 65M15, 65M50, 65M06, 65M12, 35R11, 26A33.

Key words: Time fractional parabolic differential equations, A posteriori error estimates,

L1 method, Fractional integral reconstruction, Quadratic reconstruction.

1. Introduction

Adaptive methods have become very popular and powerful tools for certain classes of PDEs.

A posteriori error analysis can provide information about the error introduced by discretization

and is at the base of adaptive computation. Time adaptive algorithms are naturally related to

error control and variable time step-sizes. In this paper we derive a posteriori error estimates
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for time discretization by the L1 method for abstract time fractional parabolic differential

equations (TFPDEs) and construct an adaptive algorithm based on this rigorous a posteriori

error estimates. To do this, we first introduce functional space and corresponding norms.

1.1. Functional space and norms

Let H be a Hilbert space with inner product (· , ·). We identify H with its dual. Let A:

D(A) → H be a positive definite, self-adjoint, linear operator on H with domain D(A) being

dense in H . Let V := D(A1/2) and denote the norms in H and V by ‖ · ‖ and ‖ · ‖1, ‖v‖1 =

‖A1/2v‖ = (Av, v)1/2, respectively. Let V ∗ be the dual of V , and denote by ‖·‖−1 the dual norm

on V ∗, ‖v‖−1 = ‖A−1/2v‖ = (v,A−1v)1/2. We still denote by (· , ·) the duality pairing between

V ∗ and V . In a natural way the Lebesgue spaces Lp(J ;X) with a time interval J = [t∗, t
∗] and

Banach space X (here, X = H,V or V ∗), 1 ≤ p < ∞, consist of all those functions u(t) that

take values in X for almost every t ∈ J such that the Lp norm of ‖u(t)‖X , i.e.

‖u‖Lp(J;X) =

(∫

J

‖u(t)‖pXdt

) 1

p

is finite. For p = ∞, L∞(J ;X) is the space of (classes of) measurable functions from J into X

which are essentially bounded, the space is Banach for the norm

‖u‖L∞(J;X) := ess sup
t∈J

‖u(t)‖X .

Note that for continuous function u(t), we have ‖u‖L∞(J;X) = maxt∈J ‖u(t)‖X . For simplicity,

we will write Lp(0, t;X) for Lp((0, t);X).

Let ∂α
t denote the Caputo fractional derivative of order α (0 < α < 1) with respect to t

defined by

∂α
t u(t) :=

∫ t

0

ω1−α(t− s)u′(s)ds, ωα(t) =
tα−1

Γ(α)
,

where Γ(z) is the Gamma function,

Γ(z) :=

∫ ∞

0

sz−1e−sds, ℜ(z) > 0.

We define the Riemann-Liouville fractional integral operator of order β (β ≥ 0) as

Iβt u(t) =

∫ t

0

ωβ(t− s)u(s)ds, t > 0

with I0t u(t) = u(t) [44]. Then we recall the relationship between the Riemann-Liouville frac-

tional derivative and Caputo fractional derivative

∂α
t u(t) =

d

dt

{
I1−α
t [u(t)− u(0)]

}
=

d

dt

{∫ t

0

ω1−α(t− s)[u(s)− u(0)]ds

}
,

and the relationship of the Riemann-Liouville fractional integral and Riemann-Liouville frac-

tional derivative [54]:

∂−α
t u(t) = Iαt u(t) =

∫ t

0

ωα(t− s)u(s)ds, t > 0. (1.1)
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To avoid too clumsy a notation, we will introduce the space

Lp
α(0, t;X) :=

{
u
∣∣ (Iαt ‖u(t)‖pX)

1

p < ∞
}

with the norm

‖u‖Lp
α(0,t;X) =

(
Iαt ‖u(t)‖

p
X

) 1

p .

In the following analysis, we will use frequently the inequality

ωα(t)‖u‖
p
Lp(0,t;X) ≤ ‖u‖p

Lp
α(0,t;X)

, (1.2)

which can be found in [24].

1.2. Numerical methods for TFPDEs

Consider abstract TFPDEs
{
∂α
t u(t) +Au(t) = f(t), t ∈ (0, T ],

u(0) = u0,
(1.3)

where T > 0 is a fixed final time, u0 ∈ H is a given initial data, and the forcing term f is

a sufficiently smooth function.

Since the class of time-dependent problems (1.3) arise in various models of physical processes

(see [20, 31, 42] and references therein), these problems and their numerical approximations

have attracted much attention in recent years; see, e.g. recent literature [3, 8, 10, 20, 23, 49, 61].

There are several predominant classes of numerical methods for discretizing the time fractional

derivative. Here we mention the convolution quadrature (CQ) [3, 7, 9, 12, 18, 21–23, 38–40, 49,

58–60], the spectral methods [13,18,20,23,30,31,36,45], and the finite difference type methods,

etc.

CQ inherits excellent numerical stability property of the underlying schemes for ODEs, but

it is often restricted to uniform mesh. And spectral methods show high order of accuracy for

TFPDEs with smooth solutions, but the solution u usually has a weak singularity near t = 0,

even for a very smooth source term f (see, e.g. [13, 17, 18, 20, 23, 43, 45]). The finite difference

type schemes are based on piecewise polynomial approximation, especially interpolation, and

the most prominent one is the L1 scheme. Since its first appearance, the L1 scheme and its

variant have been extensively used in practice and currently it is one of the most popular

and basic numerical methods for solving the time fractional diffusion equations (see, e.g. [6, 8,

10–12, 14–16, 19, 28, 29, 32–35, 41, 45, 46, 55, 56]), because it is very flexible in construction and

implementation and can generalize easily to nonuniform mesh. Thus, in this paper, we will

focus on this scheme.

For the L1 scheme, the stability and a priori error estimates have been the subject of much

research in recent years. It was shown in [35,46] that the local truncation error of the L1 approxi-

mation is bounded by ck2−α, where the constant c depends on ‖u‖C2([0,T ]) and k is the maximum

time step-size. Therefore, it requires that the solution u be twice continuously differentiable in

time, which is usually unsatisfying for problems with initial singularity. In fact, an O(k) con-

vergence rate for both smooth and nonsmooth initial data was established in [19]. Recently, to

recover the optimal convergence order O(k2−α) for nonsmooth solutions in L∞(0, T ;H), some

special nonuniform mesh have been proposed by taking into account the initial singularity in

the problems (1.3), such as graded mesh, quasi-graded mesh, general nonuniform mesh, and
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so on (see, e.g. [25, 27, 33, 45, 55]). However, the graded mesh tn = T (n/N)γ depends on the

regularity of the exact solution and the general nonuniform mesh has the constraint

kn−1 ≤ kn, (1.4)

where kn = tn − tn−1 is the time step-size with tn being mesh points. This motives researchers

to provide error estimates on nonuniform grids under minimal regularity of the solution or by

removing the constraint of the time step-size.

