
Numer. Math. Theor. Meth. Appl. Vol. xx, No. x, pp. 1-36

doi: 10.4208/nmtma.OA-2023-0109 x 2024

Novel Partitioned Time-Stepping Algorithms for

Fast Computation of Random Interface-Coupled

Problems with Uncertain Parameters

Yizhong Sun1, Jiangshan Wang1,* and Haibiao Zheng2

1 School of Mathematical Sciences, East China Normal University, Shanghai,

China
2 School of Mathematical Sciences, Ministry of Education Key Laboratory of

Mathematics and Engineering Applications, Shanghai Key Laboratory of PMMP,
East China Normal University, Shanghai, China

Received 15 September 2023; Accepted (in revised version) 5 October 2023

Abstract. The simulation of multi-domain, multi-physics mathematical models with

uncertain parameters can be quite demanding in terms of algorithm design and com-

putation costs. Our main objective in this paper is to examine a physical interface
coupling between two random dissipative systems with uncertain parameters. Due

to the complexity and uncertainty inherent in such interface-coupled problems, un-

certain diffusion coefficients or friction parameters often arise, leading to consid-
ering random systems. We employ Monte Carlo methods to produce independent

and identically distributed deterministic heat-heat model samples to address ran-
dom systems, and adroitly integrate the ensemble idea to facilitate the fast calcu-

lation of these samples. To achieve unconditional stability, we introduce the scalar

auxiliary variable (SAV) method to overcome the time constraints of the ensemble
implicit-explicit algorithm. Furthermore, for a more accurate and stable scheme,

the ensemble data-passing algorithm is raised, which is unconditionally stable and

convergent without any auxiliary variables. These algorithms employ the same co-
efficient matrix for multiple linear systems and enable easy parallelization, which

can significantly reduce the computational cost. Finally, numerical experiments are
conducted to support the theoretical results and showcase the unique features of the

proposed algorithms.
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1. Introduction

In the realm of mathematical physics, models of atmosphere-ocean interaction are

commonly constructed by two incompressible Newtonian fluids along with compati-

ble interface conditions [2, 20–22]. Recently, much focus has been placed on multi-

domain, multi-physics coupled problems [1, 3, 8, 10, 16, 28], with particular interest in

novel numerical simulations for fluid-fluid interaction models [5–7, 29]. In the study

outlined by [6], a simplified atmosphere-ocean interaction model is considered, fea-

turing a deterministic friction parameter κ and is deemed a linear heat-heat coupled

system. To decouple such a multi-domain, multi-physics system naturally resulting in

parallel computation, Connors et al. [6] presented the implicit-explicit (IMEX) and

data-passing partitioned methods, which are both first-order in time, fully discrete

methods. The most noteworthy aspect of [6] is illustrated by the fact that the data-

passing partitioned method is unconditionally stable and convergent. Subsequently,

in the case of the atmosphere-ocean interaction model incorporating some nonlinear

interface demands, Connors et al. [7] built on existing research [6] and furthered an

unconditionally stable method by executing geometric averaging for nonlinear terms.

Due to the inaccuracy of observation data, the complexity of the atmosphere-ocean

coupling, or the introduction of additional uncertainty sources, the friction parameter

κ [5] and diffusion coefficients ν1, ν2 [23] are physically impossible to determine, which

can only give an approximate value range or meet a certain probability distribution.

Therefore, exploring the numerical simulation of such problems with uncertain inputs

is necessary. Uncertain parameters are often considered random functions determined

by specific covariance structures, typically experimentally constructed basic random

fields. In this paper, we focus on the linear heat-heat interface-coupled problems with

three random coefficients κ, ν1, and ν2 as simplified fluid-fluid models. The main issue

of this paper is to establish effective numerical schemes based on the ensemble idea,

existing IMEX, and data-passing partitioned schemes, to achieve unconditional stability

and fast computation for the random interface-coupled model.

One of the most popular approaches to address random problems is the Monte

Carlo method [23, 24]. This involves transforming these random problems into a se-

ries of traditional PDEs that can be tackled by existing standard numerical methods.

However, the solution’s uncertainty and sensitivity require more samples for better

estimation, which can lead to slow convergence rates. As a result, numerous linear

equations with different stiffness matrices are formed, necessitating extensive compu-

tational costs. To increase efficiency and tackle these computational challenges, re-

searchers proposed a fast ensemble time-stepping algorithm [12] to solve J (the num-

ber of samples) Navier-Stokes equations with different initial conditions and forcing

terms. Jiang et al. [12] skillfully put forward the ensemble idea, at each time step, to

solve the linear systems with a shared coefficient matrix and J right-hand sides. As

only one efficient iterative solver was required for multiple linear systems with a com-

mon coefficient matrix, this significantly reduced storage requirements and computing

costs. For uncertainties in initial conditions and forcing terms, the ensemble algorithm
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has been extensively studied [12–15, 23–25]. Moreover, Wang et al. [23] first used

this approach to solve parabolic problems with random parameters in space and time,

making it an excellent reference for our theoretical analysis.

The scalar auxiliary variable method was initially proposed by [26,27] in the gradi-

ent flow problem. In recent years, the SAV method has gained popularity due to its abil-

ity to overcome the shortcomings of the invariant energy quantization (IEQ) approach

while inheriting its benefits. This approach enables unconditional stability without the

need for the energy density to be bound from below or solving linear equations with

variable coefficients [4, 11, 18, 19, 27]. The SAV approach is widely used today for its

advantages. He et al. [17] designed an SAV algorithm to obtain unconditional stability

for fluid-fluid models with nonlinear interface conditions. Li et al. [18] constructed un-

conditional energy-stable pressure correction schemes for the Navier-Stokes equations

by the SAV approach.

In the present work, we initially introduce the Monte Carlo algorithm for solving

random interface-coupled problems and demonstrate that its convergence is influenced

by both the Monte Carlo method and classical numerical methods. Subsequently, our

primary focus is on proposing innovative numerical methods for the second step of

the Monte Carlo algorithm. Drawing inspiration from [6], we develop an algorithm

based on a standard partitioned time-stepping method known as the IMEX scheme.

This algorithm can directly make the random friction parameters κ explicit, thereby

reducing computation time. However, the stability of the IMEX scheme itself is affected

by time constraints. To overcome this limitation, we combine it with the SAV method

to achieve unconditional stability. Additionally, we address the randomness of the dif-

fusion coefficients ν1, ν2 through an ensemble approach, leading us to create the SAV

ensemble algorithm for the IMEX scheme. Furthermore, based on findings from [6], we

discover that the data-passing scheme offers improved accuracy and stability compared

to the IMEX scheme while maintaining unconditional stability and convergence. And

the SAV method doubles the equations that need to be solved, which in turn increases

the computational cost. Thus, we design an ensemble algorithm for the data-passing

scheme, eliminating the need for auxiliary variables, although all three random pa-

rameters κ, ν1, ν2 require processing using the ensemble idea. In summary, we have

obtained the following significant results:

• For the random interface-coupled problems: The proposed Monte Carlo algo-

rithm has been shown to have a rigorous convergence rate (Theorem 2.1). This

reflects the disadvantage of the Monte Carlo method, which typically has a slow

convergence rate of 1/
√
J . Moreover, the convergence result also shows the error

estimate contributed by the finite element approximation.

• For IMEX scheme: We propose the SAV ensemble algorithm for the IMEX scheme

(A1), which offers both unconditional stability and convergence. More impor-

tantly, the ensemble approach we introduce allows the use of the same coefficient

matrix for multiple linear systems, which drastically reduces the computational

cost.
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• For data-passing scheme: The ensemble algorithm for the data-passing scheme

(A2) is proposed while still maintaining unconditional stability and convergence

without any auxiliary variables. Additionally, compared to the single domain

problem presented in [23], we avoid imposing any stronger constraint conditions.

It is worth noting that the random diffusion coefficients ν1, ν2 may change not

only with space but also with time, causing the coefficient matrix to update with

each time step. To further optimize the A2 algorithm and reduce calculation

costs, we use a clever time-based averaging technique to estimate the coefficients

ν1, ν2. There are no restrictions that need to be added or strengthened to ensure

unconditional stability and convergence. The random friction parameter κ in both

algorithms can simulate a range of real-world problems with large disturbances,

typically between 10−3 and 103.

The paper is structured as follows. In Section 2, we introduce the random heat-heat

coupled model along with relevant mathematical preliminaries, and we also discuss the

Monte Carlo algorithm and its convergence. Section 3 presents the efficient SAV ensem-

ble algorithm for the IMEX scheme, which we rigorously prove to have unconditional

stability and convergence. In Section 4, we propose two ensemble algorithms based

on the data-passing scheme, and show the stability and error estimation of both algo-

rithms. Finally, Section 5 includes numerical tests that demonstrate the effectiveness

of the proposed algorithms.

2. The random interface-coupled problems

In this paper, we will explore a pair of dissipative systems that are interconnected

via interface conditions, enabling energy conversion at a single interface. Let the do-

main Ω ⊂ R
d (d = 2, 3) have convex, subdomains Ωi (i = 1, 2) with the interface

Γ = ∂Ω1 ∩ ∂Ω2 = Ω̄1 ∩ Ω̄2 and outer boundary of each subdomain Γi = ∂Ωi\Γ. The

unit outward normal vectors on ∂Ω1 and ∂Ω2 are designated as n̂1 and n̂2, respectively.

Fig. 1 is a simple 2D diagram to facilitate comprehension.

Figure 1: Example sub-domains, adjoined by an interface Γ.
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The two heat equations coupled by the jump interface conditions are shown as

follows:

ui,t −∇ ·
(

νi(x, t)∇ui
)

= fi in Ωi × [0, T ], (2.1)

−νi(x, t)∇ui · n̂i = κ(ui − uk) on Γ× [0, T ], i, k = 1, 2, i 6= k, (2.2)

ui(x, 0) = u0i (x) in Ωi × [0, T ], (2.3)

ui(x, t) = 0 on Γi = ∂Ωi\Γ, (2.4)

where νi ∈ L2(W 1,∞(Ω); 0, T ) denotes the diffusion coefficient, fi ∈ L2(H−1(Ω); 0, T )
is the sink/source term, and κ > 0 means the friction parameter, which is calculated in

practice from bulk flux formulae [5].

We use ‖ · ‖ and (·, ·) to denote the L2-norm and inner product on each subdomain,

and ‖ · ‖Γ to denote the L2(Γ)-norm on the interface. Let

Xi := {vi ∈ H1(Ωi) : vi = 0 on Γi}, i = 1, 2

be the Sobolev space for each subdomain. We define

X = X1 ×X2 =
{

v = (v1, v2) : vi ∈ Xi, i = 1, 2
}

,

L2(Ω) = L2(Ω1)× L2(Ω2)

as two product spaces for the global domain. Moreover, the product spaces L2(Ω) and

X are equipped with the following norms:

‖v‖ =
∑

i=1,2

(
∫

Ωi

|vi|2dx
)

1

2

,

‖v‖X =
∑

i=1,2

(
∫

Ωi

(

|vi|2 + |∇vi|2
)

dx

)
1

2

.

Consider a regular, quasi-uniform triangulation (d = 2) or tetrahedron (d = 3) Ti
with mesh scale h for each subdomain Ωi. We assume that T1 and T2 are compatible

at the interface Γ and T1 ∪ T2 = Th is defined for the global domain Ω. Let Xi,h ⊂ Xi

be the finite element spaces for i = 1, 2, which need to satisfy Xh = X1,h × X2,h ⊂
X. The simulation time T can be divided into N smaller time intervals with [0, T ] =
∪N−1
n=0 [t

n, tn+1], where tn = n∆t, ∆t = T/N .

Furthermore, we recall the Poincaré inequality and trace inequality as follows.

There exist positive constants Cp and Ct only depending on the domain Ω such that

‖v‖ ≤ Cp‖∇v‖, ‖v‖Γ ≤ Ct‖v‖
1

2 ‖∇v‖ 1

2 .

