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Abstract

In this paper, we analyze the convergence properties of a stochastic augmented La-

grangian method for solving stochastic convex programming problems with inequality

constraints. Approximation models for stochastic convex programming problems are con-

structed from stochastic observations of real objective and constraint functions. Based on

relations between solutions of the primal problem and solutions of the dual problem, it

is proved that the convergence of the algorithm from the perspective of the dual prob-

lem. Without assumptions on how these random models are generated, when estimates

are merely sufficiently accurate to the real objective and constraint functions with high

enough, but fixed, probability, the method converges globally to the optimal solution al-

most surely. In addition, sufficiently accurate random models are given under different

noise assumptions. We also report numerical results that show the good performance of

the algorithm for different convex programming problems with several random models.

Mathematics subject classification: 49N15, 90C15, 90C25.

Key words: Stochastic convex optimization, Stochastic approximation, Augmented La-

grangian method, Duality theory.

1. Introduction

In this paper, we consider the following stochastic convex optimization problem:

min
x∈X0

f(x) = E[F (x, ξ)]

s.t. gi(x) = E[Gi(x, ξ)] ≤ 0, i = 1, . . . , p.
(1.1)

HereX0 ⊂ Rn is a nonempty bounded closed convex set, ξ : Ω → Ξ is a random vector defined on

a given probability space (Ω,F ,P) and F : O×Ξ → R, Gi : O×Ξ → R, i=1, . . . , p, where O⊃X0

is an open convex set and Ξ is a measurable space. Without loss of generality, we assume that

expectations E[F (x, ξ)] and E[Gi(x, ξ)] are well defined and finite valued for every x ∈ O and

the expected value function f(·) and gi(·) are continuous and convex on O. Any algorithm for

solving problem (1.1) has to be faced with the difficulty that the full evaluations of expectations

E[F (x, ξ)] and E[Gi(x, ξ)] are either impossible or expensive in practice. There are two types

of methods to resolve this problem: the sample average approximation (SAA) method and the
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stochastic approximation (SA). The SAA method usually solves the random approximation

model through sample averaging estimators of random variables. Let ξ1, · · · , ξN be an i.i.d.

sample of realizations of random vector ξ of size N and the average sample approximation

model is defined as

min
x∈X0

1

N

N
∑

m=1

F (x, ξm)

s.t.
1

N

N
∑

m=1

Gi(x, ξm) ≤ 0, i = 1, . . . , p.

(1.2)

Usually, the convergence of SAA depends on the special choice of parameters and the expensive

iteration cost, like [18,26,28]. However, so far no study has applied sample averaging methods

to the case of biased noise for stochastic convex optimization problem (1.1).

On the other hand, the stochastic approximation, in most studies (for example, [17, 31]), is

to generate stochastic oracles Ftk : Rn×Ξ → R and G
sk
i : Rn×Ξ → R of the stochastic function

values of f and gi. More specifically, the random approximation model of (1.1) is defined as

min
x∈X0

F
tk(x)

s.t. G
sk
i (x) ≤ 0, i = 1, . . . , p,

(1.3)

where Ftk and G
sk
i are function which are constructed by one or mini-batches of random samples

tk, sk of stochastic function [5, 29]. For each k,Ftk and G
sk
i are continuous on x ∈ O. Obvi-

ously, the iterate xk+1 = xk+1(ξ[k]) can be seen as a function of the history ξ[k] := (ξ1, · · · , ξk)

of the generated random process. The above two random models are considered as the noisy

computable version of the real optimization problem (1.1) and the convergence of both methods

relies on zero-mean noise with bounded variance (or even with decreasing variance), so estima-

tors in these random models need to be carefully chosen [1, 30]. To the best of our knowledge,

no study so far has mentioned the convergence of the stochastic convex programming with

inequality constraints under the above two methods, for the case of biased noise. Regardless of

the random approximation model (1.2) or (1.3), we propose a stochastic augmented Lagrange

method and prove that when the random models are merely sufficiently close to the real op-

timization problems with high enough, but fixed, probability, the sequence generated by the

stochastic algorithm converges to the optimal solution almost surely. In this paper, we consider

a general random approximation model of (1.1) as follow:

min
x∈X0

fk(x)

s.t. Gk(x) ≤ 0.
(1.4)

For each k, fk and Gk =: (gk1 , · · · , g
k
p) are stochastic approximations of f and gi and continuous

on x ∈ O. The augmented Lagrangian function of problem (1.4) is defined by

Lk
r (x, λ) = fk(x) +

1

2r

[

∥

∥ΠR
p
+

(

λ+ rGk(x)
)
∥

∥

2
− ‖λ‖2

]

, ∀ (x, λ) ∈ R
n × R

p, (1.5)

where ΠR
p
+
(y) represents the projection of y onto R

p
+ for any y ∈ R

p. In the following we denote

[y]+ := ΠR
p

+
(y). The stochastic augmented Lagrangian method for solving (1.1) with the help

of the random model (1.4) can be described as Algorithm 1.1.

The augmented Lagrangian method for solving the optimization problem with constraints

can be traced back to the pioneering paper by Rockafellar [23]. Since the augmented Lagrangian
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Algorithm 1.1: Stochastic Augmented Lagrangian Method (SALM).

Require: Given parameter r > 0, the initial multiplier λ0 ∈ Rp and the initial point

x0 ∈ Rn. Let k = 0.

1 for k = 0, 1, . . . do

2 If xk satisfies the termination criterion, then stop and return xk.

3 Select the estimation models fk and Gk and compute

xk+1 = argmin
{

Lk
r (x, λ

k), x ∈ X0

}

, (1.6)

λk+1 = [λk + rGk(xk+1)]+. (1.7)

4 Let k = k + 1 and go to Step 1.

5 end

method is interpreted as the proximal point method applied to the dual optimality, a superlin-

ear convergence can be reached under certain conditions [4], which is widely used on various

optimization problems [2, 9, 11, 22, 27]. However, there is little research on stochastic nonlinear

programming. In the current research, [14] analyzes the convergence of the optimal value de-

pending on the sufficiently large sample and the boundedness of the gradient of the constraint

functions; [15] only obtains the convergence for the general Lipschitz continuous objective func-

tions with a high probability; [30] establishes convergence based on the assumption of unbiased

estimates. Inspired by [3, 10], which analyze the convergence of the unconstrained stochastic

optimization problems under the trust-region method, we show the global convergence of Al-

gorithm 1.1 by analyzing the characteristics of the dual problem. Compared to assumptions

in classical stochastic algorithms in prior work, our conditions are weaker, which just assume

that:

• For each k, the estimation models fk and Gk of objective and constraint functions are

sufficiently accurate with sufficiently high probability.

• For each k, the estimates of the gradient of the objective function φr of the dual problem

are sufficiently accurate at the current iterate with sufficiently high probability.

In particular, we do not assume that:

• The probabilities of generating sufficiently accurate optimization models and estimates

are increasing (they only need to be higher than a certain constant).

• The distribution of the random models and estimates has certain specific characteristics.

(That is, the inaccuracy of the random models can be arbitrary, and estimates can have

biased or unbiased noise.)

On this basis, the paper makes the following contributions to the convergence analysis of this

model:

• Under conditions that models and estimates are sufficiently accurate with sufficiently high,

but fixed probability and the optimal values of approximate dual problems are bounded,

the multiplier sequence {λk} generated by the stochastic augmented Lagrangian method

converges to the optimal solution of the dual problem with probability 1.
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• Moreover, if generalized Slater condition holds for (1.1), we prove that the sequence {xk}

converges to the optimal solution of the primal problem (1.1) with probability 1.

• In addition, different settings of noise (biased or unbiased) are discussed. In order to en-

sure the convergence, the selections of the parameters of the algorithm and the probability

of the accuracy of the models in different situations are given in this paper.

The paper is organized as follows. In the next section, using the duality theorem, the

gradient of the objective function of the dual problem is calculated and the significance of

the algorithm is discussed in depth in terms of duality. The global convergence results of

our algorithm are given in Section 3. In Section 4, various noise scenarios are discussed and to

achieve convergence, different accuracies of models and estimates are also constructed. Further,

in Section 5, we show the performance of the convergence of SALM in the stochastic convex

programming problems and the effect of the selection of parameters and sample sizes on the

convergence in some specific cases. Finally, the conclusion is given in Section 6.

Notations. We use the following notation throughout the paper. Rn
+ represents n-dimensi-

onal positive octant space and ‖ · ‖ represents the ℓ2 vector norm. For a set C and a point

x0, dist(C − x0) denotes the distance between C and x0, i.e. dist(C − x0) = supx1∈C ‖x1 − x0‖.

ri C represents the relative interior of set C. The conjugate function of the function f : Rn → R

is denoted as f∗ : Rn → R. The optimal solution set of a minimization problem f and

a maximization problem g are expressed as argmin f and argmax g, respectively. Let (Ω,F ,P)

be a given probability space. We write ξ ∈ F for “ξ is F -measurable”. We use B(Rn) to

denote the Borel σ-algebra of Rn and σ(ξ1, · · · , ξk) denoted as the σ-algebra generated by the

family of random variables ξ1, · · · , ξk. For a random variable ξ and a sub-σ-algebra S ⊂ F , the

conditional expectation of ξ given S is denoted by E[ξ|S]. The abbreviations “a.s.” stand for

“almost surely”.

2. The Dual Problem of the Convex Problem

In this section, we discuss some properties of the dual problem of (1.4) and give an alternative

interpretation of the augmented Lagrangian method from the perspective of the dual problem.

Considering the Lagrangian function of (1.4) is

Lk(x, λ) = fk(x) + λTGk(x), ∀ (x, λ) ∈ R
n × R

p.

So the dual problem of (1.4) is

(

D
k

0

)

max
λ∈R

p
+

φk0(λ) := inf
x∈X0

Lk(x, λ). (2.1)

For any r ≥ 0, we consider

(

D
k

r

)

max
λ∈Rp

φkr (λ) := inf
x∈X0

Lk
r (x, λ). (2.2)

The following proposition discusses the relationship between the optimal solution sets of (D
k

r )

and (Dk

0) and the expression of the gradient of the concave function φkr .