1.3. A posteriori error estimates

A posteriori error estimates can be viewed as such type of error estimates which can be

quantified for a given simulation, knowing only the problem data and approximate solution.

Such computable a posteriori error estimates have been investigated by many researchers for

various numerical methods for integer-order parabolic problems during the last decades (see,

e.g. [1,5,37,47,50–53]). A posteriori error estimates and adaptivity are now in many cases very

successful tools for efficient numerical computations of linear as well as nonlinear integer-order

problems. For TFPDEs (1.3), however, to the best of our knowledge, there is few article in

the literature concerning a posteriori error analysis of numerical methods for time fractional

differential equations and their adaptive algorithms except very limited works on the Galerkin

spectral method [57, 62] and the space-time spectral method [48]. It is worth noting that the

pointwise-in-time a posteriori error control for TFPDEs was proposed in [26] by using the barrier

function, and a posteriori error estimates of the L1 method or CQ for TFPDEs are derived

in [4]. Different form a posteriori error estimates based on the linear reconstruction in [4, 26],

we devoted to deriving a posteriori error estimates based on quadratic reconstruction, which is

shown to perform better on both smooth and nonsmooth problems from numerical experiments.

The numerical results of Example 3.1 show that, even for the smooth solution problem, the

residual of L1 method based on the linear reconstruction converges only of the first order, which

does not match the optimal order of the L1 method. Therefore it is necessary to provide optimal

a posteriori error estimates by means of the quadratic reconstruction. The main difficulty in

deriving the optimal order a posteriori error estimates for the finite difference type methods is to

obtain the error equations which involves long-range history dependence. In this paper, we will

address this issue. The main contribution of this paper is to derive a posteriori error estimates

which solely depend on the discrete solution and data, and construct adaptive algorithms based

on rigorous a posteriori error control. We point out that in our a posteriori error estimates, no

extra regularity of the solution u has been used, as well as no constraints such as (1.4) between

consecutive time-steps. As a consequence, the a posteriori error control provides a practical, as

well as mathematically sound, means for detecting singularity phenomena and doing reliable

computations with flexible time step-size kn.

1.4. Outline

We start Section 2 by introducing necessary assumptions and notation as well as the L1

method for the problems (1.3). For a continuous approximation U in time, a posteriori error

bounds based on linear reconstruction are derived for the fractional order equations by using

the energy techniques, but they are not the optimal convergence order O(k2−α) . To obtain the

optimal convergence order O(k2−α) for the a posteriori error estimates, the natural quadratic

reconstruction Û is introduced in Section 4. In this section the fractional integral reconstruction
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for the first-step integration is also introduced. Different from the numerical methods for the

integer-order parabolic equations, it seems impossible to derive a posteriori error estimates

for this type of reconstructions which are based on differential equations when the number of

the L1 integration step is large. Furthermore, a posteriori error estimates in the L2
α(0, t;V )-,

L2(0, t;V )- and L∞(0, t;H)-norms are derived for the L1 method in Section 5. A numerical

study is carried out for several test cases with smooth or nonsmooth solutions in Section 6. We

further develop a time adaptive algorithm in Section 7. The last section, Section 8, will contain

a few concluding remarks.

2. L1 Method for TFPDEs

Now we consider the L1 method for solving TFPDEs (1.3). Let 0 = t0 < t1 < · · · < tN = T

be a partition of [0, T ], In := [tn−1, tn], and kn := tn − tn−1, which in general will be variable.

The Caputo fractional derivative ∂α
t u, which can be written as

∂α
t u(tn) =

1

Γ(1− α)

n∑

j=1

∫ tj

tj−1

(tn − s)−αu′(s)ds,

is approximated by the classical L1 approximation

∂̄α
t U

n =
n∑

j=1

U j − U j−1

kj

∫ tj

tj−1

ω1−α(tn − s)ds

=
1

Γ(2− α)

n∑

j=1

U j − U j−1

kj

[
(tn − tj−1)

1−α − (tn − tj)
1−α

]

=

n∑

j=1

aj(tn)∂̄U
j , (2.1)

where

∂̄U j :=
U j − U j−1

kj
, aj(t) :=

1

Γ(2− α)

[
(t− tj−1)

1−α − (t− tj)
1−α

]
.

It can be observed from (2.1) that it approximates the function u by a continuous piecewise

linear interpolation, similar to the backward Euler method. The L1 method for TFPDEs (1.3)

is then defined as follows:

∂̄α
t U

n +AUn = fn, n ≥ 1, (2.2)

where fn := f(tn). The continuous piecewise linear approximation to u or the linear recon-

struction of Un can be expressed in terms of its nodal values,

U(t) =
tn − t

kn
Un−1 +

t− tn−1

kn
Un

= ℓn,−1(t)U
n−1 + ℓn,1(t)U

n

= Un−1 + (t− tn−1)∂̄U
n, t ∈ In, (2.3)

where

ℓn,−1(t) =
tn − t

kn
, ℓn,1(t) =

t− tn−1

kn
.

From (2.3) we get

AU(t) = AUn−1 +A(t− tn−1)∂̄U
n, t ∈ In.
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In view of (2.2) and (2.3), we also have

AU(t) =
tn − t

kn
AUn−1 +

t− tn−1

kn
AUn

=
tn − t

kn

(
fn−1 − ∂̄α

t U
n−1

)
+

t− tn−1

kn

(
fn − ∂̄α

t U
n
)

= f̃(t)−

(
tn − t

kn
∂̄α
t U

n−1 +
t− tn−1

kn
∂̄α
t U

n

)
, t ∈ In, (2.4)

where f̃(t) denotes the linear approximation of f(t)

f̃(t) = ℓn,−1(t)f
n−1 + ℓn,1(t)f

n, t ∈ In. (2.5)

Since U is a linear function on In, we have U ′(t) = ∂̄Un. Then for t ∈ In, one gets

∂α
t U(t) =

∫ t

0

ω1−α(t− s)U ′(s)ds

=
1

Γ(1− α)

n−1∑

j=1

∫ tj

tj−1

(t− s)−αU ′(s)ds+
1

Γ(1− α)

∫ t

tn−1

(t− s)−αU ′(s)ds

=

n−1∑

j=1

aj(t)∂̄U
j +

(t− tn−1)
1−α

Γ(2− α)
∂̄Un. (2.6)

3. A Posteriori Error Estimates of the Linear Reconstruction

Assume that a continuous approximation U(t) to u(t), for all t ∈ [0, T ], has been obtained by

a numerical method such as the L1 method with interpolation. We define the residual of U as

R(t) = ∂α
t U(t) +AU(t)− f(t) ∈ H, t ∈ In. (3.1)

Then the error E := u− U satisfies the equation

∂α
t E(t) +AE(t) = −R(t). (3.2)

Hence, we have the following a posteriori error estimate of the linear reconstruction.