With the mesh-independent constant C, we assume the optimal approximation prop-

erties for piecewise continuous polynomials on the quasi-uniform mesh of local l as

below

inf
v∈Xi,h

‖u− v‖ ≤ Chl+1|u|Hl+1 , inf
v∈Xi,h

‖u− v‖Xi
≤ Chl|u|Hl+1 , i = 1, 2.
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Due to the uncertainty in the observation data and the complexity of the atmosphe-

re-ocean coupling, the diffusion coefficients ν1, ν2, and the friction parameter κ are

physically difficult to determine. Furthermore, additional sources of uncertainty may

be required to obtain κ [5]. This forces us to further investigate the random heat-heat

interface-coupled model with three random coefficients κ, ν1, and ν2. Let (Π,F ,P) be

a complete probability space, where Π is the set of outcomes, F ⊂ 2Π is the σ-algebra

of events, and P : F → [0, 1] is a probability measure. That is, the random heat-heat

interface-coupled system reads: Find the random function ui: Π × Ωi × [0, T ] → R

satisfying P - a.e.

ui,t −∇ · (νi(ω,x, t)∇ui) = fi(ω,x, t) in Π× Ωi × [0, T ], (2.5)

−νi(ω,x, t)∇ui · n̂i = κ(ω)(ui − uk) on Π× Γ× [0, T ],

i, k = 1, 2, i 6= k, (2.6)

ui(ω,x, 0) = u0i (ω,x) in Π× Ωi × [0, T ], (2.7)

ui(ω,x, t) = 0 on Π× Γi = ∂Ωi\Γ, (2.8)

where the diffusion coefficient νi and source force fi hold: Π × Ωi × [0, T ] → R, and

u0i : Π × Ωi → R, which are assumed to have continuous and bounded covariance

functions.

For the random system (2.5)-(2.8), we propose a Monte Carlo algorithm for the

random interface-coupled problem, which consists of the following step:

1. Choose a set of independently, identically distributed (i.i.d) samples for the ran-

dom friction parameter κ(ωj) and diffusion coefficients νi(ωj, ·, ·), j = 1, . . . , J .

2. Apply standard numerical methods to solve the corresponding deterministic PDEs

for approximate solutions un+1
1,j and un+1

2,j , j = 1, . . . , J .

3. Approximate expectation E[u] by averaging the statistical information of the out-

puts E[u] ≈ (
∑J

j=1 u(ωj ,x, t))/J .

Regarding random friction parameter κ(ωj) as κj, and random diffusion coefficients

νi(ωj,x, t) as νi,j, similarly denoting sink/source term fi(ωj ,x, t) as fi,j, we have an en-

semble of J heat-heat interface-coupled systems corresponding to J different parame-

ters sets (fi,j, κj , νi,j), i = 1, 2, j = 1, . . . , J as follows:

ui,j,t −∇ · (νi,j∇ui,j) = fi,j in Ωi × [0, T ], (2.9)

−νi,j∇ui,j · n̂i = κj(ui,j − uk,j) on Γ× [0, T ], i, k = 1, 2, i 6= k, (2.10)

ui,j(x, 0) = u0i,j(x) in Ωi × [0, T ], (2.11)

ui,j(x, t) = 0 on Γi = ∂Ωi\Γ. (2.12)

Then, the weak formulation of (2.9)-(2.12) can be written as follows: For i, k =
1, 2, i 6= k find ui,j : [0, T ] → Xi satisfying

(ui,j,t, vi) + (νi,j∇ui,j,∇vi) +

∫

Γ
κj(ui,j − uk,j)vids = (fi,j, vi), ∀vi ∈ Xi. (2.13)
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The natural monolithic weak formulation of the problem (2.9)-(2.12), found by sum-

ming (2.13) over i = 1, 2, is: Find uj : [0, T ] → X satisfying

(uj,t,v) + (νj∇uj,∇v) +

∫

Γ
κj [uj ][v]ds = (fj,v), ∀v ∈ X, (2.14)

where [·] denotes the jump of the indicated quantity across the interface Γ and

(uj,t,v) =

2
∑

i=1

(ui,j,t, vi), (νj∇uj,∇v) =

2
∑

i=1

(νi,j∇ui,j,∇vi), (fj ,v) =

2
∑

i=1

(fi,j, vi).

To obtain the convergence of the Monte Carlo algorithm, supposing

ν̃i =
1

J

J
∑

j=1

νi(ωj,x, t),

the following two conditions are valid:

(i) There exists a positive constant θ̃, such that, for any t ∈ [0, T ],

P

{

ω ∈ Ω; min
x∈Ω̄

ν̃i(ω,x, t) ≥ θ̃

}

= 1. (2.15)

(ii) There exist positive constants θ̃− and θ̃+, such that, for any t ∈ [0, T ],

P
{

ωj ∈ Ω; θ̃− ≤ |νi(ωj ,x, t)− ν̃i(x, t)|∞ ≤ θ̃+

}

= 1. (2.16)

Theorem 2.1. Under conditions (i)-(ii), assuming θ̃ > θ̃+ and Φn = (
∑J

j=1 u
n
j )/J , we

have the following error estimation for the random interface-coupled system (2.5)-(2.8):

E
[

‖E[uN+1]− ΦN+1‖2
]

+ κmax∆tE
[

‖E[uN+1]− ΦN+1‖2Γ
]

+ θ−∆tE
[

‖∇E[uN+1]−∇ΦN+1‖2
]

+ (θ − θ+)∆t
N
∑

n=0

E
[

‖∇E[un+1]−∇Φn+1‖2
]

≤ 1

J

(

E
[

‖u0
j‖2
]

+ C∆tE
[

‖∇u
0
j‖2
]

+C∆tE
[

‖u0
j‖2Γ
]

+ C∆t

N
∑

n=0

E
[

‖fn+1
j ‖2−1

]

)

+ C
(

∆t2 + h2l
)

. (2.17)

Proof. The error estimate result can be proved by analyzing two sources of error.

The first source is the standard error of the Monte Carlo method, which follows the

analysis in [23]. The second source is the error of the standard numerical methods,
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inhere, the three novel partitioned time-stepping algorithms that will be constructed

later. The proof of this part will also be given later (Theorems 3.2 and 4.2).

When solving the corresponding deterministic PDEs with a standard numerical

method, we need to solve the following linear systems:

Ai,j

[

ui(ωj ,x, t)
]

= [RHSi,j(x)] , i = 1, 2, j = 1, . . . , J.

More samples are required better to estimate the uncertainty and sensitivity of the

solutions, which leads to a large number of linear equations with different stiffness ma-

trices. To improve the computational efficiency, we hope to get an algebraic structure

similar to that shown below

Ai

[

ui,1 | · · · | ui,J
]

= [RHSi,1| · · · |RHSi,J ] , i = 1, 2,

which shares the same coefficient matrix. Such an ensemble idea can make the coeffi-

cient matrices A1 and A2 only need to use once efficient iterative solves or direct solvers

for fast computation. Hence, in this report, we mainly commit to presenting novel nu-

merical algorithms for the second procedure of the Monte Carlo algorithm stated above.

Drawing inspiration from [6], we will first develop an algorithm based on a standard

partitioned time-stepping method known as the IMEX scheme in Section 3.

3. The SAV ensemble algorithm for IMEX scheme

In this section, we will establish an effective SAV ensemble algorithm based on

the IMEX scheme for fast-solving the random heat-heat interface-coupled systems with

three uncertain parameters. To overcome the time constraints inherent in the IMEX

scheme itself, we first introduce a set of scalar auxiliary variables qj(t) = exp(−t/T ).
Then, we can rewrite the weak formulation (2.13) as follows: for i, k = 1, 2, i 6= k, find

ui,j : [0, T ] → Xi satisfying

(ui,j,t, vi) + (νi,j∇ui,j,∇vi) + exp

(

t

T

)

qj

∫

Γ
κj(ui,j − uk,j)vids

= (fi,j, vi), ∀vi ∈ Xi. (3.1)

Moreover, we can obtain the following equation:

dqj
dt

= − 1

T
qj + exp

(

t

T

) 2
∑

i=1,i 6=k

∫

Γ
κj(ui,j − uk,j)ui,jds

+ exp

(

2t

T

)

qj

2
∑

i=1,i 6=k

∫

Γ
κj(uk,j − ui,j)ui,jds. (3.2)

Note that the last two interface terms in (3.2) add up to 0, but in the discrete case, they

are not 0 and play a crucial role in subsequent analysis. The SAV ensemble algorithm

for the IMEX scheme can be proposed as follows:
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SAV ensemble algorithm for IMEX scheme (A1)

Let ∆t > 0, ν̄ni = (
∑J

j=1 νi,j(x, t
n))/J , u

0
j ∈ Xh and fj ∈ L2(H−1(Ω); 0, T )) for

j = 1, . . . , J . Given u
n
j ∈ Xh, for n = 0, 1, 2, . . . , N − 1 and i, k = 1, 2, i 6= k, we can

find u
n+1
j ∈ Xh by

(

un+1
i,j − uni,j

∆t
, vi

)

+
(

ν̄n+1
i ∇un+1

i,j ,∇vi

)

+
(

(

νn+1
i,j − ν̄n+1

i

)

∇uni,j,∇vi

)

+ exp

(

tn+1

T

)

qn+1
j

∫

Γ
κj
(

uni,j − unk,j
)

vids =
(

fn+1
i,j , vi

)

, ∀vi ∈ Xi,h, (3.3)

and

qn+1
j − qnj

∆t
= − 1

T
qn+1
j + exp

(

tn+1

T

)
∫

Γ
κj
(

un1,j − un2,j
)

un+1
1,j ds

+ exp

(

tn+1

T

)
∫

Γ
κj
(

un2,j − un1,j
)

un+1
2,j ds

+ exp

(

2tn+1

T

)

qn+1
j

∫

Γ
κj
(

un2,j − un1,j
)

un1,jds

+ exp

(

2tn+1

T

)

qn+1
j

∫

Γ
κj
(

un1,j − un2,j
)

un2,jds. (3.4)

Such algorithm can directly decouple un+1
1,j and un+1

2,j , but the scalar auxiliary variables

qn+1
j are still implicit. Therefore, this format can be used for theoretical analysis, and

further processing of the algorithm is needed in numerical calculations. Let

Sn+1
j = exp

(

tn+1

T

)

qn+1
j , un+1

i,j = ûn+1
i,j + Sn+1

j ǔn+1
i,j , i = 1, 2.

We can rewrite (3.3)-(3.4) as follows:
(

ûn+1
i,j − uni,j

∆t
, vi

)

+
(

ν̄n+1
i ∇ûn+1

i,j ,∇vi

)

+
(

(

νn+1
i,j − ν̄n+1

i

)

∇uni,j,∇vi

)

=
(

fn+1
i,j , vi

)

, ∀v1 ∈ Xi,h, (3.5)
(

ǔn+1
i,j

∆t
, vi

)

+
(

ν̄n+1
i ∇ǔn+1

i,j ,∇vi

)

+

∫

Γ
κj
(

uni,j − uni,j
)

vids = 0, ∀vi ∈ Xi,h, (3.6)

(

T +∆t

T∆t
− exp

(

2tn+1

T

)

A1

)

Sn+1
j = exp

(

tn+1

T

)

qnj
∆t

+ exp

(

2tn+1

T

)

A2, (3.7)

where

A1 =

∫

Γ
κj
(

un1,j − un2,j
)

ǔn+1
1,j ds+

∫

Γ
κj
(

un2,j − un1,j
)

ǔn+1
2,j ds
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+

∫

Γ
κj(u

n
2,j − un1,j)u

n
1,jds+

∫

Γ
κj
(

un1,j − un2,j
)

un2,jds, (3.8)

A2 =

∫

Γ
κj
(

un1,j − un2,j
)

ûn+1
1,j ds+

∫

Γ
κj
(

un2,j − un1,j
)

ûn+1
2,j ds. (3.9)

Therefore, we can get ûn+1
i,j , ǔn+1

i,j and Sn+1
j from (3.5)-(3.7), and final obtain un+1

i,j .

For the theoretical analysis, we suppose that the following two conditions are valid:

(iii) There exists a positive constant θ such that, for any t ∈ [0, T ],

min
x∈Ω̄

ν̄i(x, t) ≥ θ. (3.10)

(iv) There exist positive constants θ− and θ+ such that, for any t ∈ [0, T ],

θ− ≤ |νi,j(x, t) − ν̄i(x, t)|∞ ≤ θ+. (3.11)

With the above assumptions, we can establish the stability of A1 as follows.