Proposition 2.1. For any k-th iteration and each r > 0, φkr (·) is concave on λ ∈ Rp and

satisfies

φkr (λ) = max
z

{

φk0(z)−
1

2r
‖z − λ‖2

}

. (2.3)
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Therefore, the dual problems (Dk

r ) and (Dk

0) have the same optimal solution. Further, if φk0 6≡

−∞, then φkr (·) is finite continuous differentiable on Rp. In particular, if for a given λ̄, the

function Lk
r (· , λ̄) minimizes at x̄ (not necessarily unique), then for i = 1, . . . , p,

∂φkr (λ̄)

∂λi
=
∂Lk

r (x̄, λ̄)

∂λi
= max

{

−
λ̄i
r
, gki (x̄)

}

. (2.4)

Proof. For any r ≥ 0 and uk = (uk1 , · · · , u
k
p) ∈ Rp, let

pkr(u
k) := inf

x∈X0

lkr (x, u
k),

where lkr (x, u
k) is defined as

lkr (x, u
k) =











fk(x) +
r

2

p
∑

i=1

(

uki
)2
, if gki (x) ≤ uki , i = 1, . . . , p,

+∞, otherwise.

Since lkr (x, u
k) is convex on (x, uk) ∈ X0 × R

p, pkr (u
k) is convex for any uk ∈ R

p. Noticed that

for any given k ∈ N,

pkr = pk0 + rqk,

where

qk(uk) =
1

2
‖uk‖2.

By [21, Theorem 3.1] and the definition of the conjugate function, we obtain that

φkr (λ) = inf
uk

{

pkr (u
k) + 〈λ, uk〉

}

= −
(

pkr
)∗
(−λ). (2.5)

Using the formula that calculates the conjugate function of the sum of convex functions (see [20,

Theorem 16.4]), it has

−
(

pkr
)∗
(−λ) = −

(

pk0 + rqk
)∗
(−λ) = max

z∈Rp

{

−
(

pk0
)∗
(−z)− (rqk)∗(z − λ)

}

. (2.6)

In addition, by simply calculating, we have (rqk)∗(y) = r(qk)∗(y/r) and (qk)∗ = qk. Hence,

combining (2.5) and (2.6), it yields

φkr (λ) = max
z∈Rp

{

−(pk0)
∗(−z)− rqk

(

z − λ

r

)}

= max
z∈Rp

{

φk0(z)−
1

2r
‖z − λ‖2

}

,

which implies (2.3). According to the definition of Moreau envelope function in [24, Defini-

tion 1.22], φkr (λ) is Moreau envelope of the function φk0(λ) , i.e.

φkr (λ) = −er
[

− φk0
]

(λ).

Then by [24, Theorem 2.26], −φkr(λ) is convex and continuous differentiable on Rp, which

implies that φkr (λ) is concave and

∇φkr (λ) = −∇er
[

− φk0
]

(λ) = −
1

r

[

λ− Pr

[

− φk0
]

(λ)
]

=
1

r

[

Pr

[

− φk0
]

(λ)− λ
]

, (2.7)

where Pr[−φ
k
0 ](λ) is the proximal mapping of the function −φk0 and the parameter r. In

particular, for the given λ̄, let x̄ be the minimum of Lk
r (·, λ̄), then it has

φkr (λ̄) = Lk
r (x̄, λ̄). (2.8)
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Hence, by the definition of the proximal mapping in [24, Definition 1.22], we get

Pr

[

− φk0
]

(λ̄) = argminz≥0

{

−fk(x̄)− zTGk(x̄) +
1

2r
‖z − λ̄‖2

}

. (2.9)

Notice that for general convex programming problems minψ(x) s.t. x ≥ 0, x∗ is the optimal

solution if and only if 0 ≤ x∗ ⊥ ∇ψ(x∗) ≥ 0. So the optimal solution z∗ in (2.9) is

Pr

[

− φk0
]

(λ̄) = max
{

0, λ̄+ rGk(x̄)
}

. (2.10)

Therefore, taking the gradient of (2.8), combined with (2.7) and(2.10), the conclusions are

proved. �

The above proposition shows that the optimal solution λ̄ of (D
k

r) satisfies for any i = 1, . . . , p,

∂φkr (λ̄)

∂λi
= max

{

−
λ̄i
r
, gki (x̄)

}

= 0, (2.11)

where x̄ be the minimum of Lk
r (·, λ̄). We look at Algorithm 1.1 again, and from the perspective

of the dual problem, (1.7) is equivalent to

λk+1 = λk +
(

max
{

0, λk + rGk(xk+1)
}

− λk
)

= λk + rmax

{

−
λk

r
,Gk(xk+1)

}

= λk − r∇
(

− φkr
)

(λk),

where

xk+1 = argmin{Lk
r (x, λ

k), x ∈ X0}.

According to Proposition 2.1 and the definition of Moreau envelope function in [24, Defini-

tion 1.22], φkr (λ) is Moreau envelope of the function φk0(λ), and (D
k

r ) and (D
k

0) have the same

optimal solution set. Therefore, (1.7) can also be seen as the stochastic negative gradient

method with constant step size used to solve the dual problem of (1.1). The main purpose of

our algorithm is to achieve the optimal solution x∗ of the stochastic problem (1.1). Therefore,

the following proposition discusses the equivalence condition between the minimum of Lk
r (·, λ̄)

and the optimal solution of (1.4). Undoubtedly, this applies to the case of the real problem (1.1).

Proposition 2.2. For any k-th iteration, suppose that the dual gap between (1.4) and its dual

problem (D
k

0) is zero. Let λ̄ be any dual optimal solution of (D
k

0). Let r > 0 be a given positive

number. Then x̄ is an optimal solution to (1.4) if and only if x̄ is the minimum of the function

Lk
r (·, λ̄) on X0.

Proof. Since λ̄ is a Kuhn-Tucker vector, by [20, Theorem 28.3], x̄ is an optimal solution to

(1.4) if and only if (x̄, λ̄) is a saddle point of Lk
r (· , ·), which indicates that x̄ is the minimum

of the function Lk
r (·, λ̄) (see [16, Theorem SP2]). On the other hand, from Proposition 2.1, if x̄

is the minimum of the function Lk
r (·, λ̄), it has ∇λL

k
r (x̄, λ̄) = ∇φkr (λ̄) = 0. Hence, λ̄ is the

maximum of the function Lk
r (x̄, ·), which demonstrates that (x̄, λ̄) is a saddle point of Lk

r . This

yields that x̄ is the optimal solution to (1.4). �
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3. Convergence Analysis

For the stochastic convex optimization problem (1.1), consider the following problem:

(Dr) max
λ∈Rp

φr(λ) := inf
x∈X0

Lr(x, λ), (3.1)

where the augmented Lagrangian function of (1.1) is defined as

Lr(x, λ) = f(x) +
1

2r

[

∥

∥ΠR
p
+

(

λ+ rG(x)
)∥

∥

2
− ‖λ‖2

]

,

where G(x) := (g1(x), · · · , gp(x)) as the constraint function. There is no doubt that (D0) is the

dual problem of (1.1). The proof of convergence will be divided into the following two parts.

Firstly, from Proposition 2.1, it is easy to deduce that, with similar proof, if the algorithm con-

verges to the optimal solution λ∗ of the problem (3.1) almost surely, then λ∗ is also the optimal

solution to the dual problem of (1.1) almost surely. Secondly, since the problem considered here

is convex, if generalized Slater condition1) holds for (1.1), there is no dual gap between (1.1)

and the dual problem (D0). Hence, from Proposition 2.2, we only need to prove that any cluster

point x̄ generated by the iterative sequence {xk} satisfies that x̄ is the minimum of Lr(·, λ
∗).

In order to prove that the cluster points of the iterative sequence generated in Algorithm 1.1

are the optimal solutions for the real problem (1.1), we require the dual estimate φkr is suffi-

ciently accurate. It can be established by sufficient accuracy of the objective estimate fk and

the constraint estimate Gk. Modifying the definition of accurate estimates in [13] and [10], we

give the definitions of accurate estimates under the stochastic convex optimization problem as

follows.

Definition 3.1. For each k ∈ N, the objective estimation model fk is said to be κf -accurate

estimation model of f with a given boundary Mf
k , if for any x ∈ O,

|f(x) − fk(x)| ≤ κf
(

Mf
k

)2
, (3.2)

where O is an open neighborhood containing X0.

Definition 3.2. For each k ∈ N, the constraint estimation model Gk is said to be κg-accurate

estimation model of G with a given boundary Mg
k , if for any x ∈ O,

max
{

‖G(x)−Gk(x)‖,
∣

∣‖G(x)‖2 − ‖Gk(x)‖2
∣

∣

}

≤ κg min
{

Mg
k , (M

g
k )

2
}

, (3.3)

where O is an open neighborhood containing X0.