Theorem 3.1 (L2(0, T ;V ) and L2
α(0, T ;V ) Error Estimates). Let U(t) be the L1 approxi-

mation to the solution of problems (1.3), and the error E(t) := u(t)−U(t). Then the following

a posteriori error estimate is valid, for t ∈ In, n ≥ 1,

‖E(t)‖2 + ωα(t)‖E‖2L2(0,t;V ) ≤ ‖E(t)‖2 + ‖E‖2L2
α(0,t;V )

≤ ‖E(0)‖2 + ‖R‖2L2
α(0,t;V

∗). (3.3)

Proof. Taking in (3.2) the inner product with E(t), we obtain, for any t ∈ In, n ≥ 1,

(
∂α
t E(t), E(t)

)
+ ‖E(t)‖21 ≤ −

(
R(t), E(t)

)
.

Using the Cauchy-Schwarz inequality, we get

(
∂α
t E(t), E(t)

)
+ ‖E(t)‖21 ≤ ‖R(t)‖−1‖E(t)‖1 ≤

1

2

(
‖R(t)‖2−1 + ‖E(t)‖21

)
. (3.4)
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Applying the result (see, for example, [2])

(
∂α
t E(t), E(t)

)
≥

1

2
∂α
t ‖E(t)‖2,

to (3.4), we obtain

∂α
t ‖E(t)‖2 + ‖E(t)‖21 ≤ ‖R(t)‖2−1. (3.5)

Now use the Riemann-Liouville fractional integral operator Iαt on both sides of (3.5). An ap-

plication of the relation (1.1) yields

‖E(t)‖2 + ‖E‖2L2
α(0,t;V ) ≤ ‖E(0)‖2 + ‖R‖2L2

α(0,t;V
∗).

Using inequality (1.2), we obtain the required results and thus complete the proof. �

Now we want to estimate the residual R(t), which has been introduced in (3.1). For the L1

scheme (2.2), the residual can be written as

R(t) = ∂α
t U(t)− ∂̄α

t U
n +A[U(t)− Un]− [f(t)− fn], t ∈ In,

where, in view of (2.1) and (2.6),

∂α
t U(t)− ∂̄α

t U
n =

n−1∑

j=1

∂̄U j [aj(t)− aj(tn)] +
(t− tn−1)

1−α − k1−α
n

Γ(2− α)
∂̄Un.

In the following numerical example, we will observe that R(t) is an a posteriori quantity of

first order with respect to the time step-size kn. Therefore, applying (3.3) leads inevitably

to suboptimal bounds, since the L1 method (2.2) is of (2 − α)-order accuracy for sufficiently

regular problem.

Example 3.1. Let us consider the following model problem on Ω = (0, 1):




∂α
t u =

∂2u

∂x2
+ f, x ∈ Ω, 0 ≤ t ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = u0(x) = x(1 − x).

(3.6)

We prescribe the exact solution of the problem as u(x, t) = (1 + t2)x(1 − x). Then the corre-

sponding source function is

f(x, t) =
Γ(3)

Γ(3− α)
t2−αx(1 − x) + 2(1 + t2).

The space derivative ∂2/∂x2 of (3.6) will be approximated with central finite difference of

second order. After spatial discretization a system of fractional ordinary differential equations

results,

∂α
t vi(t) = ∆x−2[vi−1(t)− 2vi(t) + vi+1(t)] + fi(t), 0 ≤ t ≤ 1,

v0(t) = vM (t) = 0, 0 ≤ t ≤ 1,

vi(0) = xi(1− xi), i = 1, 2, . . . ,M − 1,

where M = 1/∆x, xi = i∆x, vi(t) is meant to approximate the solution of (3.6) at the point

(t, xi), and fi stands for f at (t, xi). We use a uniform time partition for [0, T ], that is k = 1/N .



8 J.L. CAO, A.G. XIAO AND W.S. WANG

The errors ‖E(T )‖, ‖E‖L2
α(0,T ;V ), the residual ‖R‖L2

α(0,T ;V ∗) and their convergence orders are

presented in Table 3.1. It should be mentioned that the dual norm ‖v‖−1 is computed by using

the definition ‖v‖1 = ‖A1/2v‖ = (Av, v)1/2, where A is the finite difference discrete matrix.

As for the norm ‖u‖Lp
α(0,t;X), we approximate the fractional integral by the Gauss-Legendre

quadrature formula with weight functions and three nodes. But it is worth mentioning, from

the definition of the norm ‖u‖Lp
α(0,t;X), that the integration does not make sense when the

variable s is close to t due to the singular kernel ωα(t − s), so we have to regard the singular

kernel as the weight functions at the last subintervals.

From Table 3.1, we observe that the error ‖E‖L2
α(0,T ;V ) is of order 2 − α, but the residual

‖R‖L2
α(0,T ;V ∗) is only of order 1, even for sufficiently regular problem. This motives us to

provide optimal a posteriori error estimators.

Table 3.1: The errors ‖E(T )‖, ‖E‖L2
α(0,T ;V ), the residual ‖R‖L2

α(0,T ;V ∗) and their convergence orders

in time, where T = 1 and M = 512.

α N ‖E(T )‖ Order ‖E‖L2
α(0,T ;V ) Order ‖R‖L2

α(0,T ;V ∗) Order

0.25

16 2.9585E-05 - 4.4990E-04 - 5.8592E-02 -

32 9.2304E-06 1.6804 1.2075E-04 1.8975 3.1311E-03 0.9040

64 2.8527E-06 1.6940 3.2420E-05 1.8970 1.6484E-03 0.9255

128 8.7525E-07 1.7045 8.7236E-06 1.8939 8.5840E-04 0.9414

0.5

16 1.2098E-04 - 7.7997E-04 - 6.4303E-02 -

32 4.3485E-05 1.4762 2.3840E-04 1.7100 3.3323E-02 0.9483

64 1.5551E-05 1.4835 7.4817E-05 1.6719 1.7089E-02 0.9634

128 5.5421E-06 1.4884 2.4070E-05 1.6361 8.6996E-03 0.9740

0.75

16 3.9180E-04 - 1.5779E-03 - 6.0377E-02 -

32 1.6542E-04 1.2439 6.0398E-04 1.3854 3.0684E-02 0.9765

64 6.9720E-05 1.2465 2.3904E-04 1.3372 1.5512E-02 0.9840

128 2.9355E-05 1.2479 9.6772E-05 1.3045 7.8150E-03 0.9890

4. Quadratic Reconstructions for Numerical Solution

To obtain optimal order a posteriori error estimate for the L1 method, we shall introduce

numerical reconstruction solution Û .