Theorem 3.1 (A1 Stability). Suppose that fj ∈ L2(H−1(Ω); 0, T ) and u
n+1
j ∈ Xh sat-

isfy (3.3) for each n ∈ {0, 1, 2, . . . , N − 1}, and the conditions (3.10)-(3.11) holds, the

algorithm A1 is stable on the premise that

θ > θ+. (3.12)

Moreover, there exists a generic positive constant C independent of h,∆t, J such that

∥

∥u
N
j

∥

∥

2
+ θ+∆t

∥

∥∇u
N
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇u
n+1
j

∥

∥

2
+
∣

∣qNj
∣

∣

2

+
2∆t

T

N−1
∑

n=0

∣

∣qn+1
j

∣

∣

2
+ 2∆t

n−1
∑

n=0

exp

(

2tn+1

T

)

∣

∣qn+1
j

∣

∣

2
∫

Γ
κj
∣

∣un1,j − un2,j
∣

∣

2
ds

≤
∥

∥u
0
j

∥

∥

2
+C∆t

∥

∥∇u
0
j

∥

∥

2
+
∣

∣q0j
∣

∣

2
+ C∆t

n−1
∑

n=0

∥

∥f
n+1
j

∥

∥

2

−1
. (3.13)

Proof. Taking v = 2∆tun+1
j in (3.3), we have

2
(

u
n+1
j − u

n
j ,u

n+1
j

)

+ 2∆t
(

ν̄n+1∇u
n+1
j ,∇u

n+1
j

)

+ 2exp

(

tn+1

T

)

qn+1
j ∆t

∫

Γ
κj
(

un1,j − un2,j
)

un+1
1,j ds

+ 2exp

(

tn+1

T

)

qn+1
j ∆t

∫

Γ
κj
(

un2,j − un1,j
)

un+1
2,j ds

≤ −2∆t
(

(

νn+1
j − ν̄n+1

)

∇u
n
j ,∇u

n+1
j

)

+ 2∆t
(

f
n+1
j ,un+1

j

)

. (3.14)
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Using the Young’s inequality,

2(a− b, a) = a2 + (a− b)2 − b2

and (3.10), we get
∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
+ 2θ∆t

∥

∥∇u
n+1
j

∥

∥

2

+ 2exp

(

tn+1

T

)

qn+1
j ∆t

∫

Γ
κj
(

un1,j − un2,j
)

un+1
1,j ds

+ 2exp

(

tn+1

T

)

qn+1
j ∆t

∫

Γ
κj
(

un2,j − un1,j
)

un+1
2,j ds

≤ −2∆t
(

(

νn+1
j − ν̄n+1

)

∇u
n
j ,∇u

n+1
j

)

+ 2∆t
(

f
n+1
j ,un+1

j

)

. (3.15)

Next, multiply the Eq. (3.4) by 2∆tqn+1
j to address

∣

∣qn+1
j

∣

∣

2 −
∣

∣qnj
∣

∣

2
+
∣

∣qn+1
j − qnj

∣

∣

2
+

2∆t

T

∣

∣qn+1
j

∣

∣

2
(3.16)

= 2exp

(

tn+1

T

)

qn+1
j ∆t

(
∫

Γ
κj
(

un1,j − un2,j
)

un+1
1,j ds+

∫

Γ
κj
(

un2,j − un1,j
)

un+1
2,j ds

)

+ 2exp

(

2tn+1

T

)

∣

∣qn+1
j

∣

∣

2
∆t

(
∫

Γ
κj(u

n
2,j − un1,j)u

n
1,jds+

∫

Γ
κj
(

un1,j − un2,j
)

un2,jds

)

.

Combining (3.15) and (3.16), we can obtain

∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
+ 2θ∆t

∥

∥∇u
n+1
j

∥

∥

2
+
∣

∣qn+1
j

∣

∣

2 − |qj|2 +
2∆t

T

∣

∣qn+1
j

∣

∣

2

+ 2exp

(

2tn+1

T

)

∣

∣qn+1
j

∣

∣

2
∆t

∫

Γ
κj
∣

∣un1,j − un2,j
∣

∣

2
ds

≤ −2∆t
(

(

νn+1
j − ν̄n+1

)

∇u
n
j ,∇u

n+1
j

)

+ 2∆t
(

f
n+1
j ,un+1

j

)

. (3.17)

Applying the Cauchy-Schwarz and Young’s inequalities on the right hand side (RHS),

we have

2∆t
(

(

νn+1
j − ν̄n+1

)

∇u
n
j ,∇u

n+1
j

)

≤ 2θ+∆t

(

‖∇u
n
j ‖2

2
+

‖∇u
n+1
j ‖2

2

)

, (3.18)

(

f
n+1
j ,un+1

j

)

≤
∥

∥f
n+1
j

∥

∥

−1

∥

∥∇u
n+1
j

∥

∥ ≤ ∆t

2α

∥

∥f
n+1
j

∥

∥

2

−1
+ 2α∆t

∥

∥∇u
n+1
j

∥

∥

2
. (3.19)

Substitute (3.18)-(3.19) into (3.17) to yield the following result:
∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
+ 2∆t

(

θ − θ+ − α
)
∥

∥∇u
n+1
j

∥

∥

2

+ θ+∆t
(

∥

∥∇u
n+1
j

∥

∥

2 −
∥

∥∇u
n
j

∥

∥

2
)

+
∣

∣qn+1
j

∣

∣

2 −
∣

∣qnj
∣

∣

2
+

2∆t

T

∣

∣qn+1
j

∣

∣

2

+ 2exp

(

2tn+1

T

)

∣

∣qn+1
j

∣

∣

2
∆t

∫

Γ
κj
∣

∣un1,j − un2,j
∣

∣

2
ds ≤ ∆t

2α

∥

∥f
n+1
j

∥

∥

2

−1
. (3.20)
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Summing over n = 0, 1, . . . , N − 1, choosing α = (θ − θ+)/2, and using conditions

(3.10), (3.12), we finally get

∥

∥u
N
j

∥

∥

2
+ θ+∆t

∥

∥∇u
N
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇u
n+1
j

∥

∥

2
+
∣

∣qNj
∣

∣

2

+
2∆t

T

N−1
∑

n=0

∣

∣qn+1
j

∣

∣

2
+ 2∆t

n−1
∑

n=0

exp

(

2tn+1

T

)

∣

∣qn+1
j

∣

∣

2
∫

Γ
κj
∣

∣un1,j − un2,j
∣

∣

2
ds

≤
∥

∥u
0
j

∥

∥

2
+ θ+∆t

∥

∥∇u
0
j

∥

∥

2
+
∣

∣q0j
∣

∣

2
+

∆t

θ − θ+

n−1
∑

n=0

∥

∥f
n+1
j

∥

∥

2

−1
. (3.21)

The aforementioned is a comprehensive demonstration process.

At this juncture, it is posited that C (with or without a subscript) denotes a generic

positive constant regardless of the value of h,∆t, J . Moreover, it is worth noting that

such constant may exhibit variability contingent upon the contextual circumstance. We

can further estimate the approximation error of A1.

Theorem 3.2 (A1 Error Estimate). Let uj(t
n+1) and u

n+1
j be the solutions of the natu-

ral monolithic weak formulation (2.14) and the algorithm A1 at time tn+1, respectively.

Assume ut ∈ L2(X; 0, T ),utt ∈ L2(L2(Ω); 0, T ), for all t ∈ (0.T ). If conditions (3.10)-

(3.11) and the stability condition (3.12) hold, for any n ∈ {0, 1, 2, . . . , N − 1}, we can

obtain the following error estimate for A1 with two generic positive constant C and C∗

independent of h,∆t, J:

∥

∥uj(t
N )− u

N
j

∥

∥

2
+ θ∆t

∥

∥uj(t
N )− u

N
j

∥

∥

2
+
∣

∣eNq
∣

∣

2
+

∆t

T

N−1
∑

n=0

∣

∣en+1
q

∣

∣

2

≤ C exp

(

∆t

N−1
∑

n=0

C∗

)

{

∥

∥uj(0)− u
0
j

∥

∥

2
+ θ∆t

∥

∥∇(uj(0)− u
0
j)
∥

∥

2

+∆t2‖uj,tt‖2L2(0,T ;L2(Ω)) +∆t2‖∇uj,t‖2L2(0,T ;L2(Ω))

+ inf
v0
j∈Xh

{

‖uj(0)− v
0
j‖2 + θ∆t‖∇(uj(0) − v

0
j )‖2

}

+ inf
vj∈Xh

∥

∥(uj(t
n)− v

n
j )t
∥

∥

2

L2(0,T ;L2(Ω))

+ T max
n=0,1,...,N

inf
vn
j ∈Xh

∥

∥∇(uj(t
n)− v

n
j )
∥

∥

2
+ C∆t2

}

. (3.22)

Proof. The proof of error estimates will be divided into the following three steps:

Step 1. We start by establishing an error equation corresponding to (3.3). Denot-

ing the truncation error

r
n+1
j = uj,t(t

n+1)− uj(t
n+1)− uj(t

n)

∆t



Partitioned Time-Stepping Algorithms for Random Interface-Coupled Problems 13

and subtracting (3.3) from (2.14), for any v ∈ Xh, we get the following error equation:

(rn+1,v) +

(

uj(t
n+1)− u

n+1
j

∆t
−

uj(t
n)− u

n
j

∆t
,v

)

+
(

ν̄n+1
(

∇uj(t
n+1)−∇u

n+1
j

)

,∇v

)

+
(

(

νn+1
j − ν̄n+1

)(

∇uj(t
n)−∇u

n
j

)

,∇v

)

+
(

(

νn+1
j − ν̄n+1

)(

∇uj(t
n+1)−∇uj(t

n)
)

,∇v

)

+ exp

(

tn+1

T

)

qj(t
n+1)

2
∑

i=1,i 6=k

∫

Γ
κj
[

uj(t
n+1)

]

vi,jds

− exp

(

tn+1

T

)

qn+1
j

2
∑

i=1,i 6=k

∫

Γ
κj
[

u
n
j

]

vi,jds = 0. (3.23)

Some error functions are decomposed and defined as follows:

uj(t
n)− u

n
j =

(

uj(t
n)− v

n
j

)

+
(

v
n
j − u

n
j

)

= ηnj + φn
j , ∀vn

j ∈ Xh,

en+1
q = qj(t

n+1)− qn+1
j .

Choosing v = φn+1
j , we rewrite the error equation (3.23) as

1

2∆t

(

‖φn+1
j ‖2 − ‖φn

j ‖2
)

+ θ
∥

∥∇φn+1
j

∥

∥

2

+

2
∑

i=1,i 6=k

∫

Γ
κj
[

uj(t
n+1)

]

φn+1
i,j ds

− exp

(

tn+1

T

)

qn+1
j

2
∑

i=1,i 6=k

∫

Γ
κj
[

u
n
j

]

φn+1
i,j ds

≤ − 1

∆t

(

ηn+1
j − ηnj , φ

n+1
i,j

)

−
(

r
n+1
j , φn+1

i,j

)

−
(

ν̄n+1∇ηn+1
j ,∇φn+1

j

)

−
(

(

νn+1
j − ν̄n+1

)

∇φn
j ,∇φn+1

j

)

−
(

(

νn+1
j − ν̄n+1

)

∇ηnj ,∇φn+1
j

)

−
(

(

νn+1
j − ν̄n+1

)(

∇uj(t
n+1
)

−∇uj(t
n)),∇φn+1

j

)

. (3.24)

Then, we can bound each term on the RHS of (3.24) with a series of positive constants

ξm, m = 1, 2, . . . . Applying Cauchy-Schwarz, Young’s, and Poincaré inequalities for the

RHS terms of (3.24), we can yield

(

ν̄n+1∇ηn+1
j ,∇φn+1

j

)

≤ |ν̄n+1|∞
(

‖∇ηn+1
j ‖2

2ξ1
+

ξ1‖∇φn+1
j ‖2

2

)

, (3.25)
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(

(

νn+1
j − ν̄n+1

)

∇φn
j ,∇φn+1

j

)

≤ θ+

(

‖∇φn
j ‖2

2ξ2
+

ξ2‖∇φn+1
j ‖2

2

)

, (3.26)

(

(

νn+1
j − ν̄n+1

)

∇ηnj ,∇φn+1
j

)