Here it needs to emphasize that the boundary Mf
k or Mg

k may be random and may change

with k. If fk is κf -accurate estimation model and Gk is κg-accurate estimation model, then

for a given λ, φkr (λ) is an accurate estimate of φr(λ). In fact,

∣

∣φr(λ)− φkr (λ)
∣

∣ =
∣

∣

∣
inf

x∈X0

Lr(x, λ)− inf
x∈X0

Lk
r (x, λ)

∣

∣

∣

≤ sup
x∈X0

∣

∣Lr(x, λ) − Lk
r (x, λ)

∣

∣

≤ sup
x∈X0

∣

∣

∣

∣

∣

(

f(x)− fk(x)
)

+ λT
(

max

{

−
λ

r
,G(x)

}

−max

{

−
λ

r
,Gk(x)

})

1) Generalized Slater condition holds for (1.1) if there exists a x0 ∈ ri X0 such that gi(x0) < 0, i = 1, . . . , p.
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+
r

2

(

∥

∥

∥

∥

max

{

−
λ

r
,G(x)

}∥

∥

∥

∥

2

−

∥

∥

∥

∥

max

{

−
λ

r
,Gk(x)

}∥

∥

∥

∥

2
)
∣

∣

∣

∣

∣

≤ sup
x∈X0

|f(x)− fk(x)|+ ‖λ‖ sup
x∈X0

∥

∥

∥

∥

max

{

−
λ

r
,G(x)

}

−max

{

−
λ

r
,Gk(x)

}
∥

∥

∥

∥

+
r

2
sup
x∈X0

∣

∣

∣

∣

∣

∥

∥

∥

∥

max

{

−
λ

r
,G(x)

}
∥

∥

∥

∥

2

−

∥

∥

∥

∥

max

{

−
λ

r
,Gk(x)

}
∥

∥

∥

∥

2
∣

∣

∣

∣

∣

≤ sup
x∈X0

∣

∣f(x)−fk(x)
∣

∣ + ‖λ‖ sup
x∈X0

‖G(x)−Gk(x)‖

+
r

2
sup
x∈X0

∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)
∣

∣ , (3.4)

where

Qλ(y) :=

∥

∥

∥

∥

max

{

−
λ

r
, y

}∥

∥

∥

∥

2

.

In the last inequality above, we use the nonexpansivity of the projection, i.e.

sup
x∈X0

∥

∥

∥

∥

max

{

−
λ

r
,G(x)

}

−max

{

−
λ

r
,Gk(x)

}∥

∥

∥

∥

= sup
x∈X0

∥

∥

∥

∥

ΠR
p
+

(

G(x) +
λ

r

)

−ΠR
p
+

(

Gk(x) +
λ

r

)∥

∥

∥

∥

≤ sup
x∈X0

‖G(x)−Gk(x)‖.

Now let us estimate the upper bound of |Qλ(G(x))−Qλ(Gk(x))|. The discussion will be divided

into three situations.

Case 1. −λ/r ≤ min{G(x), Gk(x)}:

∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)
∣

∣ =
∣

∣‖G(x)‖2 − ‖Gk(x)‖2
∣

∣ ≤ κg
(

Mg
k

)2
.

Case 2. −λ/r ≥ max{G(x), Gk(x)}:

∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)
∣

∣ = 0 ≤ κg
(

Mg
k

)2
.

Case 3. min{G(x), Gk(x)}≤− λ/r≤max{G(x), Gk(x)}: If min{G(x), Gk(x)}≥0 or max{G(x),

Gk(x)} ≤ 0, then it has

∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)∣

∣ =

∣

∣

∣

∣

∥

∥max
{

G(x), Gk(x)
}∥

∥

2
−
∥

∥

∥

λ

r

∥

∥

∥

2
∣

∣

∣

∣

≤
∣

∣‖G(x)‖2 − ‖Gk(x)‖2
∣

∣ ≤ κg
(

Mg
k

)2
.

If min{G(x), Gk(x)} ≤ 0 ≤ max{G(x), Gk(x)}, then ‖max{G(x), Gk(x)}‖ ≤ κgM
g
k , since

‖G(x)−Gk(x)‖ ≤ κgM
g
k . So it implies that

∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)∣

∣ =

∣

∣

∣

∣

‖max{G(x), Gk(x)}‖2 −
∥

∥

∥

λ

r

∥

∥

∥

2
∣

∣

∣

∣

≤ ‖max{G(x), Gk(x)}‖2 ≤ κ2g
(

Mg
k

)2
.
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Let κg ∈ (0, 1), then κ2g ≤ κg. In summary, the upper bound of |Qλ(G(x)) − Qλ(Gk(x))| is

estimated by
∣

∣Qλ
(

G(x)
)

−Qλ
(

Gk(x)
)∣

∣ ≤ κg
(

Mg
k

)2
.

Combined with (3.4), φkr (λ) is accurate estimate of φr(λ) with the boundary

∣

∣φr(λ) − φkr (λ)
∣

∣ ≤ κf
(

Mf
k

)2
+ κg

(

‖λ‖+
r

2

)

(

Mg
k

)2
. (3.5)

To ensure convergence, the algorithm further need that the distance between ∇φr and ∇φkr is

not too far. So we give the following definition.

Definition 3.3. For each k ∈ N, the estimate φkr (λ
k) is said to be µφ-accurate gradient estimate

of φr(λ
k) with a given boundary Mφ

k , if

∥

∥∇φr(λ
k)−∇φkr (λ

k)
∥

∥ ≤ µφM
φ
k . (3.6)

Definitions 3.1 and 3.2 propose the criteria for the estimation model (i.e. conditions must

hold on all x ∈ O), while Definition 3.3 simply requires that the function ∇φkr be the accurate

estimate at λk. However, it is not easy to calculate the difference between ∇φr and ∇φkr at λk.

So the following proposition provides a sufficient condition that ∇φkr is µφ-accurate estimate

at λk.

Proposition 3.1. Suppose that the “true” constraint function G is Lipschitz continue with

modulus Lg and Gk is κg-accurate estimation model of G with the boundary Mg
k . If the distance

between the optimal solution set of infx∈X0
Lr(x, λ

k) and xk+1 has the bound

dist
(

xk+1, agrminx∈X0
Lr(x, λ

k)
)

≤ µLM
g
k , (3.7)

then φkr is µφ-accurate gradient estimate of φr(λ
k) with the boundary Mφ

k = Mg
k , where µφ =

µLLg + κg.

Proof. Proposition 2.1 provides that∇(φkr )(λ
k) = max{−λk/r, Gk(xk+1)} and∇(φr)(λ

k) =

max{−λk/r,G(x̄)}, where x̄ ∈ agrminLr(x, λ
k). By the Lipschitz continue of G and (3.3), it is

derived that

‖∇φr(λ
k)−∇φkr (λ

k)‖ =

∥

∥

∥

∥

max

{

−
λk

r
,G(x̄)

}

−max

{

−
λk

r
,Gk(xk+1)

}
∥

∥

∥

∥

≤
∥

∥G(x̄)−Gk(xk+1)
∥

∥

≤
∥

∥G(x̄)−G(xk+1)
∥

∥+
∥

∥G(xk+1)−Gk(xk+1)
∥

∥

≤ Lg‖x̄− xk+1‖+ κgM
g
k

≤ Lgdist
(

xk+1, agrminx∈X0
Lr(x, λ

k)
)

+ κgM
g
k

≤ (LgµL + κg)M
g
k ,

which prove the conclusion. �

Remark 3.1. The condition (3.7) can be satisfied under certain conditions. One of the suffi-

cient conditions is proposed by [6, Theorem 5.53]. Suppose that the true problem (1.1) has

unique optimal solution, Mangasarian-Fromovitz constraint qualification holds at the opti-

mal solution, the set of Lagrange multipliers is nonempty, the strong second order sufficient
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conditions are satisfied and the feasible set of the approximation problem (1.4) is nonempty

and uniformly bounded for any κf -accurate estimation model fk and κg-accurate estimation

model Gk, then there exists µL > 0 such that the condition (3.7) is satisfied. Although there

are very strong conditions, in the proof of the convergence, we only need to assume that (3.7)

holds with high enough, but fixed, probability. Therefore, the above conditions only need to be

established with high probability.

Our models {fk, Gk} are generated by some random samples of stochastic function f and G

on each iteration. Hence, the models themselves are random and contribute to the randomness

of the iterates Xk and the multipliers Λk. Let xk = Xk(ω) and λk = Λk(ω) denote their

respective realizations. Moreover denote

∆k := max

{

−
Λk

r
,Gk(Xk+1)

}

, Φk
r,λ := φkr (Λ

k)

and their realizations δk = ∆k(ω), φkr,λ = Φk
r,λ(ω). We now combine Definitions 3.1-3.3 and

extend the definitions of probabilistically accurate estimation models and probabilistically ac-

curate gradient estimates that is used in the remainder of the paper.

Definition 3.4. A sequence of random function estimation models {fk, Gk} is said to be α-

probabilistically κ-accurate-model with the boundary ‖∆k‖ where κ = (κf , κg) and

∆k = max

{

−
Λk

r
,Gk(Xk+1)

}

if the events

Ik =
{

fk is κf -accurate estimation model with the boundary ‖∆k‖ and

Gk is κg-accurate estimation model with the boundary ‖∆k‖
} (3.8)

satisfy the condition

P
(

Ik | F
k−1
)

≥ α,

where κf and κg are fixed constants and Fk−1 is the σ-algebra generated by f0, · · · , fk−1 and

G0, · · · , Gk−1.

Definition 3.5. A sequence of random function estimates {Φk
r,λ} is said to be β-probabilisti-

cally µφ-accurate-gradient with the boundary ‖∆k‖ where ∆k =max{−Λk/r,Gk(Xk+1)} if the

events

Jk =
{

Φk
r,λ is µφ-accurate gradient estimate with the boundary ‖∆k‖

}

(3.9)

satisfy the condition

P
(

Jk | F
k−1
)

≥ β,

where µφ is a fixed constant and Fk−1 is the σ-algebra generated by f0, · · · , fk−1 and

G0, · · · , Gk−1.

For the parameters in the above definition, we make some comments. Firstly, to achieve the

global convergence of Algorithm 1.1, in the analysis, this is only required that κf , κg, µφ are

fixed constants which have an upper bound and α, β are sufficiently large, but fixed, constants.
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Secondly, the boundary ‖∆k‖ seems to be an unknown value. In fact, according to Proposi-

tion 2.1, ∆k = ∇λ(Φ
k
r,λ). Here Λk ∈ Fk−1 is a known, determined vector. Therefore, ∆k is

just a concrete representation of the gradient of φkr at Λk. On the other hand,

‖∆k‖ =
1

r

∥

∥

[

Λk + rGk(Xk+1)
]

+
− Λk

∥

∥ =
1

r
‖Λk+1 − Λk‖,

which can be thought of as the distance from the next iteration point to Λk, then the key

thought in the proof of convergence is ‖∆k‖ converges to 0 almost surely. Finally, during

the iteration, it may happen that ‖∆k‖ = 0. At this point, κ-accurate estimate for random

function estimate {fk, Gk} is a too strict condition. Since Ik only needs to occur with a

certain probability α, the convergence can be achieved even if some {fk, Gk} do not satisfy

the condition. This conclusion also applies to estimates {Φk
r,λ}. The following lemma provide

conditions to guarantee the decrease of the dual problem φr(λ) in Algorithm 1.1.