4.1. Fractional integral reconstruction for the first-step integration

For t ∈ I1, we introduce the fractional integral reconstruction. We define the reconstruction

as, for t ∈ I1,

Û(t) = U0 − ∂−α
t AU(t) + ∂−α

t P1f(t)

= U0 −

∫ t

0

ωα(t− s)AU(s)ds+

∫ t

0

ωα(t− s)P1f(s)ds

= U0 −
1

Γ(α+ 2)
tα+1A∂̄U1 −

1

Γ(α+ 1)
tαAU0 +

∫ t

0

ωα(t− s)P1f(s)ds

= U(t)− t∂̄U1 −
1

Γ(α+ 2)
tα+1A∂̄U1 −

1

Γ(α+ 1)
tαAU0
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+

∫ t

0

ωα(t− s)P1f(s)ds, (4.1)

where P1 denotes the L2 orthogonal projection operator or the linear interpolation operator

onto the space of linear polynomials in I1. From (4.1), it is easy to obtain the following pointwise

equation:

∂α
t Û(t) +AU(t) = P1f(t), ∀ t ∈ I1. (4.2)

Then the residual R̂(t) can be defined as

R̂(t) = ∂α
t Û(t) +AÛ(t)− f(t), (4.3)

and further written in the form

R̂(t) = A[Û(t)− U(t)] + [P1f(t)− f(t)].

Therefore, it is easy to verify that the residual R̂(t) defined in (4.3) is of order 2 when t ∈ I1
and f is sufficient smooth. From (1.3) and (4.2), we know that for t ∈ I1, it holds that

∂α
t Ê(t) +AE(t) = R1(t), (4.4)

where Ê(t) = u(t)− Û(t) and R1(t) = f(t)− P1f(t).

4.2. Quadratic reconstruction

For deriving a posteriori error bounds with (2−α)-order accuracy for the L1 method (2.2),

we shall introduce quadratic reconstruction, which is natural for the L1 method for TFPDEs

(1.3), i.e.

Û(t) := U(t) +
1

2
(t− tn−1)(t− tn)Ŵ

n

= Un−1 + (t− tn−1)∂̄U
n +

1

2
(t− tn−1)(t− tn)Ŵ

n, t ∈ In (4.5)

for n ≥ 2, where

Ŵn =
2(∂̄Un − ∂̄Un−1)

kn + kn−1
.

Then by the definition of the Caputo fractional derivative, we have

∂α
t Û(t) =

∫ t

0

ω1−α(t− s)Û ′(s)ds

= ∂α
t U(t) +

n−1∑

j=2

Ŵ j

∫ tj

tj−1

ω1−α(t− s)
(
s− tj− 1

2

)
ds

+ Ŵn

∫ t

tn−1

ω1−α(t− s)
(
s− tn− 1

2

)
ds

+

∫ t1

0

ω1−α(t− s)

[
sα

Γ(α+ 1)
(∂̄f1 −A∂̄U1) +

sα−1

Γ(α)
(f0 −AU0)

]
ds

−
∂̄U1

Γ(2− α)

[
t1−α − (t− t1)

1−α
]
.
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Using integration by parts, we further obtain

∂α
t Û(t) = ∂α

t U(t) +Wn, (4.6)

where Wn is defined by

Wn = −
1

2Γ(2− α)

n−1∑

j=2

Ŵ jkj
[
(t− tj)

1−α + (t− tj−1)
1−α

]

−
1

Γ(3− α)

n−1∑

j=2

Ŵ j
[
(t− tj)

2−α − (t− tj−1)
2−α

]

−
Ŵnkn

2Γ(2− α)
(t− tn−1)

1−α +
Ŵn

Γ(3− α)
(t− tn−1)

2−α

+
1

Γ(1− α)

∫ t1

0

(t− s)−α

[
sα

Γ(α+ 1)
(∂̄f1 −A∂̄U1) +

sα−1

Γ(α)
(f0 −AU0)

]
ds

−
∂̄U1

Γ(2− α)

[
t1−α − (t− t1)

1−α
]
. (4.7)

Let Ê = u− Û . Then it follows from (1.3), (4.6) and (2.4) that

∂α
t Ê(t) +AE(t) = Rn(t), n ≥ 2, (4.8)

where Rn(t) is defined by

Rn(t) = f − f̃ +
(
ℓn,−1∂̄

α
t U

n−1 + ℓn,1∂̄
α
t U

n
)
− ∂α

t U(t)−Wn

= f − f̃ +

n−1∑

j=1

[(
ℓn,−1aj(tn−1) + ℓn,1aj(tn)

)
− aj(t)

]
∂̄U j

+
t− tn−1

Γ(2− α)

(
k−α
n − (t− tn−1)

−α
)
∂̄Un −Wn, n ≥ 2

with f̃(t), which has been defined in (2.5), denoting the linear approximation of f(t).

5. A Posteriori Error Estimates of the Quadratic Reconstruction

In this section, we derive a posteriori error estimates for the method (2.2) by using the

reconstructions (4.1) and (4.5).

Taking in (4.4) and (4.8) the inner product with Ê(t), we can obtain, for t ∈ In, n ≥ 1,

(
∂α
t Ê(t), Ê(t)

)
+
(
AE(t), Ê(t)

)
=

(
Rn(t), Ê(t)

)
. (5.1)

Using the relations
(
∂α
t Ê(t), Ê(t)

)
≥

1

2
∂α
t ‖Ê(t)‖2,

and

(
AE(t), Ê(t)

)
=

1

2

(
‖Ê(t)‖21 + ‖E(t)‖21 − ‖Ê(t)− E(t)‖21

)

=
1

2

(
‖Ê(t)‖21 + ‖E(t)‖21 − ‖U(t)− Û(t)‖21

)
,
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from (5.1), we get

∂α
t ‖Ê(t)‖2 + ‖Ê(t)‖21 + ‖E(t)‖21 ≤ ‖U(t)− Û(t)‖21 + 2

(
Rn(t), Ê(t)

)
. (5.2)

Now the L2
α(0, T ;V ) error bounds can be formulated as the following theorem.

Theorem 5.1 (L2
α(0, T ;V ) Error Estimate). Let U(t) be the L1 approximation to the solu-

tion of problem (1.3), Û be the corresponding reconstruction of U defined in (4.1) and (4.5),

E = u − U and Ê = u − Û . Then the following a posteriori error estimate is valid, for

t ∈ In, n ≥ 1,

1

3
‖Û − U‖2L2

α(0,t;V ) ≤ ‖Ê(t)‖2 + ‖E‖2L2
α(0,t;V ) +

1

2
‖Ê‖2L2

α(0,t;V )

≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 2‖Rn‖

2
L2

α(0,t;V
∗). (5.3)

Proof. We first show the upper bound. It follows from (5.2) that

∂α
t ‖Ê(t)‖2 + ‖E(t)‖21 +

1

2
‖Ê(t)‖21 ≤ ‖U(t)− Û(t)‖21 + 2‖Rn(t)‖

2
−1, (5.4)

where the Cauchy-Schwarz inequality has been used. Applying the integral operator ∂−α
t to

both sides of (5.4) yields

‖Ê(t)‖2 + ‖E‖2L2
α(0,t;V ) +

1

2
‖Ê‖2L2

α(0,t;V )

≤ ‖Ê(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 2‖Rn‖

2
L2

α(0,t;V
∗).