≤ θ+

(

‖∇ηnj ‖2
2ξ3

+
ξ3‖∇φn+1

j ‖2

2

)

, (3.27)

(

(

νn+1
j − ν̄n+1

)(

∇uj(t
n+1)−∇uj(t

n)
)

,∇φn+1
j

)

≤ θ+

(

‖∇(uj(t
n+1)− uj(t

n))‖2
2ξ4

+
ξ4‖∇φn+1

j ‖2
2

)

, (3.28)

1

∆t

(

ηn+1
j − ηnj , φ

n+1
i,j

)

≤
C2
p

2ξ5

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

+
ξ5‖∇φn+1

j ‖2

2
, (3.29)

(

r
n+1
j , φn+1

i,j

)

≤
C2
p‖rn+1

j ‖2

2ξ6
+

ξ6‖∇φn+1
j ‖2

2
. (3.30)

We can add and subtract the two terms

2
∑

i=1,i 6=k

∫

Γ
κj
[

uj(t
n)
]

φn+1
i,j ds,

2
∑

i=1,i 6=k

∫

Γ
κj
[

u
n
j

]

φn+1
i,j ds

to treat the interface terms of (3.24)

2
∑

i=1,i 6=k

∫

Γ
κj
[

uj(t
n+1)

]

φn+1
i,j ds− exp

(

tn+1

T

)

qn+1
j

2
∑

i=1,i 6=k

∫

Γ
κj
[

u
n
j

]

φn+1
i,j ds

=

[

∫

Γ
κj
(

uj(t
n+1)− uj(t

n)
)

φn+1
j ds−

∫

Γ
κj
(

u2,j(t
n+1)− u2,j(t

n)
)

φn+1
1,j ds

−
∫

Γ
κj
(

u1,j(t
n+1)− u1,j(t

n)
)

φn+1
2,j ds

]

+

[

∫

Γ
κj
(

uj(t
n)− u

n
j

)

φn+1
j ds−

∫

Γ
κj
(

u2,j(t
n)− un2,j

)

φn+1
1,j ds

−
∫

Γ
κj
(

u1,j(t
n)− un1,j

)

φn+1
2,j ds

]

+

[

exp

(

tn+1

T

)

en+1
q

∫

Γ
κj
(

un1,j − un2,j
)

φn+1
1,j ds

+ exp

(

tn+1

T

)

en+1
q

∫

Γ
κj
(

un2,j − un1,j
)

φn+1
2,j ds

]

=: B1 +B2 +B3. (3.31)
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Utilizing the trace theorem and Young’s inequality for the RHS of (3.31), we get

B1 ≤ C2
t κj
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

∥

∥∇φn+1
j

∥

∥

+ C2
t κj
∥

∥∇(u2,j(t
n+1)− u2,j(t

n)
∥

∥

∥

∥∇φn+1
1,j

∥

∥

+ C2
t κj
∥

∥∇(u1,j(t
n+1)− u1,j(t

n))
∥

∥

∥

∥∇φn+1
2,j

∥

∥

≤
Cκ2j
ξ7

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+ ξ7

∥

∥∇φn+1
j

∥

∥

2
, (3.32)

B2 ≤ Cκj
∥

∥∇ηnj
∥

∥

∥

∥∇φn+1
j

∥

∥+ Cκj
∥

∥∇φn
j

∥

∥

1

2

∥

∥φn
j

∥

∥

1

2

∥

∥∇φn+1
j

∥

∥

1

2

∥

∥φn+1
j

∥

∥

1

2

≤
Cκ2j
ξ8

∥

∥∇ηnj
∥

∥

2
+ ξ8

∥

∥∇φn+1
j

∥

∥

2
+ ξ9

∥

∥∇φn+1
j

∥

∥

2

+
Cκ4j
ξ9

∥

∥φn+1
j

∥

∥

2
+ ξ10

∥

∥∇φn
j

∥

∥

2
+

C

ξ10

∥

∥φn
j

∥

∥

2
. (3.33)

Take

ξ1 =
2αθ+

8|ν̄n+1|∞
, ξ2 = 1,

ξ3 = ξ4 =
2α

8
, ξ5 = ξ6 =

2αθ+
8

,

ξ7 = ξ8 = ξ9 =
αθ+
8

, ξ10 =
1

4
(θ − θ+),

where α is a positive constant and assuming θ > θ+. Then, substitute the above in-

equalities (3.25)-(3.33) into (3.24) to obtain

1

2∆t

(

∥

∥φn+1
j

∥

∥

2 −
∥

∥φn
j

∥

∥

2
)

+
(

θ − (1 + α)θ+
)
∥

∥∇φn+1
j

∥

∥

2

+
θ+
2

(

∥

∥∇φn+1
j

∥

∥

2 −
∥

∥∇φn
j

∥

∥

2
)

+B3

≤ C|ν̄n+1|2∞
αθ+

∥

∥∇ηn+1
j

∥

∥

2
+

Cθ+
α

∥

∥∇ηnj
∥

∥

2
+

Cκ2j
αθ+

∥

∥∇ηnj
∥

∥

2

+
Cθ+
α

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

Cκ2j
αθ+

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+
C

αθ+

∥

∥r
n+1
j

∥

∥

2
+

C

αθ+

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

+
Cκ4j
αθ+

∥

∥φn+1
j

∥

∥

2

+
θ − θ+

4

∥

∥∇φn
j

∥

∥

2
+

C

θ − θ+

∥

∥φn
j

∥

∥

2
. (3.34)

Setting α = (θ − θ+)/2θ+, we have

θ − (1 + α)θ+ >
θ − θ+

2
> 0

based on the stability condition (3.12) and the upper bound in condition (3.11). Then

multiplying (3.34) by 2∆t and summing over n = 0, . . . , N − 1, we have



16 Y. Sun, J. Wang and H. Zheng

∥

∥φN
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇φn+1
j

∥

∥

2 − θ − θ+
2

∆t
N−1
∑

n=0

∥

∥∇φn
j

∥

∥

2

+ θ+∆t
∥

∥∇φN
j

∥

∥

2
+ 2∆t

N−1
∑

n=0

B3

≤ ∆t

N−1
∑

n=0

{

C|ν̄n+1|2∞
θ − θ+

∥

∥∇ηn+1
j

∥

∥

2
+

C

θ − θ+

∥

∥∇ηnj
∥

∥

2

+
Cκ2j

θ − θ+

∥

∥∇ηnj
∥

∥

2
+

C

θ − θ+

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+
Cκ2j

θ − θ+

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

C

θ − θ+

∥

∥r
n+1
j

∥

∥

2

+
C

θ − θ+

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

+
Cκ4j

θ − θ+

∥

∥φn+1
j

∥

∥

2
+

C

θ − θ+

∥

∥φn
j

∥

∥

2

}

+
∥

∥φ0
j

∥

∥

2
+ θ+∆t

∥

∥∇φ0
j

∥

∥

2
. (3.35)

Step 2. We note that B3 of (3.33) can not be easily bounded. We shall balance

such term with a term from the error equation for qn+1
j . Subtracting (3.4) from (3.1)

leads to

en+1
q − enq

∆t
+

1

T
en+1
q

= exp

(

tn+1

T

) 2
∑

i=1,i 6=k

(
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds−

∫

Γ
κj
[

u
n
j

]

un+1
i,j ds

)

+ exp

(

2tn+1

T

) 2
∑

i=1,i 6=k

(

qn+1
j

∫

Γ
κj
[

u
n
j

]

uni,jds− qj(t
n+1)

×
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds

)

+ rn+1
q , (3.36)

where

rn+1
q =

qj(t
n+1)− qj(t

n)

∆t
− qj,t(t

n+1) =
1

∆t

∫ tn+1

tn
(t− tn)qj,ttdt. (3.37)

Multiply both sides of (3.36) by 2∆ten+1
q to yield

∣

∣en+1
q

∣

∣

2 −
∣

∣enq
∣

∣

2
+

2∆t

T

∣

∣en+1
q

∣

∣

2

≤ 2 exp

(

tn+1

T

)

en+1
q ∆t

2
∑

i=1,i 6=k

(
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds−

∫

Γ
κj
[

u
n
j

]

un+1
i,j ds

)
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+ 2exp

(

2tn+1

T

)

en+1
q ∆t

2
∑

i=1,i 6=k

(

qn+1
j

∫

Γ
κj
[

u
n
j

]

uni,jds− qj(t
n+1)

×
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds

)

+ 2∆trn+1
q en+1

q . (3.38)

Note that the first terms on the RHS of (3.38) holds

2 exp

(

tn+1

T

)

en+1
q ∆t

2
∑

i=1,i 6=k

(
∫

Γ
κj [uj(t

n+1)]ui,j(t
n+1)ds−

∫

Γ
κj [u

n
j ]u

n+1
i,j ds

)

=

[

2 exp

(

tn+1

T

)

en+1
q ∆t

(
∫

Γ
κj(uj(t

n+1)− uj(t
n))uj(t

n+1)ds

−
∫

Γ
κj(u2,j(t

n+1)− u2,j(t
n))u1,j(t

n+1)ds

−
∫

Γ
κj(u1,j(t

n+1)− u1,j(t
n))u2,j(t

n+1)ds

)

]

+

[

2 exp

(

tn+1

T

)

en+1
q ∆t

(
∫

Γ
κj(uj(t

n)− u
n
j )uj(t

n+1)ds

−
∫

Γ
κj(u2,j(t

n)− un2,j)u1,j(t
n+1)ds

−
∫

Γ
κj(u1,j(t

n)− un1,j)u2,j(t
n+1)ds

)

]

+

[

2 exp

(

tn+1

T

)

en+1
q ∆t

(
∫

Γ
κj(u

n
1,j − un2,j)η

n+1
1,j ds

+

∫

Γ
κj(u

n
2,j − un1,j)η

n+1
2,j ds

)

]

+

[

2 exp

(

tn+1

T

)

en+1
q ∆t

(
∫

Γ
κj(u

n
1,j − un2,j)φ

n+1
1,j ds

+

∫

Γ
κj(u

n
2,j − un1,j)φ

n+1
2,j ds

)

]

=: D1 +D2 +D3 +D4. (3.39)

From the stability result (3.13), we have
∥

∥un+1
i,j

∥

∥ ≤ c0,
∣

∣qn+1
j

∣

∣ ≤ c1,
∣

∣en+1
q

∣

∣ =
∣

∣qj(t
n+1)− qn+1

j

∣

∣ ≤ exp(1) +
∣

∣qn+1
j

∣

∣ ≤ c2.