Lemma 3.1. Suppose that φkr 6≡ −∞ and estimates {fk, Gk} are κ-accurate with κ = (κf , κg)

with the boundary ‖δk‖ where δk = max{−λk/r, Gk(xk+1)}. Let κg ∈ (0, 1/2). If at the k-th

iteration,

r ≥
2
(

3κf + κg(‖λ
k‖+ ‖λk+1‖)

)

1− 2κg
, (3.10)

then the improvement of φr is bounded below as follows:

φr(λ
k)− φr(λ

k+1) ≤ −κf‖δ
k‖2. (3.11)

Proof. Let z(λk) is the optimal solution of the maximization problem at the right side of

(2.3) with λ = λk, which derives that

φkr (λ
k) = φk0

(

z(λk)
)

−
1

2r
‖z(λk)− λk‖2. (3.12)

From the definition of the proximal mapping, we have

Pr

[

− φk0
]

(λk) = argminz

{

−φk0(z) +
1

2r
‖z − λk‖2

}

= argmaxz

{

φk0(z)−
1

2r
‖z − λk‖2

}

= z(λk),

so combined with (2.7), we get

∇φkr (λ
k) =

1

r

[

Pr

[

− φk0
]

(λk)− λk
]

=
1

r

[

z(λk)− λk
]

,

which yields from (3.12) that

φk0
(

z(λk)
)

−
1

2r

∥

∥z(λk)− λ′
∥

∥

2

= φk0
(

z(λk)
)

−
1

2r

∥

∥z(λk)− λk
∥

∥

2
+

1

2r

∥

∥z(λk)− λk
∥

∥

2
−

1

2r

∥

∥z(λk)− λ′
∥

∥

2

= φkr (λ
k)−

1

r

〈

λ′ − λk, z(λk)− λk
〉

−
1

2r
‖λ′ − λk‖2

= φkr (λ
k) +

〈

λ′ − λk,∇φkr (λ
k)
〉

−
1

2r
‖λ′ − λk‖2.
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For any λ′ ∈ Rp, from the expression of φkr in (2.3), it has

φkr (λ
′) ≥ φk0

(

z(λk)
)

−
1

2r

∥

∥z(λk)− λ′
∥

∥

2
, (3.13)

which derives that

φkr (λ
′) ≥ φkr (λ

k) +
〈

λ′ − λk,∇φkr (λ
k)
〉

−
1

2r
‖λ′ − λk‖2. (3.14)

In the above derivation, taking λ′ = λk+1, with δk = 1/r(λk+1 − λk) and ∇φkr (λ
k) = δk, it

implies that

φkr (λ
k)− φkr (λ

k+1) ≤ −
r

2
‖δk‖2. (3.15)

Since estimates {fk, Gk} are κ-accurate with the boundary ‖δk‖, by the analysis of (3.5), it

infers that for any λk,

∣

∣φr(λ
k)− φkr (λ

k)
∣

∣ ≤ κf‖δ
k‖2 + κg

(

‖λk‖+
r

2

)

‖δk‖2. (3.16)

Combined with (3.15), (3.16) and the restriction of r, the improvement in φr can be bounded as

φr(λ
k)− φr(λ

k+1) ≤ φkr (λ
k)− φkr (λ

k+1) +
(

2κf + κg(‖λ
k‖+ ‖λk+1‖+ r)

)

‖δk‖2

≤ −
r

2
‖δk‖2 +

(

2κf + κg(‖λ
k‖+ ‖λk+1‖+ r)

)

‖δk‖2

≤ −κf‖δ
k‖2.

The proof is complete. �

In the above analysis, no assumptions are made on κf . Furthermore, it is observed that the

greater κf is, the weaker the condition for estimates fk is, and the faster the decrease of φr can

be obtained, but the stronger the condition for the parameter r is. In the convergence theorem,

it can be seen that r determines the choice of the probability α and β. Therefore, in the

convergence analysis, the greater κf is obtained, the higher the requirement of the probability

α and β will be.

To prove convergence of Algorithm 1.1, we need that ‖∆k‖ converges to 0 with probability 1,

which has a close relationship with the boundedness of {‖Λk‖}. Hence, we would like to discuss

under what conditions can guarantee the boundedness of {‖Λk‖}.

Lemma 3.2. Suppose that the sequence of the optimal value {‖maxφkr‖} of the problem (2.2)

is bounded. Moreover, there exist a positive sequence εk ↓ 0 and 0 < k̄ ∈ N such that for any

k ≥ k̄, the selected estimation models fk and Gk satisfy

sup
x∈X0

fk−1(x)− fk(x) ≤ εk,

sup
x∈X0

∥

∥

∥

∥

ΠR
p
+

(

Λk

r
+Gk−1(x)

)∥

∥

∥

∥

2

−

∥

∥

∥

∥

ΠR
p
+

(

Λk

r
+Gk(x)

)∥

∥

∥

∥

2

≤ εk.

(3.17)

Then {‖Λk‖} is bounded.

Proof. We prove the conclusion now by a contradiction. Since Gk is continue and X0 is

nonempty bounded set, there exists a positive constant MX so that supx∈X0
‖Gk(x)‖ ≤ MX .

Suppose that there exist a subsequence {ki}i and a subsequence realization {ξ̄ki} such that
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{‖λki(ξ̄ki)‖}i is unbounded, but for any j /∈ {ki}i and all corresponding realization ξ̄, there is

a positive constant Mλ with ‖λj(ξ̄)‖ ≤Mλ. Therefore, there exists an i0 ∈ N such that for any

i > i0, λ
ki(ξ̄ki) > 2(Mλ + rMX), but λki−1(ξ̄ki−1) ≤Mλ. On the other hand,

∥

∥λki
(

ξ̄ki
)∥

∥ ≤
∥

∥λki−1
(

ξ̄ki−1
)

+ rGki−1
(

xki
(

ξ̄ki
))∥

∥

≤
∥

∥λki−1
(

ξ̄ki−1
)
∥

∥+ r
∥

∥Gki−1
(

xki
(

ξ̄ki
))
∥

∥ ≤Mλ + rMX ,

which contradicts the assumption of the unboundedness of the subsequence {‖λki‖}i.

So, in the following, we assume that there exists a sequence realization {ξ̄k} the sequence

such that {‖λk(ξ̄k)‖} is unbounded with the probability α0. Algorithm 1.1 can unconditionally

guarantee that (3.15) is established. Let

δk(ξ̄k, ξ̄k+1) = max

{

−
λk(ξ̄k)

r
,Gk

(

xk+1
(

ξ̄k+1
))

}

.

It yields that

φkr
(

λk+1
(

ξ̄k+1
))

≥ φkr
(

λk
(

ξ̄k
))

+
r

2

∥

∥δk
(

ξ̄k, ξ̄k+1
)∥

∥

2

≥
(

φkr
(

λk
(

ξ̄k
))

− φk−1
r

(

λk
(

ξ̄k
))

)

+ φk−1
r

(

λk−1
(

ξ̄k−1
))

+
r

2

(

∥

∥δk−1
(

ξ̄k−1, ξ̄k
)∥

∥

2
+
∥

∥δk
(

ξ̄k, ξ̄k+1
)∥

∥

2
)

.

Thus, for any k ≥ k̄, it has

φkr
(

λk+1
(

ξ̄k+1
))

≥
k
∑

i=k̄

(

φir
(

λi
(

ξ̄i
))

− φi−1
r

(

λi
(

ξ̄i
))

)

+ φk̄−1
r

(

λk̄−1
(

ξ̄k̄−1
))

+
r

2

k
∑

i=k̄−1

∥

∥δk
(

ξ̄i, ξ̄i+1
)∥

∥

2
. (3.18)

Since (3.17) holds, for the sequence realization {ξ̄k}, we have

φk−1
r

(

λk
(

ξ̄k
))

− φkr
(

λk
(

ξ̄k
))

= inf
x∈X0

Lk−1
r

(

x, λk
(

ξ̄k
))

− inf
x∈X0

Lk
r

(

x, λk
(

ξ̄k
))

≤ sup
x∈argminLk

r (x,λ
k(ξ̄k))

{

Lk−1
r

(

x, λk
(

ξ̄k
))

− Lk
r

(

x, λk
(

ξ̄k
))}

≤ sup
x∈X0

{

(

fk−1(x)−fk(x)
)

+
1

2r

(

∥

∥ΠR
p
+

(

λk
(

ξ̄k
)

+ rGk−1(x)
)
∥

∥

2
−
∥

∥ΠR
p
+

(

λk
(

ξ̄k
)

+ rGk(x)
)
∥

∥

2
)

}

≤ sup
x∈X0

{

fk−1(x)−fk(x)
}

+
r

2
sup
x∈X0

{

∥

∥

∥

∥

ΠR
p
+

(

λk
(

ξ̄k
)

r
+Gk−1(x)

)
∥

∥

∥

∥

2

−

∥

∥

∥

∥

ΠR
p
+

(

λk(ξ̄k)

r
+Gk(x)

)
∥

∥

∥

∥

2
}

≤
2 + r

2
εk.