With Ê(0) = E(0), we thus easily obtain the desired upper bound.

We now turn to estimate the lower bound. In view of

‖Û(s)− U(s)‖1 ≤ ‖E(s)‖1 + ‖Ê(s)‖1,

we have

‖Û(s)− U(s)‖21 ≤ 3

(
‖E(s)‖21 +

1

2
‖Ê(s)‖21

)
. (5.5)

Apply the integral operator ∂−α
t to both sides of (5.5) to obtain the desired lower bound. Hence

the statements in theorem are proved. �

From (5.3), we can obtain the L∞(0, t;H) estimate: For any t ∈ In,

max
0≤s≤t

‖Ê(s)‖2 ≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 2‖Rn‖

2
L2

α(0,t;V
∗).

Considering E(tn) = Ê(tn) at all nodes t0, t1, · · · , tN , we also have

max
0≤i≤n

‖E(ti)‖
2 ≤ ‖E(0)‖2 + ‖Û − U‖2L2

α(0,tn;V ) + 2‖Rn‖
2
L2

α(0,tn;V ∗).

In view of the inequality
∫ t

0

ωα(t− s)

(
‖E(s)‖21 +

1

2
‖Ê(s)‖21

)
ds ≥ ωα(t)

∫ t

0

(
‖E(s)‖21 +

1

2
‖Ê(s)‖21

)
ds,

we have the following L2(0, t;V ) error estimates, for t ∈ In, n ≥ 1,

‖Ê(t)‖2 + ωα(t)

(
‖E(t)‖2L2(0,t;V ) +

1

2
‖Ê(t)‖2L2(0,t;V )

)

≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 2‖Rn‖

2
L2

α(0,t;V ∗).
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5.1. A posteriori error estimates for the first step integration

Applying Theorem 5.1 to the first step integration, we have the same estimate as (5.3) with

Û(t)− U(t) = −t∂̄U1 −
1

Γ(α+ 2)
tα+1A∂̄U1 −

1

Γ(α+ 1)
tαAU0

+

∫ t

0

ωα(t− s)P1f(s)ds, t ∈ I1,

and R1(t) = f(t)− P1f(t), t ∈ I1.

5.2. A posteriori error estimates for n ≥ 2

When n ≥ 2, from Theorem 5.1 we can also derive a posteriori error estimates for the

error E in several different norms. To test contribution of the different error terms in time

discretization, however, we will split the error term Rn(t) into three parts

Rn(t) = Rf (t) +RI(t)−Wn, t ∈ In,

where Wn has been defined in (4.7), and RI(t) and Rf (t) are, respectively, defined by

RI(t) :=

n−1∑

j=1

[(
ℓn,−1aj(tn−1) + ℓn,1aj(tn)

)
− aj(t)

]
∂̄U j

+
t− tn−1

Γ(2 − α)

(
k−α
n − (t− tn−1)

−α
)
∂̄Un,

Rf (t) := f − f̃ . (5.6)

Then we have the following error estimate.

Theorem 5.2 (L2
α(0, T ;V ) Error Estimate). Let U(t) be the L1 approximation to the solu-

tion of problems (1.3), Û be the corresponding reconstruction of U defined in (4.1) and (4.5),

E = u − U and Ê = u − Û . Then the following a posteriori error estimate is valid for

t ∈ In, n ≥ 1,

1

5
‖Û − U‖2L2

α(0,t;V ) ≤ ‖Ê(t)‖2 + ‖E‖2L2
α(0,t;V ) +

1

4
‖Ê‖2L2

α(0,t;V )

≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 4‖RI‖

2
L2

α(0,t;V
∗)

+ 4‖Rf‖
2
L2

α(0,t;V
∗) + 4‖Wn‖2L2

α(0,t;V
∗). (5.7)

Proof. It follows from (5.2) that

∂α
t ‖Ê(t)‖2 + ‖E(t)‖21 +

1

4
‖Ê(t)‖21

≤ ‖U(t)− Û(t)‖21 + 4‖RI(t)‖
2
−1

+ 4‖Rf(t)‖
2
−1 + 4‖Wn‖2−1. (5.8)

Applying the integral operator ∂−α
t to both sides of (5.8) yields

‖Ê(t)‖2 + ‖E‖2L2
α(0,t;V ) +

1

4
‖Ê‖2L2

α(0,t;V )

≤ ‖Ê(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 4‖RI‖

2
L2

α(0,t;V
∗)

+ 4‖Rf‖
2
L2

α(0,t;V
∗) + 4‖Wn‖2L2

α(0,t;V
∗),

which implies the desired upper bound.
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The low bound can be obtained by using a similar argument to (5.5). Thus, the proof is

complete. �

From (5.7), we can obtain the L∞(0, t;H) estimates: For any t ∈ In,

max
0≤s≤t

‖Ê(s)‖2 ≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 4‖RI‖

2
L2

α(0,t;V
∗)

+ 4‖Rf‖
2
L2

α(0,t;V
∗) + 4‖Wn‖2L2

α(0,t;V
∗),

max
0≤i≤n

‖E(ti)‖
2 ≤ ‖E(0)‖2 + ‖Û − U‖2L2

α(0,tn;V ) + 4‖RI‖
2
L2

α(0,tn;V ∗)

+ 4‖Rf‖
2
L2

α(0,tn;V
∗) + 4‖Wn‖2L2

α(0,tn;V
∗).

In view of the inequality (1.2), we have the following L2(0, T ;V ) error estimate.

Corollary 5.1 (L2(0, T ;V ) Error Estimate). Let U(t) be the L1 approximation to the solu-

tion of problems (1.3), Û be the corresponding reconstruction of U defined in (4.1) and (4.5),

E = u − U and Ê = u − Û . Then the following a posteriori error estimate is valid, for

t ∈ In, n ≥ 1,

ωα(t)

5
‖Û − U‖2L2(0,t;V ) ≤ ‖Ê(t)‖2 + ωα(t)‖E‖2L2(0,t;V ) +

ωα(t)

4
‖Ê‖2L2(0,t;V )

≤ ‖E(0)‖2 + ‖Û − U‖2L2
α(0,t;V ) + 4‖RI‖

2
L2

α(0,t;V ∗)

+ 4‖Rf‖
2
L2

α(0,t;V
∗) + 4‖Wn‖2L2

α(0,t;V ∗).