We can further estimate D1,D2,D3 of (3.39) by Hölder and Young inequalities as fol-

lows:

D1 ≤ 4 exp(1)∆tκjC
2
t

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

∥

∥∇uj(t
n+1)

∥

∥

∣

∣en+1
q

∣

∣
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≤ Cκ2j∆t
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

∆t

11T

∣

∣en+1
q

∣

∣

2
, (3.40)

D2 ≤ 4 exp(1)κj∆t
∣

∣en+1
q

∣

∣

(

∥

∥∇ηnj
∥

∥+
∥

∥φn
j

∥

∥

1

2

∥

∥∇φn
j

∥

∥

1

2

)

∥

∥∇uj(t
n+1)

∥

∥

≤ 2∆t

11T

∣

∣en+1
q

∣

∣

2
+ Cκ2j∆t

∥

∥∇ηnj
∥

∥

2
+ ξ11∆t

∥

∥∇φn
j

∥

∥

2
+

Cκ4j∆t

ξ11

∥

∥φn
j

∥

∥

2
, (3.41)

D3 ≤ 2 exp(1)∆tκjC
2
t

∣

∣en+1
q

∣

∣

(

∥

∥∇(un1,j − un2,j)
∥

∥

∥

∥∇ηn+1
1,j

∥

∥+
∥

∥∇(un2,j − un1,j)
∥

∥

∥

∥∇ηn+1
2,j

∥

∥

)

≤ Cκj∆t
∣

∣en+1
q

∣

∣

∥

∥∇ηn+1
j

∥

∥

(

∥

∥∇φn
j

∥

∥+
∥

∥∇v
n
j

∥

∥

)

≤ ξ12∆t
∥

∥∇φn
j

∥

∥

2
+

Cκ2j∆t

ξ12

∥

∥∇ηn+1
j

∥

∥

2
+

∆t

11T

∣

∣en+1
q

∣

∣

2
+Cκ2j∆t

∥

∥∇ηn+1
j

∥

∥

2
. (3.42)

The second term on the RHS of (3.38) can be written as

2 exp

(

2tn+1

T

)

en+1
q ∆t

2
∑

i=1,i 6=k

(

qn+1
j

∫

Γ
κj
[

u
n
j

]

uni,jds− qj(t
n+1)

×
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds

)

=

[

2 exp

(

2tn+1

T

)

en+1
q qn+1

j ∆t

2
∑

i=1,i 6=k

∫

Γ
κj
[

u
n
j

] (

uni,j − ui,j(t
n+1)

)

ds

]

+

[

2 exp

(

2tn+1

T

)

en+1
q qn+1

j ∆t

∫

Γ
κj
([

u
n
j

]

−
[

uj(t
n+1)

])

ui,j(t
n+1)ds

]

−
[

2 exp

(

2tn+1

T

)

∣

∣en+1
q

∣

∣

2
∆t

2
∑

i=1,i 6=k

(
∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds

)

]

=: F1 + F2 − F3. (3.43)

Then, applying the Hölder inequality and Young inequality, we can get

F1 = 2exp

(

2tn+1

T

)

en+1
q qn+1

j

×∆t

(

∫

Γ
κj
(

un1,j − un2,j
)(

un1,j − u1,j(t
n) + u1,j(t

n)− u1,j(t
n+1)

)

+

∫

Γ
κj
(

un2,j − un1,j
)(

un2,j − u2,j(t
n) + u2,j(t

n)− u2,j(t
n+1)

)

)

≤ Cκj∆t
∣

∣en+1
q

∣

∣

∣

∣qn+1
j

∣

∣

∥

∥∇u
n
j

∥

∥

(

∥

∥∇ηnj
∥

∥+
∥

∥φn
j

∥

∥

1

2

∥

∥∇φn
j

∥

∥

1

2 +
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

)

≤ ξ13∆t
∥

∥∇φn
j

∥

∥

2
+

Cκ2j∆t

ξ13

∥

∥∇ηnj
∥

∥

2
+ ξ14∆t

∥

∥∇φn
j

∥

∥

2
+

Cκ2j∆t

ξ14

∥

∥φn
j

∥

∥

2
+ ξ15∆t

∥

∥∇φn
j

∥

∥

2
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+
Cκ2j∆t

ξ15

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

3∆t

11T

∣

∣en+1
q

∣

∣

2

+ Cκ2j∆t
∥

∥∇ηnj
∥

∥

2
+ ξ16∆t

∥

∥∇φn
j

∥

∥

2

+
Cκ4j∆t

ξ16

∥

∥φn
j

∥

∥

2
+ Cκ2j∆t

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
, (3.44)

F2 ≤
3∆t

11T

∣

∣en+1
q

∣

∣

2
+ Cκ2j∆t

∥

∥∇ηnj
∥

∥

2
+ ξ17∆t

∥

∥∇φn
j

∥

∥

2
+

Cκ4j∆t

ξ17

∥

∥φn
j

∥

∥

2

+ Cκ2j∆t
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
. (3.45)

For the last term on the RHS of (3.38), we have

2∆trn+1
q en+1

q ≤ ∆t

11T

∣

∣en+1
q

∣

∣

2
+ C∆t2

∫ tn+1

tn

∣

∣qj,tt
∣

∣

2
dt. (3.46)

Setting

ξ11 = ξ12 = ξ13 = ξ14 = ξ15 = ξ16 = ξ17 =
1

14
(θ − θ+)

and combining (3.38) with (3.39)-(3.46) result in

∣

∣en+1
q

∣

∣

2 −
∣

∣enq
∣

∣

2
+

∆t

T

∣

∣en+1
q

∣

∣

2 − 1

2
(θ − θ+)∆t

∥

∥∇φn
j

∥

∥

2

≤ Cκ2j∆t
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+ Cκ2j∆t

∥

∥∇ηnj
∥

∥

2
+ Cκ2j∆t

∥

∥∇ηn+1
j

∥

∥

2

+
Cκ4j∆t

θ − θ+

∥

∥φn
j

∥

∥

2
+

Cκ2j∆t

θ − θ+

∥

∥φn
j

∥

∥

2
+ C∆t2

∫ tn+1

tn
|qj,tt|2dt+D4 + F3. (3.47)

By summing (3.47) from n = 0, . . . , N − 1, we can arrive at

∣

∣eNq
∣

∣

2
+

∆t

T

N−1
∑

n=0

∣

∣en+1
q

∣

∣

2 − 1

2
(θ − θ+)∆t

N−1
∑

n=0

∥

∥∇φn
j

∥

∥

2

≤
N−1
∑

n=0

{

Cκ2j∆t
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+ Cκ2j∆t
∥

∥∇ηnj
∥

∥

2
+ Cκ2j∆t

∥

∥∇ηn+1
j

∥

∥

2

+
Cκ4j∆t

θ − θ+

∥

∥φn
j

∥

∥

2
+

Cκ2j∆t

θ − θ+

∥

∥φn
j

∥

∥

2

+ C∆t2
∫ tn+1

tn
|qj,tt|2dt+D4 + F3

}

. (3.48)

Step 3. Combining (3.35) with (3.48) we have

∥

∥φN
j

∥

∥

2
+ θ∆t

∥

∥∇φN
j

∥

∥

2
+

N−1
∑

n=0

F3 +
∣

∣eNq
∣

∣

2
+

∆t

T

N−1
∑

n=0

∣

∣en+1
q

∣

∣

2 ≤
∥

∥φ0
j

∥

∥

2
+ θ∆t

∥

∥∇φ0
j

∥

∥

2
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+
N−1
∑

n=0

{

C

( |ν̄n+1|2∞
θ − θ+

+ κ2j

)

∆t
∥

∥∇ηn+1
j

∥

∥

2

+ C

(

1

θ − θ+
+

κ2j
θ − θ+

+ κ2j

)

∆t
∥

∥∇ηnj
∥

∥

2

+ C

(

1

θ − θ+
+

κ2j
θ − θ+

+ κ2j

)

∆t
∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+
C∆t

θ − θ+

∥

∥r
n+1
j

∥

∥

2
+

C∆t

θ − θ+

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

+ C∆t2
∫ tn+1

tn
|qj,tt|2dt+

Cκ4j∆t

θ − θ+

∥

∥φn+1
j

∥

∥

2

+ C

(

1

θ − θ+
+

κ2j
θ − θ+

+
κ4j

θ − θ+

)

∆t
∥

∥φn
j

∥

∥

2

}

. (3.49)

Note that

F3 = 2exp

(

2tn+1

T

)

∣

∣en+1
q

∣

∣

2
∆t

2
∑

i=1,i 6=k

∫

Γ
κj
[

uj(t
n+1)

]

ui,j(t
n+1)ds

= 2exp

(

2tn+1

T

)

∣

∣en+1
q

∣

∣

2
∆t

∫

Γ
κj [uj(t

n+1)]2ds ≥ 0, (3.50)

and

∆t
N−1
∑

n=0

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

≤
∫ tn+1

0
‖ηj,t‖2dt ≤ ‖ηj,t‖2L2(0,T ;L2(Ω)), (3.51)

∆t

N−1
∑

n=0

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2 ≤ ∆t2
∫ tn+1

0
‖∇uj,t‖2dt

≤ ∆t2‖∇uj,t‖2L2(0,T ;L2(Ω)), (3.52)

∆t

N−1
∑

n=0

∥

∥r
n+1
j

∥

∥

2 ≤ ∆t2
∫ tn+1

0
‖uj,tt‖2dt ≤ ∆t2‖uj,tt‖2L2(0,T ;L2(Ω)). (3.53)

Taking infimum over vn
j ∈ Xh, using the triangle inequality to ‖φ0

j‖2+θ∆t‖∇φ0
j‖2, and

combining with the inequalities (3.50)-(3.53), we can yield

∥

∥φN
j

∥

∥

2
+ θ∆t

∥

∥∇φN
j

∥

∥

2
+
∣

∣eNq
∣

∣

2
+

∆t

T

N−1
∑

n=0

∣

∣en+1
q

∣

∣

2

≤ C
N
∑

n=0

∆t
∥

∥φn
j

∥

∥

2
+ C

{

∥

∥uj(0) − u
0
j

∥

∥

2
+ θ∆t

∥

∥∇(uj(0) − u
0
j)
∥

∥

2
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+∆t2‖uj,tt‖2L2(0,T ;L2(Ω)) +∆t2‖∇uj,t‖2L2(0,T ;L2(Ω))

+ inf
v0
j∈Xh

{

∥

∥η0j
∥

∥

2
+ θ∆t

∥

∥∇η0j
∥

∥

2
}

+ inf
vj∈Xh

‖ηj,t‖2L2(0,T ;L2(Ω))

+∆t inf
vn
j ∈Xh

N−1
∑

n=0

{

∥

∥∇ηn+1
j

∥

∥

2
+
∥

∥∇ηnj
∥

∥

2
}

+ C∆t2
}

. (3.54)

Then, we can further deal with the second to last term of (3.54) as follows:

∆t inf
vn
j ∈Xh

N−1
∑

n=0

{

∥

∥∇ηn+1
j

∥

∥

2
+
∥

∥∇ηnj
∥

∥

2
}

≤ 2T max
n=0,1,...,N

inf
vn
j ∈Xh

∥

∥∇ηnj
∥

∥

2
.

We can finally utilize Gronwall inequality to yield the convergence result (3.22)

of A1.

4. The ensemble algorithm for data-passing scheme

Inspired by [6], we discover that the data-passing scheme offers improved accuracy

and stability compared to the IMEX scheme while maintaining unconditional stability

and convergence. Therefore, in this section, we will establish two effective ensemble

algorithms based on the data-passing scheme for fast-solving the random heat-heat

interface-coupled model. We first propose the following ensemble algorithm for the

data-passing scheme.

Ensemble algorithm for data-passing scheme (A2)

Let ∆t > 0, ν̄ni = (
∑J

j=1 νi,j(x, t
n))/J , κmax = maxj κj , u

0
j ∈ Xh and fj ∈

L2(H−1(Ω); 0, T )) for j = 1, . . . , J . Given u
n
j ∈ Xh, for n = 0, 1, 2, . . . , N − 1 and

i, k = 1, 2, i 6= k, we can find u
n+1
j ∈ Xh by

(

un+1
i,j − unk,j

∆t
, vi

)

+
(

ν̄n+1
i ∇un+1

i,j ,∇vi

)

+
(

(νn+1
i,j − ν̄n+1

i )∇uni,j ,∇vi

)

+

∫

Γ
κmax

(

un+1
i,j − unk,j

)

v1ds+

∫

Γ

(

κj − κmax

) (

uni,j − unk,j
)

v1ds (4.1a)

=
(

fn+1
i,j , vi

)

, ∀vi ∈ Xi,h. (4.1b)

The term in the (4.1a) represents a reflection of the data-passing scheme. Such an

algorithm has the following unconditional stability.