From the conclusion of Theorem 3.1, the sequence {‖λk(ξ̄k)‖} is unbounded if and only if there

exists a positive constant τ so that for any k ∈ N, ‖δk(ξ̄k, ξ̄k+1)‖ ≥ τ > 0. Since εk ↓ 0, there

exists k̃ ≥ k̄ so that εk ≤ rτ2/(2(2 + r)). That is,

φk−1
r

(

λk
(

ξ̄k
))

− φkr
(

λk
(

ξ̄k
))

≤
rτ2

4
≤
r

4

∥

∥δk
(

ξ̄k, ξ̄k+1
)∥

∥

2
.
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Therefore, combined with (3.18), for any k ≥ k̃, it implies that

φkr
(

λk+1
(

ξ̄k+1
))

≥

k
∑

i=k̃

(

φir
(

λi
(

ξ̄i
))

− φi−1
r

(

λi
(

ξ̄i
))

)

+ φk̃−1
r

(

λk̃−1
(

ξ̄k̃−1
))

+
r

2

k
∑

i=k̃−1

∥

∥δi
(

ξ̄i, ξ̄i+1
)
∥

∥

2

≥ −

k
∑

i=k̃

r

4

∥

∥δi
(

ξ̄i, ξ̄i+1
)∥

∥

2
+ φk̃−1

r

(

λk̃−1
(

ξ̄k̃−1
))

+
r

2

k
∑

i=k̃−1

∥

∥δi
(

ξ̄i, ξ̄i+1
)∥

∥

2

≥ φk̃−1
r

(

λk̃−1
(

ξ̄k̃−1
))

+
r

4

k
∑

i=k̃

∥

∥δi
(

ξ̄i, ξ̄i+1
)∥

∥

2

≥ φk̃−1
r

(

λk̃−1
(

ξ̄k̃−1
))

+
r

4

k
∑

i=k̃

τ2 → +∞.

As k→∞, the right side of the above formula tends to be positive infinity, so φkr (λ
k+1(ξ̄k+1)) →

+∞, which contradicts the assumption of the boundedness of the optimal value {‖maxφkr‖}.

As a consequence, {‖λk‖} is bounded. �

It should be emphasized that the conditions given above are only one of the sufficient

conditions for the boundedness of ‖Λk‖. Since fk−1, Gk−1 and Λk are both determined in the

k-th iteration, (3.17) is an operable condition.

The following theorem states that as long as the probability α can be chosen specially, under

the mild assumptions of Lemma 3.1, ‖∆k‖ converges to 0 is equivalent to the sequence {‖Λk‖}

is bounded.

Theorem 3.1. Suppose that φr is bounded from above on Rp and φkr 6≡ −∞. Moreover, es-

timates {fk, Gk} are α-probabilistically κ-accurate-model and {Φk
r,λ} is β-probabilistically µφ-

accurate-gradient both with the boundary ‖∆k‖ where ∆k = max{−Λk/r, Gk(Xk+1)}. Let

κg ∈ (0, 1/2) and α, β satisfies

αβ >
r

ν + r
, (3.19)

where

ν =
2κf

2 + (1 + µφ)2
.

Then the sequence {‖Λk‖} is bounded almost surely if and only if there exists a constant r̄ such

that for any r > r̄,
∞
∑

k=0

‖∆k‖2 <∞ (3.20)

holds almost surely.

Proof. We first prove the sufficiency and argue the conclusion by a contradiction. We

assume that if (3.20) holds almost surely, there exists a sequence realization {ξ̄k} such that the

sequence {‖λk(ξ̄k)‖} is unbounded with the probability α0. Then, from (1.7) and
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δk = max

{

−
λk

r
,Gk(xk+1)

}

= r(λk+1 − λk),

for any r ≥ r̄, it holds that

‖λk+1‖ ≤ ‖λk‖+ r‖δk‖ ≤ ‖λ0‖+ r

k
∑

i=0

‖δi‖2.

Since the sequence {‖λk(ξ̄k)‖} is unbounded with the probability α0, the sequence
∑k

i=0‖δ
i(ξ̄i)‖2

is unbounded with the probability α0, which contradicts the assumption (3.20). Hence, the se-

quence {‖Λk‖} is bounded almost surely.

The following proves the necessity. As usual, let xk, λk, δ
k, φkr,λ denote realizations of random

quantities Xk,Λk,∆
k,Φk

r,λ, respectively. Now we consider all realizations of Algorithm 1.1 and

we estimate φr(λ
k)− φr(λ

k+1) in two cases.

(a) The events Ik and Jk both occur. If {‖Λk‖} is bounded almost surely, i.e. the probability

that {‖Λk‖} is unbounded equals to zero, then there exists a boundary Mλ such that

P(‖Λk‖ ≤Mλ) = 1. Choose

r̄ =
2(3κf + 2κgMλ)

1− 2κg
,

by Lemma 3.1, for any r ≥ r̄, (3.11) holds with probability α. The event Jk implies that

∥

∥∇φr(λ
k)− δk

∥

∥ =
∥

∥∇φr(λ
k)−∇φkr (λ

k)
∥

∥ ≤ µφ‖δ
k‖.

Hence, ‖∇φr(λ
k)‖ ≤ (1 + µφ)‖δ

k‖ and (3.11) is rewritten as

φr(λ
k)− φr(λ

k+1) ≤ −κf‖δ
k‖2 ≤ −ν‖δk‖2 −

κf − ν

(1 + µφ)2

∥

∥∇φr(λ
k)
∥

∥

2
< 0. (3.21)

(b) At least one of the event Ik or Jk does not hold. Observe that the proof of formula (3.14)

is similarly applied to φr. With λ′ = λk+1, it has

φr(λ
k)− φr(λ

k+1) ≤
〈

λk − λk+1,∇φr(λ
k)
〉

+
1

2r

∥

∥λk+1 − λk
∥

∥

2
.

Hence, the change in function φr is bounded by

φr(λ
k)− φr(λ

k+1) ≤ −r
〈

δk,∇φr(λ
k)
〉

+
r

2
‖δk‖2. (3.22)

Combining the above two cases, since the events Ik and Jk both occur at least with the proba-

bility αβ, it implies that

E
[

φr(Λ
k)− φr(Λ

k+1) | Fk−1
]

≤ −αβν‖∆k‖2 − αβ
κf − ν

(1 + µφ)2

∥

∥∇φr(Λ
k)
∥

∥

2

− (1− αβ)r
〈

∆k,∇φr(Λ
k)
〉

+
(1 − αβ)r

2
‖∆k‖2.

From the selection of α, β in (3.19), it has αβν/2 > (1− αβ)r/2. With

ν

2
=

κf − ν

(1 + µφ)2
,
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so, it yields that

E
[

φr(Λ
k)− φr(Λ

k+1) | Fk−1
]

≤ −
αβν

2
‖∆k‖2 −

αβν

2

∥

∥∇φr(Λ
k)
∥

∥

2
− (1− αβ)r

〈

∆k,∇φr(Λ
k)
〉

= −

(

αβν

2
−

(1− αβ)r

2

)

(‖∆k‖2 + ‖∇φr(Λ
k)‖2)

−
(1− αβ)r

2

∥

∥∆k +∇φr(Λ
k)
∥

∥

2
< 0 (3.23)

holds for any k ∈ N. Since φr has an upper bound, summing (3.23) over k ∈ (1,∞) and taking

expectation on both sides, it can conclude that (3.20) holds with probability 1. �

Remark 3.2. From the above analysis, it also can infer that

∞
∑

k=0

∥

∥∇φr(Λ
k)
∥

∥

2
<∞,

∞
∑

k=0

∥

∥∆k −∇φr(Λ
k)
∥

∥

2
<∞ (3.24)

almost sure holds with probability 1. In fact,

∞
∑

k=0

∥

∥∆k −∇φr(Λ
k)
∥

∥

2
≤

∞
∑

k=0

(

2
∥

∥∆k +∇φr(Λ
k)
∥

∥

2
+ 8
∥

∥∇φr(Λ
k)
∥

∥

2
)

≤ 2

∞
∑

k=0

∥

∥∆k +∇φr(Λ
k)
∥

∥

2
+ 8

∞
∑

k=0

∥

∥∇φr(Λ
k)
∥

∥

2
≤ ∞

holds with probability 1.

Remark 3.3. Since there exists a constant r̄ such that for any r > r̄, the probability α and β

are totally constants and selected as α = β =
√

r/(ν + r). In addition, observe that the

parameter µφ has no restrictions in the above proof. Therefore, in theory, the convergence only

need the existence of µφ > 0. However, in actual situations, the larger µφ is, the greater the

probability αβ of the occurrence of events Ik and Jk need to be.

In the last part of this section, the global convergence of the augmented Lagrange method

is established.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. Moreover, suppose that generalized

Slater condition holds for (1.1) and the multiplier set {‖Λk‖} is bounded almost surely. Then

any cluster point X̄ of the sequence {Xk} generated by Algorithm 1.1 is the optimal solution of

(1.1) almost surely.

Proof. Replacing φkr in Propositions 2.1 and 2.2 with φr, the conclusions about φr are still

established. Hence, for any r > 0, the dual problems (Dr) and (D0) have the same optimal

solution. Furthermore, let Λ∗ be the cluster point of the sequence {Λk}. If Λ∗ is the dual

optimal solution of (Dr), Λ
∗ is also the dual optimal solution of (D0). Since generalized Slater

condition holds for (1.1), the dual gap between (1.1) and its dual problem (D0) is zero. Based

on Proposition 2.2, if Λ∗ is the dual optimal solution of (D0), then X̄ is an optimal solution

to (1.1) if and only if X̄ is the minimum of the function Lr(·,Λ
∗) on X0. Based on the above
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analysis, it only need to prove X̄ is the minimum of the function Lr(·,Λ
∗), where Λ∗ is the dual

optimal solution of (Dr).

With the assumptions of Theorem 3.1, (3.20) and (3.24) hold almost surely. (3.20) implies

that

lim
k→∞

‖Λk+1 − Λk‖ = lim
k→∞

r‖∆k‖ = 0 a.s.

Since {‖Λk‖} is bounded almost surely, {Λk} converges to a certain limit point Λ∗ almost surely.
∑∞

k=0 ‖∇φr(Λ
k+1)‖2 <∞ with probability 1 in (3.24) implies that

lim
k→∞

∥

∥∇φr(Λ
k+1)

∥

∥ = ‖∇φr(Λ
∗)‖ = 0

holds almost surely. That deduces that Λ∗ is the dual optimal solution of (Dr) almost surely.