We conclude this section with a remark about our results. Using (4.5) and (5.6), when f

is sufficiently smooth we can easily show that the terms ‖Û − U‖2L2
α(0,t;V ) and ‖Rf‖L2

α(0,tn;V ∗)

in error estimates are of order 2. This means that their orders are higher than the error order

2−α of the L1 scheme. It is also easy to show that the term ‖RI‖
2
L2

α(0,t;V ∗) is of optimal order

2− α because

RI =
(
ℓn,−1∂̄

α
t U

n−1 + ℓn,1∂̄
α
t U

n
)
− ∂α

t U(t),

which is a linear interpolation approximation. As for the term ‖Wn‖2L2
α(0,t;V

∗), from (4.6),

we get

Wn = ∂α
t Û(t)− ∂α

t U(t) = ∂α
t

(
Û(t)− U(t)

)
,

and therefore it is of optimal order 2− α.

6. Numerical Experiments: Uniform Partition

Using several numerical examples, we now illustrate the theoretical results of the previous

sections. It is worthwhile to note that the theoretical results obtained in this paper are valid

for the 2D and 3D problems, although we consider only 1D example here. We study the

effectivity indices corresponding to the error estimators on several test cases with both smooth

and nonsmooth solutions.

Let us define the estimators

EU := ‖Û − U‖L2
α(0,T ;V ), Ef := ‖Rf‖L2

α(0,T ;V ∗),

EI := ‖RI‖L2
α(0,T ;V ∗), EW := ‖Wn‖L2

α(0,T ;V ∗).
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We denote by Errm the discrete maximum norm in time of E, i.e.

Errm = max
1≤n≤N

‖E(tn)‖ = max
1≤n≤N

‖Ê(tn)‖,

by ErrT the error at time T , i.e.

ErrT = ‖E(T )‖ = ‖E(tN )‖,

and by Err1α the L2
α(0, T ;V )-norm of the error, i.e. Err1α = ‖E‖L2

α(0,T ;V ). The lower and

upper estimators are EU/5 and EU + 4Ef + 4EI + 4EW , respectively, see (5.7). We are also

interested in computing the effectivity indices eiL and eiU , defined as

eiL :=
Lower estimator

(5/4)Err1α
, eiU :=

Upper estimator

ErrT + (5/4)Err1α
,

respectively. Note that since ‖Ê‖L2
α(0,T ;V ) is a higher order term than ‖E‖L2

α(0,T ;V ), the error

‖E‖L2
α(0,T ;V ) + (1/4)‖Ê‖L2

α(0,T ;V ) is approximated by the error (5/4)Err1α in computing the

effectivity indices eiL and eiU .

We proceed by studying two different cases. The first one concerns problem which has

a smooth solution, while in the second one we consider (1.3) with a nonsmooth solution.

Example 6.1 (Smooth Solution). Let us still consider the problem (3.6) with the exact

solution

u(x, t) = (1 + t2)x(1− x).

The true error Errm, and the a posteriori error estimators EU , Ef , EI , EW , as well as their

temporal convergence orders are listed in Tables 6.1 and 6.2, respectively. From these numerical

results, we observe that the true error Errm and the a posteriori error estimators EI , EW are of

optimal order 2− α. The a posteriori error quantities EU and Ef are of optimal order 2.

From Table 6.2, we can see that the effectivity index eiL depends on α, and the effectivity

index eiU is around 4.4 for all three cases.

Table 6.1: Example 6.1: The errors and their convergence orders of L1 method (2.2) for (3.6), where

T = 1 and M = 512.

α N Errm Order EU Order Ef Order

0.25

16 2.9585E-05 - 3.6846E-04 - 4.0675E-04 -

32 9.2304E-06 1.6804 9.5129E-05 1.9535 1.0445E-04 1.9613

64 2.8527E-06 1.6940 2.4362E-05 1.9652 2.6679E-05 1.9690

128 8.7525E-07 1.7045 6.2057E-06 1.9729 6.7866E-06 1.9749

0.5

16 1.2098E-04 - 4.2338E-04 - 4.6169E-04 -

32 4.3485E-05 1.4762 1.0692E-04 1.9853 1.1659E-04 1.9854

64 1.5551E-05 1.4835 2.6915E-05 1.9901 2.9357E-05 1.9896

128 5.5421E-06 1.4884 6.7603E-06 1.9932 7.3771E-06 1.9925

0.75

16 3.9180E-04 - 4.4976E-04 - 4.6005E-04 -

32 1.6542E-04 1.2439 1.1031E-04 2.0275 1.1586E-04 1.9893

64 6.9720E-05 1.2465 2.7259E-05 2.0168 2.9172E-05 1.9897

128 2.9355E-05 1.2479 6.7675E-05 2.0100 7.3499E-06 1.9888
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Table 6.2: Example 6.1: The errors with their orders, and the effecitvity indices of error estimators of

L1 method (2.2) for (3.6), where T = 1 and M = 512.

α N EI Order EW Order eiL eiU

0.25

16 9.1929E-05 - 7.6227E-05 - 0.1310 4.5071

32 3.0001E-05 1.6155 2.2188E-05 1.7805 0.1260 4.5057

64 9.5901E-06 1.6453 6.4390E-06 1.7848 0.1202 4.4998

128 3.0201E-06 1.6669 1.8674E-06 1.7857 0.1138 4.4909

0.5

16 4.2709E-04 - 2.1441E-04 - 0.0868 4.4127

32 1.5780E-04 1.4364 7.3420E-05 1.5461 0.0717 4.3872

64 5.7444E-05 1.4579 2.5297E-05 1.5371 0.0575 4.3577

128 2.0715E-05 1.4714 8.7708E-06 1.5282 0.0449 4.3282

0.75

16 1.3914E-03 - 6.2937E-04 - 0.0456 4.3876

32 6.0038E-04 1.2126 2.6375E-04 1.2547 0.0292 4.3788

64 2.5613E-04 1.2289 1.1058E-04 1.2541 0.0182 4.3710

128 1.0859E-04 1.2379 4.6396E-05 1.2530 0.0111 4.3648

Example 6.2 (Nonsmooth Solution). In the second experiment we consider (3.6) with

a nonsmooth exact solution

u(x, t) = (1 + tα)x(1 − x).

The true errors Errm,Err1α, EU , and their convergence orders are presented in Table 6.3. The

a posteriori error estimators Ef , EI , EW , and their temporal convergence orders are listed in

Table 6.4. From these numerical results, we observe that a posteriori error quantities EU and

Ef are still of order 2. The former illustrates that the quadratic reconstruction Û is a higher

order approximation of U and the difference between them is independent of the regularity of

the exact solution u, and the latter confirms the error behaviour of the linear interpolation for

f when it is sufficiently smooth. Observe also that the true error Errm,Err1α and the posteriori

error estimators EI , EW are only of α order. These numerical results show that the L1 method

with nonsmooth data is only convergent of order α on the uniform mesh, which is in accordance

with the result of initial singularity.