Theorem 4.1 (A2 Stability). Suppose that fj ∈ L2(H−1(Ω); 0, T ), u
n+1
j ∈ Xh satisfy

(4.1) for each n ∈ {0, 1, 2, . . . , N − 1}, and the conditions (3.10)-(3.12) hold. Then,
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there exists a generic positive constant C independent of h,∆t, J such that un+1
j satisfies

∥

∥u
N
j

∥

∥

2
+ θ+∆t

∥

∥∇u
N
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇u
n+1
j

∥

∥

2
+ κmax∆t

∥

∥u
N
j

∥

∥

2

Γ

≤
∥

∥u
0
j

∥

∥

2
+C∆t

∥

∥∇u
0
j

∥

∥

2
+ C∆t

∥

∥u
0
j

∥

∥

2

Γ
+ C∆t

N−1
∑

n=0

∥

∥f
n+1
j

∥

∥

2

−1
. (4.2)

Proof. Taking v = 2∆tun+1
j in (4.1), we have

2
(

u
n+1
j − u

n
j ,u

n+1
j

)

+ 2∆t
(

ν̄n+1∇u
n+1
j ,∇u

n+1
j

)

+ 2κmax∆t
∥

∥u
n+1
j

∥

∥

2

Γ
− 2∆t

∫

Γ
κju

n
2,ju

n+1
1,j ds

− 2∆t

∫

Γ
κju

n
1,ju

n+1
2,j ds+ 2∆t

∫

Γ
(κj − κmax)u

n
1,ju

n+1
1,j ds

+ 2∆t

∫

Γ
(κj − κmax)u

n
2,ju

n+1
2,j ds

= −2∆t
(

(νn+1
j − ν̄n+1)∇u

n
j ,∇u

n+1
j

)

+ 2∆t
(

f
n+1
j ,un+1

j

)

. (4.3)

Using the Young’s inequality,

2(a− b, a) = a2 + (a− b)2 − b2

and (3.10), we get

∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
+ 2θ∆t

∥

∥∇u
n+1
j

∥

∥

2
+ 2κmax∆t

∥

∥u
n+1
j

∥

∥

2

Γ

≤ 2∆t

∫

Γ
(κmax − κj)u

n
1,ju

n+1
1,j ds+ 2∆t

∫

Γ
(κmax − κj)u

n
2,ju

n+1
2,j ds

+ 2∆t

∫

Γ
κju

n
2,ju

n+1
1,j ds+ 2∆t

∫

Γ
κju

n
1,ju

n+1
2,j ds

− 2∆t
(

(νn+1
j − ν̄n+1)∇u

n
j ,∇u

n+1
j

)

+ 2∆t
(

f
n+1
j ,un+1

j

)

. (4.4)

Applying the Cauchy-Schwarz and Young’s inequalities on the interface terms, we can

obtain

2∆t

∫

Γ
(κmax − κj)u

n
1,ju

n+1
1,j ds+ 2∆t

∫

Γ
(κmax − κj)u

n
2,ju

n+1
2,j ds

+ 2∆t

∫

Γ
κju

n
2,ju

n+1
1,j ds+ 2∆t

∫

Γ
κju

n
1,ju

n+1
2,j ds

≤ κmax∆t
∥

∥u
n
j

∥

∥

2

Γ
+ κmax∆t

∥

∥u
n+1
j

∥

∥

2

Γ
. (4.5)

The estimation of the last two terms at the RHS of (4.4) can be referred to (3.19).

Substituting (3.19), (4.5) into (4.4) yields
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∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
+ 2∆t(θ − θ+ − α)

∥

∥∇u
n+1
j

∥

∥

2
+ θ+∆t

(

∥

∥∇u
n+1
j

∥

∥

2 −
∥

∥∇u
n
j

∥

∥

2
)

+ κmax∆t
(

∥

∥u
n+1
j

∥

∥

2 −
∥

∥u
n
j

∥

∥

2
)

≤ ∆t

2α

∥

∥f
n+1
j

∥

∥

2

−1
. (4.6)

With conditions (3.10) and (3.12), summing over n = 0, 1, . . . , N − 1, and then choos-

ing α = (θ − θ+)/2, we will address

∥

∥u
N
j

∥

∥

2
+ θ+∆t

∥

∥∇u
N
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇u
n+1
j

∥

∥

2
+ κmax∆t

∥

∥u
N
j

∥

∥

2

≤
∥

∥u
0
j

∥

∥

2
+ θ+∆t

∥

∥∇u
0
j

∥

∥

2
+ κmax∆t

∥

∥u
0
j

∥

∥

2

Γ
+

∆t

θ − θ+

∥

∥f
n+1
j

∥

∥

2

−1
, (4.7)

which completes the stability demonstration of A2.

Next, we will estimate the approximation error of A2.

Theorem 4.2 (A2 Error Estimate). Let uj(t
n+1) and u

n+1
j be the solutions of (2.14) and

the algorithm A2 at time tn+1, respectively. Assume conditions (iii)-(iv) and the stability

condition (3.12) hold. Then, there exists a generic positive constant C independent of

h,∆t, J for any n ∈ {0, 1, 2, . . . , N − 1} such that

∥

∥uj(t
N )− u

N
j

∥

∥

2
+ κmax∆t

∥

∥uj(t
N )− u

N
j

∥

∥

2

Γ

+ θ+∆t
∥

∥∇uj(t
N )−∇u

N
j

∥

∥

2
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇uj(t
n+1)−∇u

n+1
j

∥

∥

2

≤ C

{

∥

∥uj(0) − u
0
j

∥

∥

2
+ κmax∆t

∥

∥uj(0)− u
0
j

∥

∥

2

Γ
+ θ+∆t

∥

∥∇(uj(0)− u
0
j )
∥

∥

2

+∆t2‖∇uj,t‖2L2(0,T ;L2Ω) +∆t2‖uj,tt‖2L2(0,T ;L2(Ω))

+ inf
v0
j
∈Xh

{

∥

∥uj(0)− v
0
j

∥

∥

2
+ κmax∆t

∥

∥∇(uj(0)− v
0
j )
∥

∥

2

Γ

}

+ inf
vj∈Xh

∥

∥(uj(t
n)− v

n
j )t
∥

∥

2

L2(0,T ;L2(Ω))

+ T max
n=0,1,...,N

inf
vn
j ∈Xh

∥

∥∇(uj(t
n)− v

n
j )
∥

∥

2
}

. (4.8)

Proof. Restricting test function v to Xh and subtracting (4.1) from (2.14), we can

derive the following error equation by the similar way of (3.23):

(rn+1,v) +

(

uj(t
n+1)− u

n+1
j

∆t
−

uj(t
n)− u

n
j

∆t
,v

)

+
(

ν̄n+1(∇uj(t
n+1)−∇u

n+1
j ),∇v

)

+
(

(νn+1
j − ν̄n+1)(∇uj(t

n)−∇u
n
j ),∇v

)
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+
(

(νn+1
j − ν̄n+1)(∇uj(t

n+1)−∇uj(t
n)),∇v

)

+

∫

Γ
κj
(

u1,j(t
n+1)− u2,j(t

n+1)
)

v1ds

+

∫

Γ
κj
(

u2,j(t
n+1)− u1,j(t

n+1)
)

v2ds

−
∫

Γ
κmax

(

un+1
1,j − un2,j

)

v1ds−
∫

Γ
κmax

(

un+1
2,j − un1,j

)

v2ds

−
∫

Γ

(

κj − κmax

)(

un1,j − un2,j
)

v1ds−
∫

Γ

(

κj − κmax

)(

un2,j − un1,j
)

v2ds = 0. (4.9)

For the interface terms of (4.9), we skillfully add and subtract four terms
∫

Γ
κmax

(

u1(t
n+1)− u2(t

n)
)

φn+1
1,j ds,

∫

Γ
κmax

(

u2(t
n+1)− u1(t

n)
)

φn+1
2,j ds,

∫

Γ

(

κj − κmax

)(

u1(t
n)− u2(t

n)
)

φn+1
1,j ds,

∫

Γ

(

κj − κmax

)(

u2(t
n)− u1(t

n)
)

φn+1
2,j ds

to maintain first order accuracy in time.
∫

Γ
κj
(

u1,j(t
n+1)− u2,j(t

n+1)
)

φn+1
1,j ds+

∫

Γ
κj
(

u2,j(t
n+1)− u1,j(t

n+1)
)

φn+1
2,j ds

−
∫

Γ
κmax

(

un+1
1,j − un2,j

)

φn+1
1,j ds−

∫

Γ
κmax

(

un+1
2,j − un1,j

)

φn+1
2,j ds

−
∫

Γ

(

κj − κmax

)(

un1,j − un2,j
)

φn+1
1,j ds−

∫

Γ

(

κj − κmax

)(

un2,j − un1,j
)

φn+1
2,j ds

=

∫

Γ
κmax

(

uj(t
n+1)− u

n+1
j

)

φn+1
j ds+

∫

Γ

(

κj − κmax

)(

uj(t
n)− u

n
j

)

φn+1
j ds

−
∫

Γ
κj
(

u2,j(t
n)− un2,j

)

φn+1
1,j ds−

∫

Γ
κj
(

u1,j(t
n)− un1,j

)

φn+1
2,j ds

+

∫

Γ

(

κj − κmax

)(

uj(t
n+1)− uj(t

n)
)

φn+1
j ds

−
∫

Γ
κj
(

u2,j(t
n+1)− u2,j(t

n)
)

φn+1
1,j ds−

∫

Γ
κj
(

u1,j(t
n+1)− u1,j(t

n)
)

φn+1
2,j ds. (4.10)

Choosing v = φn+1
j , substituting (4.10) into (4.9), we can conclude

1

2∆t

(

∥

∥φn+1
j

∥

∥

2 −
∥

∥φn
j

∥

∥

2
)

+ θ
∥

∥∇φn+1
j

∥

∥

2
+ κmax

∥

∥φn+1
j

∥

∥

2

Γ

≤ − 1

∆t

(

ηn+1
j − ηnj , φ

n+1
j

)

−
(

r
n+1
j , φn+1

j

)

−
(

(νn+1
j − ν̄n+1)∇φn

j ,∇φn+1
j

)
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−
(

ν̄n+1∇ηn+1
j ,∇φn+1

j

)

−
(

(νn+1
j − ν̄n+1)∇ηnj ,∇φn+1

j

)

−
(

(νn+1
j − ν̄n+1)(∇uj(t

n+1)−∇uj(t
n)),∇φn+1

j

)

+

∫

Γ
κj
(

u2,j(t
n+1)− u2,j(t

n)
)

φn+1
1,j ds

+

∫

Γ
κj
(

u1,j(t
n+1)− u1,j(t

n)
)

φn+1
2,j ds

+

∫

Γ

(

κmax − κj
)(

uj(t
n+1)− uj(t

n)
)

φn+1
j ds

+

∫

Γ

(

κmax − κj
)(

uj(t
n)− u

n
j

)

φn+1
j ds

+

∫

Γ
κj
(

u2,j(t
n)− un2,j

)

φn+1
1,j ds

+

∫

Γ
κj
(

u1,j(t
n)− un1,j

)

φn+1
2,j ds−

∫

Γ
κmaxη

n+1
j φn+1

j ds. (4.11)

Next, we need to bound the terms on the RHS of (4.11). The estimation of the first

six items can be referred to (3.25)-(3.30). For the interface terms, utilizing the trace

theorem and Young’s inequality, we get

∫

Γ
κj
(

u2,j(t
n+1)− u2,j(t

n)
)

φn+1
1,j ds+

∫

Γ
κj
(

u1,j(t
n+1)− u1,j(t

n)
)

φn+1
2,j ds

≤
C4
t κ

2
j

2ǫ1

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

ǫ1
2

∥

∥∇φn+1
j

∥

∥

2
, (4.12)

∫

Γ

(

κmax − κj
)(

uj(t
n+1)− uj(t

n)
)

φn+1
j ds

≤ C4
t (κmax − κj)

2

2ǫ2

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

ǫ2
2

∥

∥∇φn+1
j

∥

∥

2
, (4.13)

∫

Γ

(

κmax − κj
)(

ηnj + φn
j

)

φn+1
j ds

≤ κmax − κj
2

∥

∥φn
j

∥

∥

2

Γ
+

κmax − κj
2

∥

∥φn+1
j

∥

∥

2

Γ
+

C4
t (κmax − κj)

2

2ǫ3

∥

∥∇ηnj
∥

∥

2

+
ǫ3
2

∥

∥∇φn+1
j

∥

∥

2
, (4.14)

∫

Γ
κj
(

ηn2,j + φn
2,j

)

φn+1
1,j ds+

∫

Γ
κj
(

ηn1,j + φn
1,j

)

φn+1
2,j ds

≤ κj
2

∥

∥φn
j

∥

∥

2

Γ
+

κj
2

∥

∥φn+1
j

∥

∥

2

Γ
+

C4
t κ

2
j

2ǫ4

∥

∥∇ηnj
∥

∥

2
+

ǫ4
2

∥

∥∇φn+1
j

∥

∥

2
, (4.15)

∫

Γ
κmaxη

n+1
j φn+1

j ds ≤ C4
t κ

2
max

2ǫ5

∥

∥∇ηn+1
j

∥

∥

2
+

ǫ5
2

∥

∥∇φn+1
j

∥

∥

2
. (4.16)
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For the estimation of other terms at the RHS of (4.11), we can refer to Theorem 3.2.