On the other hand,

lim
k→∞

∥

∥∇φr(Λ
k+1)

∥

∥ = lim
k→∞

∥

∥

∥

∥

max

{

−
Λk

r
,G(Xk+1)

}∥

∥

∥

∥

=

∥

∥

∥

∥

max

{

−
Λ∗

r
,G(X̄)

}∥

∥

∥

∥

= 0 (3.25)

holds with probability 1. (3.25) implies that ∇φr(Λ
∗) = max{−Λ∗/r,G(X̄)} holds with prob-

ability 1. By Proposition 2.1, X̄ must be the minimum of the function Lr(·,Λ
∗) almost surely.

The conclusion is proved. �

4. Stochastic Noise in Different Settings

In this section, we discuss specific conditions where α-probabilistically κ-accurate-model and

β-probabilistically µφ-accurate-gradient are satisfied under various settings of stochastic noise.

The first one is unbiased stochastic noise, that is, functions are estimated by zero-mean noise

with bounded variance. We construct a random approximation model and achieve the con-

vergence by selecting the appropriate sample size. Secondly, we consider convex optimizations

with biased stochastic noise, where the random approximation models have noise with some

positive probability. We obtain α-probabilistically κ-accurate-model and β-probabilistically

µφ-accurate-gradient by controlling the probability of the error of approximation models.

In the random approximation model (1.4), for each iteration, we select the noisy versions

of the objective function f and the constraint function gi. Let ξ be a random vector defined

on the probability space (Ω,F ,P). Each time the sample is selected to generate an estimated

model, let fk(x) := f(x, ξ) and Gk(x) := G(x, ξ).

4.1. Unbiased stochastic noise

In this part, we discuss conditions for α-probabilistically κ-accurate-model and β-probabili-

stically µφ-accurate-gradient under unbiased stochastic noise, which is most common in stochas-

tic optimization. The accurate estimate of φkr is closely related to the convergence of Algo-

rithm 1.1. Recall that the accurate estimate of φkr is obtained through fk being κf -accurate

estimation model and Gk being κg−accurate estimation model. In the following proposition,

other conditions are given to ensure the accurate estimate of φkr .

Proposition 4.1. Suppose that for each k ∈ N, the estimation model {fk, Gk} is κf,g-accurate

estimation conjunctive model of {f,G} with a given boundary Mf,g
k , i.e. for any x ∈ X0,

max
{

∣

∣f(x)− fk(x)
∣

∣,
∣

∣qλ
(

G(x)
)

− qλ
(

Gk(x)
)∣

∣

}

≤ κf,g
(

Mf,g
k

)2
, (4.1)
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where the function

qλ(y) :=

∥

∥

∥

∥

ΠR
p
+

(

λ

r
+ y

)∥

∥

∥

∥

2

.

Then for a given λ, φkr (λ) is (2 + r)/2κf,g-accurate estimate of φr(λ) with the boundary Mf,g
k .

Proof. For a given λ, similar to the analysis in (3.5), it has

∣

∣φr(λ)− φkr (λ)
∣

∣ ≤ sup
x∈X0

∣

∣

∣

∣

(

f(x)− fk(x)
)

+
1

2r

(

∥

∥ΠR
p
+

(

λ+ rG(x)
)∥

∥

2
−
∥

∥ΠR
p
+

(

λ+ rGk(x)
)∥

∥

2
)

∣

∣

∣

∣

≤ sup
x∈X0

∣

∣

∣

∣

f(x)− fk(x)
∣

∣+
r

2
sup
x∈X0

∣

∣qλ
(

G(x)
)

− qλ
(

Gk(x)
)

∣

∣

∣

∣

≤
2 + r

2
κf,g

(

Mf,g
k

)2
, (4.2)

which prove the conclusion. �

It is not hard to see that the parameter κf,g depends on ‖λ‖ and r. If {‖λk‖} generated by

Algorithm 1.1 is bounded and r is selected as (3.10), then for any k-th iteration in Algorithm 1.1,

the parameter κf,g is chosen by

κf,g = min{κf , κg}. (4.3)

Hence, (3.5) can be obtained, so the convergence analysis in this case is the same as Theorem 3.1

with Mf,g
k = ‖δk‖. Hence, our purpose is to construct a model so that the estimation model

{fk, Gk} can satisfy κf,g-accurate-conjunctive-model with some sufficiently high probability α.

One of the ideas is that the standard stochastic approximation is used to obtain effective

models. In particular, the algorithm choose the i.i.d. realizations ξj of the random vector ξ.

Therefore, let

fk(x) =
1

m

m
∑

j=1

F (x, ξj), qkλ(G)(x) =
1

m

m
∑

j=1

qλ
(

G(x, ξj)
)

, (4.4)

where G(x, ξj) = (G1(x, ξj), · · · , Gp(x, ξj)), and

φkr (λ) =
1

m

m
∑

j=1

φ̂r(λ, ξj) :=
1

m

m
∑

j=1

inf
x∈X0

{

F (x, ξj) +
r

2

[

qλ
(

G(x, ξj)
)

−
∥

∥

∥

λ

r

∥

∥

∥

2
]}

, (4.5)

which implies that

∇φkr (λ) =
1

m

m
∑

j=1

∇φ̂r(λ, ξj).

We now give several mild assumptions for the random approximation model.

Assumption 4.1. (A1) Functions f and G are estimated by zero-mean noise with bounded

variance, i.e. there exist positive constants Vf and Vg such that for any j = 1, . . . ,m, λ ∈

Rp, x ∈ X0,

Eξ

[

F (x, ξj)
]

= f(x), Eξ

[

qλ
(

G(x, ξj)
)]

= qλ
(

G(x)
)

, (4.6)

Eξ

[

|F (x, ξj)− f(x)|2
]

≤ Vf , Eξ

[

∣

∣qλ
(

G(x, ξj)
)

− qλ
(

G(x)
)∣

∣

2
]

≤ Vg, (4.7)

where the function

qλ(y) :=

∥

∥

∥

∥

ΠR
p
+

(

λ

r
+ y

)
∥

∥

∥

∥

2

.
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(A2) The gradient of φr is estimated by stochastic first-order oracles with zero-mean noise and

bounded variance, i.e. there exists a positive constant Vφ such that for all k ∈ N and any

j = 1, . . . ,m, λ ∈ Rp, x ∈ X0,

Eξ

[

∇λφ̂r
(

λk, ξj
)]

= ∇λφr(λ
k), Eξ

[

∥

∥∇λφ̂r
(

λk, ξj
)

−∇λφr(λ
k)
∥

∥

2
]

≤ Vφ.

Proposition 4.2. Suppose that the random approximation models (4.4) and (4.5) satisfy As-

sumption 4.1, and the sample size m selected by Algorithm 1.1 satisfies

m ≥ max

{

max{Vf , Vg}

(1− α)κ2f,g δ̂
4
k

,
Vφ

(1 − β)µ2
φδ̂

2
k

}

, (4.8)

where 0 < δ̂k ≤ ‖δk‖ and δk = max{−λk/r, Gk(xk+1)}. Then estimates {fk, Gk} are α-

probabilistically κf,g-accurate-conjunctive-model and {φkr,λ} is β-probabilistically µφ-accurate-

gradient both with the boundary ‖δk‖.

Proof. By Chebyshev inequality, for any θ > 0,

P
(

|fk(x) − f(x)| > θ
)

= P

(

∣

∣fk(x) − Eξ[F (x, ξ)]
∣

∣ > θ
)

≤
Vf
mθ2

,

P

(

∣

∣qkλ(G)(x) − qλ
(

G(x)
)
∣

∣ > θ
)

= P

(

∣

∣qkλ(G)(x) − Eξ

[

qλ
(

G(x, ξ)
)]
∣

∣ > θ
)

≤
Vg
mθ2

.

Choose θ = κf,g δ̂
2
k for some special 0 < δ̂k ≤ ‖δk‖ and m satisfies

max

{

Vf
mθ2

,
Vg
mθ2

}

≤ 1− α.

So the random approximation model (4.4) is κf,g-accurate-conjunctive-model with probability

α provided with

m ≥
max{Vf , Vg}

(1− α)κ2f,g δ̂
4
k

.

Reuse the extension of the Chebyshev inequality, then {φkr} is µφ-accurate-gradient with

probability β if

m ≥
Vφ

(1 − β)µ2
φδ̂

2
k

.

As a result, the random approximation model (4.4) by Algorithm 1.1 guarantees convergence

provided with

m ≥ max

{

max{Vf , Vg}

(1− α)κ2f,g δ̂
4
k

,
Vφ

(1 − β)µ2
φδ̂

2
k

}

.

The proof is complete. �

Proposition 4.2 states that if we select the appropriate sample size in Algorithm 1.1, the

random approximation models (4.4) and (4.5) are guaranteed to estimate the problem (1.1)

with sufficient accuracy, which can establish the convergence under the boundedness of the

multiplier set. We summarize as the following theorem.
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Theorem 4.1. Suppose that generalized Slater condition holds for (1.1), and φr is bounded

from above on Rp. Moreover, the random approximation models {fk, Gk} in (4.4) and {φkr} in

(4.5) satisfy Assumption 4.1, and φkr 6≡ −∞. Let κf,g ∈ (0, 1/2),

r ≥ r̄ :=
6κf,g

1− 2κf,g
,

and α, β satisfies (3.19), where

ν =
2κf,g

2 + (1 + µφ)2
,

and the sample size m selected by Algorithm 1.1 satisfies (4.8), where 0 < δ̂k ≤ ‖δk‖ and

δk = max{−λk/r, Gk(xk+1)}. If the multiplier set {‖λk‖} is bounded almost surely, any

cluster point x̄ of the sequence {xk} generated by Algorithm 1.1 is the optimal solution of (1.1)

almost surely.

Proof. By (3.15), (4.2) and the restriction of r, the improvement in φr can be bounded as

φr(λ
k)− φr(λ

k+1) ≤ φkr (λ
k)− φkr (λ

k+1) +
∣

∣φr(λ
k)− φkr (λ

k)
∣

∣+
∣

∣φr(λ
k+1)− φkr (λ

k+1)
∣

∣

≤ −
r

2
‖δk‖2 + (2 + r)κf,g‖δ

k‖2

≤ −κf,g‖δ
k‖2.