Table 6.3: Example 6.2: The exact errors and their convergence orders of L1 method (2.2) for (3.6),

where T = 1 and M = 512.

α N Errm Order Err1α Order EU Order

0.25

16 7.4328E-04 - 6.5266E-03 - 7.5322E-03 -

32 6.2481E-04 0.2505 5.4453E-03 0.2613 1.7481E-03 2.1073

64 5.2519E-04 0.2506 4.5403E-03 0.2622 4.0825E-04 2.0982

128 4.4414E-04 0.2506 3.7818E-03 0.2637 9.8960E-05 2.0455

0.5

16 4.6297E-04 - 7.3705E-03 - 1.0696E-03 -

32 3.2399E-04 0.5149 5.0945E-03 0.5328 2.5038E-04 2.0936

64 2.2638E-04 0.5171 3.5182E-03 0.5341 5.8995E-05 2.0854

128 1.5801E-04 0.5187 2.4277E-03 0.5352 1.4323E-05 2.0421

0.75

16 4.3779E-04 - 8.8184E-03 - 1.9029E-03 -

32 2.5459E-04 0.7820 4.9823E-03 0.8237 4.4585E-04 2.0935

64 1.4701E-04 0.7922 2.8128E-03 0.8248 1.0793E-04 2.0463

128 8.4859E-05 0.7928 1.5871E-03 0.8256 2.6539E-05 2.0240



16 J.L. CAO, A.G. XIAO AND W.S. WANG

Table 6.4: Example 6.2: The a posteriori errors and their orders of L1 method (2.2) for (3.6), where

T = 1 and M = 512.

α N Ef Order EI Order EW Order

0.25

16 8.0505E-04 - 3.4492E-03 - 1.2272E-03 -

32 2.0978E-04 1.9402 2.9069E-03 0.2467 1.0345E-03 0.2468

64 5.4151E-05 1.9424 2.4304E-03 0.2582 8.7181E-04 0.2579

128 1.3884E-05 1.9579 2.0208E-03 0.2662 7.2647E-04 0.2631

0.5

16 7.0582E-04 - 2.5685E-03 - 8.1450E-04 -

32 1.7902E-04 1.9791 1.7727E-03 0.5349 5.7649E-04 0.4986

64 4.5199E-05 1.9857 1.2402E-03 0.5154 4.0475E-04 0.5102

128 1.1376E-05 1.9901 8.7393E-04 0.5049 2.8337E-04 0.5143

0.75

16 5.5627E-04 - 1.1583E-03 - 8.7355E-04 -

32 1.3958E-04 1.9946 6.9054E-04 0.7462 5.2141E-04 0.7447

64 3.4983E-05 1.9963 4.0954E-04 0.7537 3.0857E-04 0.7568

128 8.7617E-06 1.9973 2.4161E-04 0.7613 1.8181E-04 0.7631

7. Numerical Experiments: Adaptivity

From the above numerical experiments, we know that the optimal convergence order of

numerical algorithm with nonsmooth data couldn’t be achieved on the uniform mesh. In this

section, in order to deal with the nonsmooth case, we develop a time adaptive algorithm for

TFPDEs using barrier function [25–27]. Inspired by [26], we choose the similar barrier function

to obtain the optimal results.

Theorem 7.1. Let the operator A in (1.3), for some λ ∈ R, satisfy (Av, v) ≥ λ‖v‖2, ∀ v ∈ V.

Suppose a unique solution u of (1.3) and its approximation Û are in L∞(0, t;H)∩W 1,∞(ǫ, t;H)

for any 0 < ǫ < t ≤ T , and also in V for any t > 0, while Rh(t) = Rn(t) +A(U − Û). Then

‖(u− Û)(t)‖ ≤ (∂α
t + λ)−1‖Rh(t)‖, t > 0.

Proof. Adding the term A(Û−U) into the Eq. (4.8) and using the condition (Av, v) ≥ λ‖v‖2,

we can obtain the theorem, which is similar to [26, Theorem 2.2]. �

From the result of Theorem 7.1, if the barrier function E(t) satisfies

‖Rh(t)‖ ≤
(
∂α
t + λ

)
E(t),

we can obtain the result of pointwise-in-time error ‖Ê(t)‖ ≤ E(t), ∀ t ≥ 0, which is desirable

for the theoretical analysis and numerical experiments. But the barrier function E(t) must

ensure the limit condition (∂α
t + λ)E(t) > 0, t > 0, which is not satisfied for most barrier

function E(t). Thanks to the [26], we take two barrier functions E(t) at the following lemma,

which are appropriate for our goal.

Lemma 7.1 ([26]). Under the conditions of Theorem 7.1 with λ ≥ 0, for the error Ê(t) one

has

‖Ê(t)‖ ≤ sup
0<s≤t

{
‖Rh(s)‖

R0(s)

}
, ‖Ê(t)‖ ≤ tα−1 sup

0<s≤t

{
‖Rh(s)‖

R1(s)

}
,

where

R0(t) := Γ−1(1− α)t−α + λ, R1(t) := Γ−1(1− α)t−1ρ(τ/t) + λE1(t),

E1(t) := max{τ, t}α−1, ρ(s) := sα−1
[
1−

(
(1− s)+

)1−α]
.
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7.1. The adaptive algorithm

We briefly describe our adaptive algorithm used here. Let Tol denote the tolerance such that

‖Rh(t)‖ ≤Tol∗Rp(t), p = 0, 1. In order to characterize t ∈ (tn−1, tn) in the actual calculation,

we have to take GN points on the interval (tn−1, tn) to check ‖Rh(tk)‖ ≤ Tol ∗ Rp(tk), k =

1, 2, . . . , GN . The main steps of the time adaptive algorithm are summarized schematically in

the pseudocode below. More precisely, the adaptive algorithm starts by advancing the solution

and computing the time estimator ‖Rh(t)‖ and Rp(t). Based on the time estimator ‖Rh(t)‖

and Rp(t), we could perform time-step refinement and time-step coarsening as needed.

Reasonable choices for the parameters Q = 1.1, while for p = 0 and p = 1 we take τ∗ =

5Tol1/α and τ∗ = Tol.

Algorithm 7.1: Time Adaptive Algorithm.

Choose Parameters: Tol,GN, Q.

Initialization: U0, t0 = 0, k1 = τ∗, n = 0.

while tn < T do

Set flag = 2.

while flag > 0 do

if flag == 1 then
kn = kn/Q.

end

Set tn := tn−1 + kn.

Solve the discrete problem: {U j}n−1
j=0 → {U j}nj=0 .

Insert GN points evenly on the interval (tn−1, tn).