Taking

ξ1 =
2βθ+

10|ν̄n+1|∞
, ξ2 = 1, ξ3 = ξ4 =

2β

10
, ξ5 = ξ6 =

2βθ+
10

in Theorem 3.2, where β is a positive constant

ǫ1 = ǫ2 = ǫ3 = ǫ4 = ǫ5 =
2βθ+
10

,

we have

1

2∆t

(

∥

∥φn+1
j

∥

∥

2 −
∥

∥φn
j

∥

∥

2
)

+
θ+
2

(

∥

∥∇φn+1
j

∥

∥

2 −
∥

∥∇φn
j

∥

∥

2
)

+
(

θ − (1 + β)θ+
)
∥

∥∇φn+1
j

∥

∥

2
+

κmax

2

(

∥

∥φn+1
j

∥

∥

2

Γ
−
∥

∥φn
j

∥

∥

2

Γ

)

≤ C|ν̄n+1|2∞
βθ+

∥

∥∇ηn+1
j

∥

∥

2
+

Cκ2max

βθ+

∥

∥∇ηn+1
j

∥

∥

2
+

Cθ+
β

∥

∥∇ηnj
∥

∥

2
+

Cκ2j
βθ+

∥

∥∇ηnj
∥

∥

2

+
C(κmax − κj)

2

βθ+

∥

∥∇ηnj
∥

∥

2
+

Cθ+
β

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+
Cκ2j
βθ+

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2
+

C(κmax − κj)
2

βθ+

∥

∥∇(uj(t
n+1)− uj(t

n))
∥

∥

2

+
C

βθ+

∥

∥r
n+1
j

∥

∥

2
+

C

βθ+

∥

∥

∥

∥

ηn+1
j − ηnj

∆t

∥

∥

∥

∥

2

. (4.17)

The selection of β is similar to the selection of α in Theorem 3.2. Setting β = (θ − θ+)/
2θ+, we have

θ − (1 + β)θ+ >
θ − θ+

2
> 0

based on the upper bound in condition (3.11) and the stability condition (3.12). The

rest of the detailed analysis is similar to Theorem 3.2, and the final result can be derived

as follows:

∥

∥φN
j

∥

∥

2
+ κmax∆t

∥

∥φN
j

∥

∥

2

Γ
+ (θ − θ+)∆t

N−1
∑

n=0

∥

∥∇φn+1
j

∥

∥

2
+ θ+∆t

∥

∥∇φN
j

∥

∥

2

≤ C

{

∥

∥uj(0)− u
0
j

∥

∥

2
+ κmax∆t

∥

∥uj(0) − u
0
j

∥

∥

2

Γ
+ θ+∆t

∥

∥∇(uj(0)− u
0
j)
∥

∥

2

+∆t2‖∇uj,t‖2L2(0,T ;L2Ω) +∆t2‖uj,tt‖2L2(0,T ;L2(Ω))

+ inf
v0
j∈Xh

{

∥

∥η0j
∥

∥

2
+ κmax∆t

∥

∥η0j
∥

∥

2

Γ

}

+ inf
vj∈Xh

‖ηj,t‖2L2(0,T ;L2(Ω))

+∆t inf
vn
j ∈Xh

N−1
∑

n=0

{

∥

∥∇ηn+1
j

∥

∥

2
+
∥

∥∇ηnj
∥

∥

2
}

}

, (4.18)

where C is a generic positive constant independent of h,∆t, and J . By the triangle

inequality, we arrive at the final result (4.8).
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Note that the core idea of the ensemble method in the A2 algorithm is to compute

the expectation of diffusion coefficient ν̄ni at each time step. Interestingly, we can

further optimize the A2 algorithm by taking the temporal average of νi,j(x, t
n) as well.

This way, we can obtain several linear equations that have the same coefficient matrix

not only across samples but also across time steps, which can significantly reduce the

storage demand and the computational cost. The optimized algorithm is presented as

follows.

Optimize Ensemble Algorithm for Data-passing scheme (A3)

Let ∆t > 0, ν̄i =
1
N

∑N
n=1 ν̄

n
i , u0

j ∈ Xh and fj ∈ L2(H−1(Ω); 0, T )) for j = 1, . . . , J .

Given u
n
j ∈ Xh, for n = 0, 1, 2, . . . , N − 1 and i, k = 1, 2, 1 6= k, we will find u

n+1
j ∈ Xh

by
(

un+1
i,j − uni,j

∆t
, vi

)

+
(

ν̄i∇un+1
i,j ,∇vi

)

+
(

(νn+1
i,j − ν̄i)∇uni,j,∇vi

)

+

∫

Γ
κmax

(

un+1
i,j − uni,j

)

v1ds+

∫

Γ

(

κj − κmax

)(

uni,j − unk,j
)

v1ds

=
(

fn+1
i,j , v1

)

, ∀vi ∈ Xi,h. (4.19)

The proof for the stability and the convergence of A3 is similar to A2, and the

parameter condition θ > θ+ is also required for A3.

Remark 4.1. We proposed the A2 for the heat-heat interface-coupled problem with

three random coefficients, which are more complex than the single domain random

problem [23]. Fortunately, compared with the results of [23], we do not need to

strengthen or impose any constraint conditions to obtain unconditional stability and

convergence. The existing ensemble algorithms in [12–15, 23–25] all rely on a small

perturbation assumption. However, due to the special nature of the friction parame-

ter κ as a random function independent of time and space, both proposed algorithms

can avoid this assumption as shown in the above analysis and in [15, Section 4]. To

further indicate this advantage, we also test the κ from 10−2 to 101 in the numerical

experiments, which is usually between 10−3 and 103. Moreover, if the time and space

maximum of the diffusion coefficient νi,j(x, t) can be easily identified, the parameter

condition θ > θ+ of both proposed algorithms is not necessary. This also suggests that

if the random parameter has a large perturbation, we can use the maximum value or

L∞ norm of the random parameter as the key of the ensemble method.

Remark 4.2. This paper presents three algorithms for solving heat-heat model with

three random parameters. We compare the structure and complexity of these algo-

rithms and show that A3 algorithm is the most efficient one. The algorithm is proposed

based on the logical rigor of the algorithm construction, which is gradually advanced.

We also aim to apply the idea of A3 algorithm to other time-dependent stochastic prob-

lems.
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5. Numerical experiments

In this section, we conduct three numerical experiments to demonstrate the accu-

racy and efficiency of the proposed ensemble algorithms for the interface-coupled sys-

tem with three random coefficients. The first experiment involves a smooth problem

to verify the convergence of the three proposed ensemble methods. We also measure

the CPU time to compare the performance of our methods. The second experiment

examines the energy dissipation results of the three algorithms to show that the pro-

posed methods are unconditionally stable. The third experiment simulates a random

steel-titanium composite plate fuel cell 3D model to illustrate the combination of our

ensemble algorithms and the Monte Carlo method, and further observe its internal

heat conduction behavior. In all experiments, we use linear Lagrangian elements (P1)

to construct the finite element spaces. We implement all the numerical experiments

using the open software FreeFEM++ [9].

5.1. Smooth problem

In the first numerical experiment, we test a smooth problem with an exact solution

adapted from [6] to check the convergence rate of our ensemble algorithms. Assume

that Ω1 = [0, 1]× [0, 1], Ω2 = [0, 1]× [−1, 0], the interface Γ of the current computational

domain is the portion of the x-axis from 0 to 1, n̂1 = [0,−1]T and n̂2 = [0, 1]T . The

exact solution is selected as follows:

u1(t, x, y) = ax(1− x)(1− y)e−t,

u2(t, x, y) = ax(1− x)(c1 + c2y + c3y
2)e−t,

which also determines the Dirichlet boundary condition, initial condition, and source

terms of this smooth problem. The selection of above constants c1, c2, c3 should be

determined by (2.1)-(2.4). Inspired by [6], we can choose

c1 = 1 +
ν1
κ
, c2 =

−ν1
ν2

, c3 = c2 − c1.

In order to obtain not only the optimal convergence order of the error H1-norm but

also that of L2-norm, we uniformly refine the mesh size h from 1/8 to 1/32 and make

the time step size ∆t = h2. We also introduced an error notation eui
= ui(t

N ) − uNi
with T = 1.0, N = T/∆t to display the results conveniently.

We first consider the smooth heat-heat interface-coupled model with two random

diffusion coefficients ν1, ν2 and one random friction parameter κ. We select a group of

simulation with J × J, J = 3 members to test the convergence performance of A1 and

A2 algorithms, including three friction parameters κ1 = 0.01, κ2 = 1.0, κ3 = 10.0, and

three diffusion coefficient groups

ν1,j(x, t) = ν2,j(x, t) = 1 + (1 + εj) sin(t)
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with ε1 = 0.6207, ε2 = 0.1841 and ε3 = 0.2691 [23]. The parameter a can be taken

as 1.0. The approximate accuracy of the u1 and u2 in L2-norm and H1-norm of the A1

algorithm are shown in Tables 1 and 2, which can verify the optimal convergence orders

for both u1 and u2. Numerical results for A2 in Tables 3 and 4 show the L2-norm and

H1-norm of u1 and u2, and also achieve the optimal convergence order. Both results

can indicate the effectiveness of our algorithms and confirm the theoretical analysis.

Table 1: The L2-error of u1 and u2 for A1 (J × J, J = 3) with different κj and νj while ∆t = h2.

h ‖eu1
‖κ1,ν1 ‖eu1

‖κ1,ν2 ‖eu1
‖κ1,ν3 ‖eu1

‖κ2,ν1 ‖eu1
‖κ2,ν2 ‖eu1

‖κ2,ν3 ‖eu1
‖κ3,ν1 ‖eu1

‖κ3,ν2 ‖eu1
‖κ3,ν3

1/8 0.029425 0.026852 0.027425 0.025598 0.022981 0.023555 0.061485 0.049583 0.051935

1/16 0.007428 0.006774 0.006919 0.006439 0.005774 0.005920 0.005812 0.005226 0.005353

1/32 0.001861 0.001697 0.001734 0.001612 0.001445 0.001482 0.001454 0.001307 0.001339

h ‖eu2
‖κ1,ν1 ‖eu2

‖κ1,ν2 ‖eu2
‖κ1,ν3 ‖eu2

‖κ2,ν1 ‖eu2
‖κ2,ν2 ‖eu2

‖κ2,ν3 ‖eu2
‖κ3,ν1 ‖eu2

‖κ3,ν2 ‖eu2
‖κ3,ν3

1/8 0.025686 0.024358 0.024672 0.026271 0.024784 0.025129 0.019170 0.018401 0.018544

1/16 0.006466 0.006126 0.006206 0.006617 0.006238 0.006326 0.007176 0.006691 0.006801

1/32 0.001619 0.001534 0.001554 0.001657 0.001562 0.001584 0.001798 0.001676 0.001703

Table 2: The H1-error of u1 and u2 for A1 (J × J, J = 3) with different κj and νj while ∆t = h2.

h ‖eu1
‖κ1,ν1 ‖eu1

‖κ1,ν2 ‖eu1
‖κ1,ν3 ‖eu1

‖κ2,ν1 ‖eu1
‖κ2,ν2 ‖eu1

‖κ2,ν3 ‖eu1
‖κ3,ν1 ‖eu1

‖κ3,ν2 ‖eu1
‖κ3,ν3

1/8 0.154409 0.154317 0.154332 0.154278 0.154284 0.154277 0.161680 0.157971 0.158606

1/16 0.077441 0.077429 0.077431 0.077424 0.077425 0.077424 0.077427 0.077435 0.077433

1/32 0.038750 0.038749 0.038749 0.038748 0.038748 0.038748 0.038749 0.038750 0.038749

h ‖eu2
‖κ1,ν1 ‖eu2

‖κ1,ν2 ‖eu2
‖κ1,ν3 ‖eu2

‖κ2,ν1 ‖eu2
‖κ2,ν2 ‖eu2

‖κ2,ν3 ‖eu2
‖κ3,ν1 ‖eu2

‖κ3,ν2 ‖eu2
‖κ3,ν3

1/8 0.153415 0.153413 0.153412 0.155123 0.155351 0.155300 0.160554 0.160076 0.160151

1/16 0.076912 0.076913 0.076913 0.077782 0.077902 0.077876 0.079620 0.079709 0.079691

1/32 0.038482 0.038483 0.038482 0.038919 0.038980 0.0389669 0.039842 0.039888 0.039878