It yields from Proposition 4.2 that {fk, Gk} are α-probabilistically κf,g-accurate-conjunctive-

model and {φkr,λ} is β-probabilistically µφ-accurate-gradient both with the boundary ‖δk‖.

Similar to the proof of Theorem 3.1, we can prove that
∑∞

k=0 ‖δ
k‖2 < ∞ holds almost surely.

Then the conclusion can be proved by Theorem 3.2. �

4.2. Biased stochastic noise

In many applications of economics and machine learning, there are many stochastic problems

with complex noise structures. One example is in portfolio problems which focus on minimizing

the variance subject to budget constraints as follow:

min
w∈R

d
+
,
∑

d
i=1

wi=1

〈

w,E[aaT ]w
〉

s.t. E[〈a, w〉] ≥ γ,

where parameters a in the convex optimization models are random because ξ and the probability

distributions are even unknown. Therefore, the full evaluation of the objective and constraint

functions are impossible to obtain in practice. Other examples like Neyman-Pearson classifica-

tion optimization models [19] and some online convex optimizations [14]. In these stochastic

optimization models, due to unknown random components, the random approximation models

{fk, Gk} may have large noise with some positive probability under some numerical methods.

More likely, the probability of these deviations caused by the noises depends on x (see [10]). So

it is reasonable to discuss a random approximation model as follows:

min
x∈X0

fk(x) = f(x, ξ) =

{

f(x) with probability 1− γf (x),

ξf (x) ≤ Vf with probability γf (x),

s.t. Gk(x) = G(x, ξ) =

{

0 with probability 1− γg(x),

ξg(x) ≤ Vg with probability γg(x),

(4.9)
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where the probability γf (x) and γg(x) depend on x so that the function f andG can not compute

accurately, and ξf (x) and ξg(x) are some random functions of x which are controlled by the

known upper bound Vf and Vg. (4.9) is an idealized model due to the exact computation of f

and G with probability (1− γf (x))(1 − γg(x)). In practice, a sufficiently small error is allowed

between the random approximation model and f,G under probability (1− γf (x))(1 − γg(x)).

Obviously, the model is not unbiased, i.e.

Eξ[f(x, ξ)] =
(

1− γf (x)
)

f(x) + γf (x)E[ξf (x)] 6= f(x), Eξ[G(x, ξ)] 6= G(x).

Hence, traditional stochastic approximation techniques (like [7, 8, 12, 25]), can not used in this

situation. However, this model satisfies our convergence conditions by assuming that probability

min{γf (x), γg(x)} ≤ γ̄ is small enough, for any x ∈ X0. When (1− γ̄)2 ≥ max{α, β}, {fk, Gk}

is the exact computation of f and G with probability (1− γ̄)2. Hence, with probability (1− γ̄)2,

{fk, Gk} is κ-accurate-model and estimates {φkr} is µφ-accurate-gradient with κ = µφ = 0.

As a consequence, if the sequence {‖λk‖} is bounded and choose r to be a sufficiently large

constant and α, β satisfy (3.19), under generalized Slater condition, the sequence {xk} generated

by Algorithm 1.1 converges to the optimal solution of (1.1) with probability 1. We conclude

this settings with the following theorem.

Theorem 4.2. Suppose that generalized Slater condition holds for (1.1), and φr is bounded

from above on Rp. Moreover, the random approximation models {fk, Gk} in (4.9) satisfy

(1− γ̄)2 ≥ max{α, β},

where min{γf(x), γg(x)} ≤ γ̄ for any x ∈ X0 and φkr 6≡ −∞. Let

r ≥ r̄ := 2κf ,

and α, β satisfies (3.19), where ν = 2κf/3. If the multiplier set {‖λk‖} is bounded almost surely,

any cluster point x̄ of the sequence {xk} generated by Algorithm 1.1 is the optimal solution of

(1.1) almost surely.

Proof. Since functionsf and G can be exactly estimated by the random approximation

models {fk, Gk} (4.9) with probability (1− γ̄)2, it implies from (3.15) that

φr(λ
k)− φr(λ

k+1) ≤ −
r

2
‖δk‖2 ≤ −κf‖δ

k‖2

holds with probability (1 − γ̄)2. Then the conclusion can be proved by Theorems 3.2 and 3.1.

The proof is complete. �

5. Numerical Experiments

We concentrate on numerical experiments to verify the performance of the stochastic aug-

mented Lagrange method (SALM) for stochastic convex optimization problems with inequality

constraints under various noisy situations discussed in the previous section. All numerical ex-

periments throughout this section are performed using MATLAB R2019a on a laptop with

Intel(R) Core(TM) i5-6200U 2.30 GHz and 8 GB memory.
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5.1. Random models

In the following, we consider the minimization of a sum of problems of the form

min f(x) =

mf
∑

i=1

fi(x)

s.t. G(x) =

mg
∑

j=1

Gj(x) ≤ 0,

(5.1)

where G(x) = (g1(x), · · · , gp(x)) ∈ Rp. For each i ∈ {1, . . . ,mf} and j ∈ {1, . . . ,mg}, fi and Gj

are both smooth and convex mappings. Three different forms of noise will be discussed in this

section, namely multiplicative noise, additive noise and probability noise. The multiplicative

noise is composed of two groups of random variables ξi and ξj , where i ∈ {1, . . . ,mf}, j ∈

{1, . . . ,mg}, that follow the uniform distribution on [−σf , σf ] and [−σg, σg], respectively. The

parameters σf , σg ∈ (0, 1) are the main factors causing the instability of the functions f and G.

The random model generated by the multiplicative noise is expressed as follows:

min f(x, ξ) =

mf
∑

i=1

(1− ξi)fi(x)

s.t. G(x, ξ) =

mg
∑

j=1

(1 − ξj)Gj(x) ≤ 0.

(5.2)

Obviously, for each x, it has Eξ[f(x, ξ)] = f(x) and Eξ[G(x, ξ)] = G(x) which are different

from the assumptions of Proposition 4.1. Although the convergence under these assumptions

is difficult to prove by our theory, from the point of view of the numerical performance, as long

as the appropriate sample size is chosen, the gap between the stochastic augmented Lagrange

function generated in the random model and the “true” problem is sufficiently small. As

a consequence, the stochastic augmented Lagrange method ensures that the sequence {xk}

converges to the optimal solution almost surely.

For the second type of noise – additive noise, we are going to look at a more complex random

form. We suppose that the objective function in the problem (5.1) can be represented as the

sum of the squares of some functions, i.e.

f(x) =

mf
∑

i=1

fi(x) =

mf
∑

i=1

(

f̄i(x)
)2
.

For example, (5.1) is a quadratic programming problem, and so on. In additive noise, for each

i ∈ {1, . . . ,mf}, j ∈ {1, . . . ,mg}, we also generate random variables ξi and ξj from the uniform

distribution on [−σf , σf ] and [−σg, σg], respectively, where the parameters σf , σg ∈ (0, 1). The

additive random model is written in the following form:

min f(x, ξ) =

mf
∑

i=1

(f̄i(x) + ξi)
2

s.t. G(x, ξ) =

mg
∑

j=1

Gj(x) + ξj ≤ 0.

(5.3)
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Different from the multiplicative noise, for each x, it has

Eξ[f(x, ξ)] = f(x) +

mf
∑

i=1

E(ξi)
2.

Because of

argminxEξ[f(x, ξ)] = argminxf(x),

hence, the constant bias has no impact on the optimization process and the algorithm still

converges to the optimal solution.

The last type of noise, unlike the above two kinds of noise, is biased noise. In actual data

statistics, there may be some abnormal or missing data. These data are sometimes eliminated

during the calculation process. In another way, we can mark the missing data as a constant

that is quite different from the actual statistical data. At this time, there is a large deviation in

the computation of function values with a small probability in the optimization problem, that

is, for each component in the sum of the objective function in (5.1), for some parameter ǫ, if

|fi(x)| < ǫ, the value of fi(x) is computed as

fi(x) =

{

fi(x) with probability 1− P,

V with probability P,
(5.4)

where the parameter P > 0 is the probability of function computation failures and V is a very

large constant. If |fi(x)| > ǫ, then the computation of fi(x) is deterministic and accurate. In

addition, the constraint function G(x) is considered to be accurately computation. Obviously,

this noise is biased and the bias depends on x. It can be seen that the convergence of this

random model depends on the number of iterations, the accuracy of the convergence chosen by

the termination criterion, ǫ, P and the parameter r, but does not depend on V . Therefore, we

might as well choose V = −105 in the following experiment.

5.2. Test problems

For the problem (5.1), we test two kinds of functions. One is the quadratic programming

problem, i.e. for each i ∈ {1, . . . ,mf}, fi(x) is a convex quadratic function and for each

j ∈ {1, . . . ,mg}, Gj(x) is a linear mapping. It can be expressed as

fi(x) = xTQix+ cTi x+ di, Gj(x) = Ajx− bj, (5.5)

where Qi ∈ Rn×n, ci ∈ Rn, di ∈ R, Aj ∈ Rp×n, bj ∈ Rp are randomly selected and the problem

(5.1) is guaranteed to be convex and has the optimal solution x∗. Choose each Qi to be

a symmetric positive semi-definite matrix, so that Qi can be decomposed into Qi = LT
i Li,

where Li is an upper triangular matrix. The objective functions in (5.5) can be rewrite as

fi(x) = (Lix+ c̄i)
T (Lix+ c̄i) + d̄i,

where

2c̄Ti Lix = cTi x, d̄i = di − c̄Ti c̄i.