Set k = 1, Count = 0.

while k <= GN do

Compute Estimator ‖Rh(tk)‖,Rp(tk).

if ‖Rh(tk)‖ > Tol ∗ Rp(tk) then
break.

else
Count = Count+ 1.

end

k = k + 1.

end

if Count == GN then
flag = 0, kn = kn ∗Q.

else
flag = 1.

end

end

Let n = n+ 1.

if tn == T then
break.

end

end
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7.2. Numerical experiments

To visually compare with the previous numerical experiments, we still consider the problem

in Example 6.2 but use the adaptive algorithm, which could be applied to both 2D and 3D

examples. Firstly, we discuss the case of the barrier function R0(t) in Fig. 7.1. We observe the

estimators ‖Ê(t)‖ and ‖Rn(t)‖L2
α(0,T ;V ∗), which are plotted in Fig. 7.1, are optimal convergence

rates of 2 − α when α = 0.4, 0.8. We also observe that adaptive mesh is more dense at initial

time and more sparse at terminal time than graded mesh, which is reasonable for the problem

with nonsmooth data. Then we discuss the adaptive algorithm with barrier function R1(t) in

Fig. 7.2. We observe that the estimators ‖Ê(T )‖ and ‖Rn(t)‖L2
α(0,T ;V ∗) on the adaptive mesh

achieve the optimal convergence rates of 2 − α when α = 0.3 and α = 0.7. And the pointwise

error ‖Ê(tn)‖ on the adaptive mesh is compared with error on the nonuniform Tol · tα−1.

Comparison of the numerical results in this section and numerical results in Example 6.2

suggests that nonuniform mesh could improve the convergence which is influenced by the ini-

tial singularity of nonsmooth problem. This means that adaptive algorithm is necessary to

(a) α = 0.4 (b) α = 0.8

(c) {tj}
N
j=0

as a function of j/N

Fig. 7.1. Adaptive algorithm with R0(t) for Example 6.2: Estimators

max[0,T ] ‖Ê(t)‖, ‖Rn(t)‖L2
α(0,T ;V ∗) and reference estimator 2Nα−2 on the adaptive mesh, where

α = 0.4 (upper left) and α = 0.8 (upper right). Lower: graphs of {tj}
N
j=0 as a function of j/N for the

adaptive mesh and graded mesh with γ = (2− α)/α, α = 0.7,Tol = 10−3, N = 63.
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(a) α = 0.3 (b) α = 0.7

(c) log-log graphs of pointwise error ‖Ê(tj)‖

Fig. 7.2. Adaptive algorithm with R1(t) for Example 6.2: Estimators

max[0,T ] ‖Ê(t)‖, ‖Rn(t)‖L2
α(0,T ;V ∗) and reference estimator Nα−2 on the adaptive mesh, where

α = 0.3 (upper left) and α = 0.7 (upper right). Lower: log-log graphs of pointwise error ‖Ê(tj)‖ on

the adaptive mesh and nonuniform mesh Tol · tα−1 with α = 0.4,Tol = 10−3, N = 49.

constructing numerical algorithm for nonsmooth problem. Thanks to the adaptive algorithm,

quadratic reconstruction for the L1 method could achieve the optimal order no matter whether

the initial data is smooth or not.

We also note that a posteriori error estimator of the linear reconstruction, which has been

discussed with smooth data in the Section 3, can also obtain optimal convergence rate for nons-

mooth problem on an adaptive mesh in [26]. Thus it is interesting to compare the computational

efficiency and accuracy of a posteriori error estimator between the linear reconstruction and

the quadratic reconstruction. These are done in Figs. 7.3-7.4.

As can be seen from Figs. 7.3 and 7.4, the true error of the adaptive algorithm based on

quadratic reconstruction is smaller than that of linear reconstruction, regardless of whether

R0(t) or R1(t) is used. Compared with the adaptive algorithm based on linear reconstruction,

the computation time of the adaptive algorithm based on quadratic reconstruction using R0(t)

is not much different, while the computation time using R1(t) is significantly less. Therefore,

it is meaningful to use the technique based on the quadratic reconstruction of the numerical

solution for a posteriori error estimates.
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Fig. 7.3. Adaptive algorithm with R0(t) in Example 6.2: A posteriori error estimator max[0,T ] ‖E(t)‖ of

the linear reconstruction and a posteriori error estimator max[0,T ] ‖Ê(t)‖ of the quadratic reconstruction

on the adaptive mesh when α = 0.5 (left) and the corresponding computation time (right).

Fig. 7.4. Adaptive algorithm with R1(t) in Example 6.2: A posteriori error estimator max[0,T ] ‖E(t)‖ of

the linear reconstruction and a posteriori error estimator max[0,T ] ‖Ê(t)‖ of the quadratic reconstruction

on the adaptive mesh when α = 0.5 (left) and the corresponding computation time (right).

8. Concluding Remarks

In this paper, we derived optimal order a posteriori error estimates for the L1 time dis-

cretization method for TFPDEs. In view of the weak regularity of the solutions to this class

of equations, a posteriori error estimates are extremely important for solving adaptively TF-

PDEs. Firstly, we derived a posteriori error estimate of the linear reconstruction, which is

suboptimal order with respect to the uniform step-size by the L1 method even for the problem

with smooth solution. To derive optimal order a posteriori error estimates, we introduced frac-

tional integral reconstruction for the first-step integration and continuous, piecewise quadratic

time reconstructions Û(t) on the rest integration intervals for the L1 method. By means of

quadratic reconstructions, we obtain the upper error bounds in the L2
α(0, t;V )-, L2(0, t;V )-

and L∞(0, t;H)-norms as well as the upper and lower error bounds in the L2
α(0, t;V )- and

L2(0, T ;V )-norms. It is worth emphasizing that these bounds depend only upon the discretiza-

tion parameters and the data of problems and thus are computable. Numerical Example 6.1
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show that the true error and a posteriori error estimators are of optimal order 2 − α for the

problem with smooth solution, but numerical Example 6.2 indicate that using uniform mesh

could only achieve convergence of α order for the problem with nonsmooth data. Based on

the technique of barrier function, we developed a time adaptive algorithm. Then we perform

the numerical Example 6.2 again on the adaptive mesh and check that the true error and

a posteriori error estimators recover the optimal convergence, which can be seen in Figs. 7.1

and 7.2. Thus numerical results confirm the theoretical analysis and reveal the effectiveness of

the a posteriori error estimates and the time adaptive algorithm no matter whether the initial

data is smooth or nonsmooth. Finally, from the error and computation time of the adaptive

algorithm, which has been shown in Figs. 7.3 and 7.4, we can know that the adaptive algorithm

based on the quadratic reconstruction is more effective than the adaptive algorithm based on

the linear reconstruction.

In this paper, we only considered the a posteriori error estimates for time discretization

methods but not for the space discretization methods. Deriving a posteriori error estimates for

fully discrete approximations for TFPDEs will be our future work.
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