Table 3: The L2-error of u1 and u2 for A2 (J × J, J = 3) with different κj and νj while ∆t = h2.

h ‖eu1
‖κ1,ν1 ‖eu1

‖κ1,ν2 ‖eu1
‖κ1,ν3 ‖eu1

‖κ2,ν1 ‖eu1
‖κ2,ν2 ‖eu1

‖κ2,ν3 ‖eu1
‖κ3,ν1 ‖eu1

‖κ3,ν2 ‖eu1
‖κ3,ν3

1/8 0.015217 0.013336 0.013488 0.014818 0.013350 0.013408 0.014019 0.013540 0.013416

1/16 0.003791 0.003331 0.003367 0.003698 0.003334 0.003349 0.003503 0.003371 0.003345

1/32 0.000947 0.000832 0.000841 0.000924 0.000833 0.000837 0.000875 0.000842 0.000835

h ‖eu2
‖κ1,ν1 ‖eu2

‖κ1,ν2 ‖eu2
‖κ1,ν3 ‖eu2

‖κ2,ν1 ‖eu2
‖κ2,ν2 ‖eu2

‖κ2,ν3 ‖eu2
‖κ3,ν1 ‖eu2

‖κ3,ν2 ‖eu2
‖κ3,ν3

1/8 0.020930 0.018640 0.019149 0.021187 0.018945 0.019430 0.022571 0.020060 0.020590

1/16 0.005241 0.004663 0.004790 0.005329 0.004768 0.004889 0.005706 0.005078 0.005211

1/32 0.001310 0.001166 0.001198 0.001334 0.001194 0.001224 0.001430 0.001273 0.001306

Table 4: The H1-error of u1 and u2 for A2 (J × J, J = 3) with different κj and νj while ∆t = h2.

h ‖eu1
‖κ1,ν1
X1

‖eu1
‖κ1,ν2
X1

‖eu1
‖κ1,ν3
X1

‖eu1
‖κ2,ν1
X1

‖eu1
‖κ2,ν2
X1

‖eu1
‖κ2,ν3
X1

‖eu1
‖κ3,ν1
X1

‖eu1
‖κ3,ν2
X1

‖eu1
‖κ3,ν3
X1

1/8 0.155245 0.156257 0.155996 0.155376 0.156414 0.156150 0.155754 0.156782 0.156529

1/16 0.077550 0.077678 0.077645 0.077566 0.077695 0.077663 0.077612 0.077738 0.077707

1/32 0.038764 0.038781 0.038776 0.038766 0.038782 0.038778 0.038772 0.038788 0.038784

h ‖eu2
‖κ1,ν1
X2

‖eu2
‖κ1,ν2
X2

‖eu2
‖κ1,ν3
X2

‖eu2
‖κ2,ν1
X2

‖eu2
‖κ2,ν2
X2

‖eu2
‖κ2,ν3
X2

‖eu2
‖κ3,ν1
X2

‖eu2
‖κ3,ν2
X2

‖eu2
‖κ3,ν3
X2

1/8 0.153796 0.154052 0.153984 0.155343 0.155799 0.155690 0.158884 0.159270 0.159178

1/16 0.077033 0.077081 0.077069 0.077811 0.077959 0.077926 0.079638 0.079755 0.079730

1/32 0.038533 0.038546 0.038543 0.038922 0.038987 0.038973 0.039844 0.039893 0.039883
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To verify Remark 4.1, we focus on the case where only the friction coefficient κ is

a random variable. We conduct a series of simulations with J = 3, where the friction

parameter is selected as κ1 = 0.01, κ2 = 1.0, κ3 = 10.0. All the other physical parame-

ters a, ν1, ν2 are set to 1.0. We apply the A2 algorithm to simulate the above case and

show the convergence order of the L2-norm and H1-norm for two regions in Fig. 2. As

can be seen from Fig. 2, the L2 relative errors and H1 relative errors of u1 and u2 for

each sample have attained the optimal convergence order. It is worth noting that the

random friction parameter κ we select is not subject to a small perturbation constraint,

which positively supports our advantage mentioned in Remark 4.1.

To estimate the uncertainty and sensitivity of the solutions for random PDEs more

accurately, we need to use more samples, which may increase the computational cost.

Therefore, we compare the computational efficiency of our proposed algorithms with

the standard data-passing partitioned algorithm [6] for different numbers of realiza-

tions J × J, J = 1, 5, 10, 15, 20. Herein, for simplicity, the two random diffusion coeffi-

cients can be selected as

ν1(ω,x, t) = ν2(ω,x, t) = 1 + (1 + ω) sin(t)

and the random friction parameter can be defined as κ(ω) = 0.01 + ω. The compar-

ison of the elapsed CPU times is shown in Table 5, which indicates that the proposed

ensemble methods are significantly faster than the standard data-passing partitioned

non-ensemble method except for the case J × J = 1× 1. More importantly, both meth-

ods capture the same behaviors while the A1 saves about 90.5% of the computation
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(c) κ3 = 10.0

Figure 2: The L2-error and H1-error of the u1 and u2 for A2 (J=3) with different κj .

Table 5: The comparison of the elapsed CPU time while the mesh size h = 1/32.

J × J 1× 1 5× 5 10× 10 15× 15 20× 20

Standard Data-passing Partitioned 151.2 3793.4 15334.6 34203.5 60993.0

A1 159.9 674.6 1920.5 3997.7 5737.8

A2 157.9 442.4 1371.6 2886.5 4972.2

A3 12.8 301.1 1198.5 2692.9 4801.8
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time, the A2 saves about 91.8% of the computation time, and the A3 saves about 92.1%
of the computation time with J × J = 20 × 20. Note that due to the fact that the SAV

method doubles the number of equations, the A1 algorithm takes more CPU time than

the A2. Moreover, the elapsed CPU time of the A3 algorithm is not much less than that

of A2. That is because the A3 algorithm only calculates the temporal average of νi,j on

top of the A2 algorithm. Clearly, the CPU time for calculating more N linear systems

is not much longer than J × J . Thus, we can verify the superiority of our proposed

algorithms by comparing the CPU times.

5.2. Stability problem

In the second numerical experiment, we test the stability of the proposed ensem-

ble algorithms, especially unconditional stability. For simplicity, we can set fi,j =
0, u0i,j = 1.0, and ui,j = 0 on Γi based on the domain and parameter selections

ν1(ω,x, t), ν2(ω,x, t) and κ(ω) of the first numerical experiment. Fig. 3(a) displays

the quantity of energy 0.5 ∗ ‖un+1
1 ‖2 + 0.5 ∗ ‖un+1

2 ‖2 on large time step points ∆t = 0.1
while h = 1/32, where

un+1
i =

1

J × J

J×J
∑

j=1

un+1
i,j .

We can easily calculate that the energy equals 1 while t = 0. It is clear to see that the

energy of both algorithms decreases rapidly and finally reaches a stable state.

It is known that SAV is a approach to deal with stiff problems in order to use a rel-

ative large time step size. Therefore, to test the superiority of the SAV in achieving

unconditional stability, we conducted test by excluding the SAV from the A1 algorithm.

Fig. 3(b) illustrate the evolution of 0.5 ∗ ‖un+1
1 ‖2 +0.5 ∗ ‖un+1

2 ‖2 in time for the varying

time step size ∆t = 0.2, 0.1, 0.05, 0.02, 0.01, 1/h2 with fixed mesh size 1/32. Notably, the

results demonstrate that the absence of SAV technical support prevents the algorithm

from stabilizing at larger time step sizes.

Moreover, to better display that the proposed ensemble algorithms are uncondi-

tionally stable, we check the energy attenuation results of A1 and A2 as representa-

tives under different time steps. As illustrated in Figs. 3(c)-3(d), we plot the evo-

lution of 0.5 ∗ ‖un+1
1 ‖2 + 0.5 ∗ ‖un+1

2 ‖2 in time for the varying time step size ∆t =
0.2, 0.1, 0.05, 0.02, 0.01 with fixed mesh size 1/32. We note that, for fixed h, with the

different time steps ∆t, the energy of A1 and A2 decreases rapidly with the increase

of time and tends to be stable. More importantly, the smaller the time steps ∆t, the

quicker we reach the steady case. Generally, the observation shows that the time step

conditions are not necessary, which can indicate that the proposed algorithms are un-

conditionally stable.
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Figure 3: Energy versus time of three proposed ensemble algorithms on large time step points with ∆t = 0.1
while h = 1/32 (a). (b) Show the evolution of 0.5 ∗ ‖un+1

i ‖2 + 0.5 ∗ ‖un+1

2 ‖2 in time for the varying time
step size ∆t = 0.2, 0.1, 0.05, 0.02, 0.01, 1/h2 with fixed h = 1/32 for the A1 algorithm without SAV. The
evolution of 0.5∗‖un+1

i ‖2+0.5∗‖un+1

2 ‖2 in time for the varying time step size ∆t = 0.2, 0.1, 0.05, 0.02, 0.01
with fixed h = 1/32 for the A1 algorithm (c) and the A2 algorithm (d).

5.3. Random steel-titanium composite plate fuel cell model

Composite materials are widely used in life and production due to their environ-

mental protection, low cost and excellent mechanical properties. Examples of such

materials are steel-titanium composite plates, copper-aluminium composite plates, etc.

These composite plates are the key components of the metal bipolar plate material for

the fuel cell. The performance and lifespan of the cell are influenced by temperature,

and the thermal management of the cell has attracted a lot of attention. Therefore, mo-

tivated by the above application, we design a random steel-titanium composite plate

fuel cell model to investigate its internal heat conduction phenomenon.
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We assume two materials can be expressed explicitly as [0, 2]× [0, 2]× [0, 4]∪ [2, 4]×
[0.5, 1] × [2, 3] ∪ [6, 8] × [0, 2] × [2, 4] ∪ [4, 6] × [0.5, 1] × [2, 3] in the conceptual domain,

see Fig. 4. For simplicity, we only give the leftmost heat of the steel plate as Dirichlet

boundary condition u1(t) = 20 and assume other surfaces of the whole model (exclud-

ing the interface) as homogeneous Neumann boundary conditions ∇ui(t) · n̂i = 0. The

initial conditions are presumed to be 0 and there is no external force term. Owing to

the random fiction parameter κ does not need a small perturbation constraint, we se-

lect ten samples for the random κ, which are 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50.

According to Wikipedia, the heat conductivity of steel is usually between 51.9 and 67.4
due to the different carbon content, and the heat conductivity of titanium is about

15.6 − 22.5. Hence, in the above selection interval, we randomly selected ten samples

for the Monte Carlo simulation.

We utilize the A1 and A2 algorithms with h = 1/16 and ∆t = 0.01 to simulate

the heat transfer process inside the steel-titanium composite plate fuel cell model, as

depicted in Figs. 5 and 6, respectively. With the increase of time, the heat is gradually

transferred from the steel plate to the titanium plate, and because the steel plate has

Figure 4: The conceptual domain of steel-titanium composite plate full cell model.

(a) t = 0.05 (b) t = 0.2

(c) t = 1.0 (d) t = 4.0

Figure 5: Heat conduction in the random steel-titanium composite plate fuel cell model with h = 1/16 and
∆t = 0.01 by A1 algorithm.
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(a) t = 0.05 (b) t = 0.2

(c) t = 1.0 (d) t = 4.0

Figure 6: Heat conduction in the random steel-titanium composite plate fuel cell model with h = 1/16 and
∆t = 0.01 by A2 algorithm.

a relatively high heat conductivity, it can be heated rapidly. Moreover, there is a signifi-

cant jump at the interface between the steel plate and the titanium plate influenced by

the friction parameter. In summary, all discussions further guarantee the effectiveness

of our proposed algorithms.

6. Conclusion

We first introduce the Monte Carlo algorithm and demonstrate that its convergence

is influenced by both the Monte Carlo method and classical numerical methods. Then,

our primary focus is on proposing innovative numerical methods for the second step

of the Monte Carlo algorithm. We establish an unconditional stable algorithm for the

IMEX scheme by combining the ensemble idea and SAV method. Then, for the data-

passing scheme, two ensemble algorithms without any auxiliary variables are estab-

lished with the three random parameters κ, ν1 and ν2, which can also achieve uncon-

ditional stability. This kind of idea can also be extended to the nonlinear fluid-fluid

problem.
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