Hence, the objective function of the quadratic programming problem can be represented as

the sum of the squares of some functions. The other problem is selected as the polynomial
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programming problem, where fi(x) is a convex quartic function and Gj(x) is still a linear

mapping, i.e.

fi(x) =
(

xTQix+ cTi x+ di
)2
, Gj(x) = Ajx− bj . (5.6)

SALM is used to solve all three random models in both the quadratic and polynomial program-

ming problem with the dimension n = 10, p = 5 and the number of functions mf=100,mg=20,

while the true problem is solved by the augmented Lagrange method (ALM).

5.3. Algorithms and numerical results

In this part, we illustrate the performance of Algorithm 1.1 for different convex programming

problems with several randommodels and compare it with other stochastic convex programming

algorithms. We list the algorithms present in the following numerical experiments.

SALM. Algorithm 1.1.

SALM-SAA. Combining the standard sample averaging approximation techniques with the

stochastic augmented Lagrange method, the Algorithm is shown in Algorithm 5.1 for solving

the random model generated by multiplicative noise and additive noise.

SPDO. Stochastic primal-dual optimization with multiple objectives in [15], the optimal pri-

mal and dual solutions are obtained by using the gradient descent method for the convex-concave

optimization problem, where the objective function is the Lagrange function of random approx-

imation models.

SPDA. Stochastic primal-dual algorithm in [15], the optimal primal and dual solutions are ob-

tained by exactly solving the convex-concave optimization problem, where the objective function

is the Lagrange function of random approximation models.

Algorithm 5.1: SALM-SAA.

Require: The parameter r > 0 and ε > 0, the sample size N , the initial multiplier

λ0 ∈ Rp and the initial point x0 ∈ Rn. Let k = 0.

1 for k = 0, 1, . . . do

2 If xk and λk satisfies the termination criterion
∥

∥∇xL(x
k, λk) = ∇xf(x

k) + (λk)T∇xG(x
k)
∥

∥ ≤ ε, (5.7)

then stop and return xk.

3 Randomly choose sample sets Nf = {ξ1, · · · , ξN}, Ng = {ξ1, · · · , ξN} with sizes N ,

then compute fk and Gk as follows:

fk(x) =
1

N

N
∑

i=1

f(x, ξi), Gk(x) =
1

N

N
∑

i=1

G(x, ξi). (5.8)

4 Compute
xk+1 = argmin

{

Lk
r (x, λ

k), x ∈ X0

}

, (5.9)

λk+1 =
[

λk + rGk(xk+1)
]

+
. (5.10)

5 Let k = k + 1 and go to Step 1.

6 end
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The convergence trend of SALM under the four models is shown in Fig. 5.1. For the same

given initial multiplier λ0 and initial point x0, we use the nonlinear programming solver “fmin-

unc” in MATLAB to solve the inner problem (1.6) in SALM and (5.7) in SALM-SAA and the

parameters are chosen as r = 10, ε = 10−7. The sample size in multiplicative noise and additive

noise is selected as N = 106, the parameter σf = σg = 0.01 and parameters in probabilistic

noise are chosen as ǫ = 0.3, P = 10−4. Since the probability that each component in the sum of

the function fails to calculate is very small, in each iteration of SALM for solving the random

model (5.4), with a high probability, the approximations satisfy fk = f,Gk = G. This implies

that in each iteration, SALM solves the deterministic problem (5.1) with a high probability.

Therefore, the convergence curve of the true problem coincides with the random model (5.4),

with a high probability, in both the quadratic and polynomial programming problem. However,

for multiplicative noise and additive noise, even if a considerable sample size is selected, there

is still a certain error between the approximation function fk, Gk and f,G, so the accuracy of

convergence is not as high as the true problem (5.1).

The random variable ξ and the sample size N have a huge impact on the convergence in

SALM-SAA 5.1, which is illustrated in Figs. 5.2 and 5.3. We test SALM-SAA (Algorithm 5.1)

for the stochastic quadratic programming model with multiplicative noise and additive noise.

Choose the parameter r = 10 in the augmented Lagrange function and let σf = σg = σ.

For the given uniform distribution on [−σ, σ], as the sample size N increases, Algorithm 5.1

converges more accurately. Fig. 5.3 attempts to interpret the relationship of the variance of

the random variable ξ and the sample size N . When the variance becomes larger, i.e. the

(a) quadratic programming (b) polynomial programming

Fig. 5.1. The trend of the error by SALM under the true problem and three random models (5.1)-(5.4)

for two convex problems.

(a) multiplicative noise (b) additive noise

Fig. 5.2. The effect of the variance of the random variable ξ and the sample size on the accuracy of

convergence under two random models for the quadratic programming problem.
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parameters σ become larger, in order to achieve the same convergence accuracy 10−6 chosen in

the termination criterion, SALM-SAA requires a larger sample size N .

In order to verify that SALM converges to the optimal solution with probability 1 when the

random models are sufficiently accurate with high enough but fixed probability, Fig. 5.4 shows

the relationship between the probability of function computation failures P and the probability

of successful convergence of SALM for the random model (5.4). It is said that SALM converges

successfully for an optimization problem, if SALM terminates within K iterations and satisfies

the error of the gradient of Lagrange function L(x, λ) within ε. In our experiment, choose the

objective and constraint functions as (5.5) and the parameters r = 10 and ǫ = 0.3. Let K = 30

and ε = 10−7. In the left figure of Fig. 5.4, for a given P , SALM is used to solve the random

model (5.4) repeatedly 50 times, and we record the number of the successful convergence Sk.

The probability of the successful convergence of SALM is expressed as PS = Sk/50. From the

curve on the left in Fig. 5.4, it can be seen that when the probability of error P is reduced to

0.09, SALM guarantees to converge to the optimal solution with probability 1. Although SALM

can be guaranteed to converge when the probability P ≤ 0.09, the convergence rate depends

on the value of P . From the curve on the right in Fig. 5.4, it can be seen that P = 0.08 and

P = 0.0001 both can guarantee the successful convergence. However, P = 0.08 means that the

probability of making mistakes is greater, so the convergence curve has large fluctuations and

it converges much slower than P = 0.0001. On the other hand, when the probability of making

a mistake P = 0.5, the algorithm cannot converge.

In Fig. 5.5, we discuss the influence of the parameter r in the augmented Lagrange function

on SALM. From a theoretical point of view, it is not difficult to find that when r is larger,

Fig. 5.3. The relationship between the variance of the random variable ξ and the sample size selected

by Algorithm 1.1 for the quadratic programming problem with the same convergence accuracy 10−6.

Fig. 5.4. The trend of the convergence probability where with probability P , the objective function in

the quadratic programming problem is computed incorrectly (left) and the trend of the error at the

three specific values of the probability P (right).
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the convergence rate of SALM is faster. In the numerical simulation, we can easily see this

phenomenon. Looking at Fig. 5.5, we test the effect of the value of r on the convergence rate

under three random models. At this time, for the quadratic programming problem, to better

illustrate the effect of r, we substitute ‖xk − x∗‖ for ‖∇xL(x
k, λk)‖ for the error and get the

results in Fig. 5.5, where x∗ is the optimal solution of the problem (5.1). Here, except for r,

the parameters are chosen as the same as those used in the test in Fig. 5.1. Another fact we

want to explain is that although the increase in r can make the algorithm converge faster, it

will lead to a decrease in the accuracy of the convergence. When ‖∇xL(x
k, λk)‖ is used as

the error, we can see from Fig. 5.6 that when r = 100, the error flattens out after it drops

rapidly to 10−6. However, when r = 10, the error can be reduced to 10−8. The reason is that

when the optimal solution x∗ satisfies, for some i ∈ {1, . . . , p}, gi(x
∗) = 0, the accuracy of the

machine can usually only reach gi(x
k) ≈ 10−10 6= 0. This leads to an error in calculating the

(a) multiplicative noise (b) additive noise

(c) probabilistic noise

Fig. 5.5. The trend of the error at four different values of r under three random models for the quadratic

programming problem with respect to iteration number.

Fig. 5.6. The trend of the error at four different values of r for the stochastic quadratic programming

problem with multiplicative noise with respect to iteration number.
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multiplier λ in SALM-SAA (Algorithm 5.1), i.e. at this time, rgi(x
k) 6= 0, when the parameter

r is too large. Therefore, the appropriate r should be selected in the algorithm, neither too

small leading to slow convergence rate, nor too large leading to low accuracy.

Finally, we show the comparison performances of SALM, SPDO and SPDA for the quadratic

programming problem in Fig. 5.7. For the same given initial multiplier λ0 and initial point x0,

we use the nonlinear programming solver fminunc in MATLAB to solve the inner problem in

SALM and SPDA. The parameters in SALM are chosen as r = 10, ε = 10−7 and the step

size of SPDO is tuned for best performance. For the random models with multiplicative noise

and additive noise, the sample size in SALM-SAA is selected as N = 103 and the parameter

σf = σg = 0.01. For optimization with probabilistic noise, parameters in SALM are chosen as

ǫ = 0.3, P = 10−4. From the numerical results, SALM converges more rapidly than SPDO and

SPDA in general for all random models.

(a) multiplicative noise (b) additive noise

(c) probabilistic noise

Fig. 5.7. Comparison of three algorithms for solving the quadratic programming problem with respect

to iteration.

6. Conclusion

In this paper, a stochastic augmented Lagrange method is constructed basing on a class

of random approximation models for stochastic convex optimization problems with inequality

constraints. The convergence of the stochastic augmented Lagrange method depends on how the

estimates of the approximation model being sufficiently close to the true problem with high but

fixed probability. Without assuming the expectation and variance of the models and estimates,

if the coefficient r in the augmented Lagrange function is selected as an appropriate constant,

and the models and estimates are sufficiently accurate with high enough but fixed probability,

{xk} can converge to the optimal solution of the true problem almost surely. In addition, some

special approximation models are discussed under biased or unbiased noise assumptions. From
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numerical experiments, with high enough but fixed probability (which is guaranteed by the

sample sizes being large enough or the probability of making a mistake being small enough),

the distance between the stochastic augmented Lagrange function generated in the random

model and the true problem is sufficiently close, and the appropriate parameter r is selected,

the stochastic augmented Lagrange method can accurately and quickly converge to the optimal

solution.
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