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Abstract

Recently, the numerical methods for long-time dynamics of PDEs with weak nonlin-

earity have received more and more attention. For the nonlinear Schrödinger equation

(NLS) with wave operator (NLSW) and weak nonlinearity controlled by a small value

ε ∈ (0, 1], an exponential wave integrator Fourier pseudo-spectral (EWIFP) discretization

has been developed (Guo et al., 2021) and proved to be uniformly accurate about ε up to

the time at O(1/ε2). However, the EWIFP method is not time symmetric and can not

preserve the discrete energy. As we know, the time symmetry and energy-preservation

are the important structural features of the true solution and we hope that this structure

can be inherited along the numerical solution. In this work, we propose a time symmetric

and energy-preserving exponential wave integrator Fourier pseudo-spectral (SEPEWIFP)

method for the NLSW with periodic boundary conditions. Through rigorous error analysis,

we establish uniform error bounds of the numerical solution at O(hm0 + ε2−βτ 2) up to the

time at O(1/εβ) for β ∈ [0, 2], where h and τ are the mesh size and time step, respectively,

and m0 depends on the regularity conditions. The tools for error analysis mainly include

cut-off technique and the standard energy method. We also extend the results on error

bounds, energy-preservation and time symmetry to the oscillatory NLSW with wavelength

at O(ε2) in time which is equivalent to the NLSW with weak nonlinearity. Numerical

experiments confirm that the theoretical results in this paper are correct. Our method is

novel because that to the best of our knowledge there has not been any energy-preserving

exponential wave integrator method for the NLSW.
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1. Introduction

In this paper, we consider the following nonlinear Schrödinger equation with wave operator

in d (d = 1, 2, 3) dimensions on a torus Td:

{
i∂tu(x, t)− α∂ttu(x, t) + ∆u(x, t)− ε2|u(x, t)|2u(x, t) = 0, x ∈ Td, t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Td,
(1.1)
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where x ∈ Td is the spatial coordinate, t is time, ∆ is Laplacian, α > 0, u := u(x, t) is a complex-

valued scalar field, ε ∈ (0, 1] is a dimensionless parameter characterizing the nonlinear strength,

the functions u0(x) and u1(x) are complex-valued and independent of ε [2,6,11,15,34,35,37,39].

The NLSW (1.1) has different physical applications, including the nonrelativistic limit of the

Klein-Gordon (KG) equation [34,35,37], the Langmuir wave envelope approximation in plasma

[11, 15], and the modulated planar pulse approximation of the sine-Gordon equation for light

bullets [6, 39]. The NLSW (1.1) is time symmetric and preserves the mass and the energy as

M(t) :=

∫

Td

|u(x, t)|2dx− 2α

∫

Td

Im
[
u(x, t)∂tu(x, t)

]
dx := M(0), t ≥ 0,

E(t) :=

∫

Td

[
α|∂tu(x, t)|2 + |∇u(x, t)|2 + 1

2
ε2|u(x, t)|4

]
dx := E(0), t ≥ 0,

(1.2)

where c and Im(c) denote the conjugate and imaginary part of c, respectively.

By introducing w(x, t) = εu(x, t), we can reformulate the NLSW (1.1) with weak nonlin-

earity as the following NLSW with small initial data at O(ε):

{
i∂tw(x, t) − α∂ttw(x, t) + ∆w(x, t) − |w(x, t)|2w(x, t) = 0, x ∈ Td, t > 0,

w(x, 0) = εu0(x), ∂tw(x, 0) = εu1(x), x ∈ Td.
(1.3)

Again, the above NLSW (1.3) is time symmetric and preserves the mass and the energy as

M̃(t) :=

∫

Td

|w(x, t)|2dx− 2α

∫

Td

Im
[
w(x, t)∂tw(x, t)

]
dx := M̃(0), t ≥ 0,

Ẽ(t) :=

∫

Td

[
α|∂tw(x, t)|2 + |∇w(x, t)|2 + 1

2
|w(x, t)|4

]
dx := Ẽ(0), t ≥ 0.

(1.4)

Due to that the Eqs. (1.1) and (1.3) are equivalent, in the following, we only present numerical

methods and related analysis for the NLSW (1.1) with weak nonlinearity. For the NLSW

(1.3) with small initial data, the formulation of the new method and the analysis process are

completely similar.

When α = 0, the NLSW (1.1) reduces to the nonlinear Schrödinger equation. There are

various numerical methods for NLS in the literature, including the time-splitting pseudospectral

method [3, 10, 12, 16, 26, 33], the finite difference method [1, 3, 4, 13], etc. Meanwhile, for fixed

ε = 1, there are some numerical methods for the NLSW, such as conservative finite difference

methods [14, 15, 23, 28, 38] and exponential wave integrator method [2, 5]. Conservative finite

difference methods are very popular due to that they can preserve the discrete energy and mass.

In the recent work [2, 5], two finite difference methods (CNFD and SIFD) and an exponential

wave integrator sine pseudospectral (EWISP) method have been analyzed for NLSW with

α → 0, ε = 1 and proved to have different uniform error estimates with respect to α ∈ (0, 1]

for well-prepared initial data and for ill-prepared initial data, respectively. For the research on

numerical methods of NLSW in other parameter regimes, we see [40].

Recently, the numerical methods for long-time dynamics of PDEs with weak nonlinearity

have received more and more attention. The long-time dynamics of the Klein-Gordon (KG)

equations and Dirac equations with weak nonlinearity or small potential are thoroughly studied

in the literature [7, 8, 18, 20–22,30–32]. For the weak nonlinear NLSW with periodic boundary

condition, an exponential wave integrator Fourier pseudo-spectral method has been proposed

in [24] and proved to be uniformly accurate about ε up to the time at O(1/ε2). Numerical
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experiments show that the solutions of the EWIFP method have good numerical accuracy and

stability. However, the EWIFP method can not preserve the discrete energy. In addition, the

time symmetry of the EWIFP method is not considered. It is well known that the energy-

conservation and time symmetry are considered very important structures of the NLSW [25].

To the best of my knowledge there is no energy-preserving exponential wave integrator method

for the NLSW (1.1).

In this work, we propose a time symmetric and energy-preserving exponential wave inte-

grator Fourier pseudo-spectral method for the NLSW with periodic boundary conditions. By

carrying out a rigourously error analysis, we establish error bounds for the SEPEWIFP method

at O(hm0 + ε2−βτ2) up to the time at O(1/εβ) for β ∈ [0, 2], where h and τ are the mesh

size and time step, respectively and m0 depends on the regularity conditions. We also extend

the results on error bounds, energy-preservation and time symmetry to the oscillatory NLSW

which is equivalent to the NLSW with weak nonlinearity.

The framework of this paper is as follows. In Section 2, we propose the SEPEWIFP method

for the NLSW (1.1) with periodic boundary conditions. Section 3 introduces some important

lemmas and then shows that the method is time symmetric and unique solvable. The method

is proved to be energy-preserving in Section 4. In Section 5, we establish rigorous error bounds

of the numerical solution for the method applied to the NLSW (1.1) up to the time at O(1/ε2).

Section 6 presents the numerical experiments which confirm that the theoretical results in this

paper are correct. In Section 7, we extend the results on error bounds, energy-preservation and

time symmetry to an oscillatory NLSW. Finally, we draw some conclusions and give a brief

discussion about our future work in the last section. Throughout this paper, we take the

notation p . q to represent that there exists a generic constant C > 0 independent of h, τ and ε

such that |p| ≤ Cq.

2. Derivation of the New Method

For convenience, we only consider the 1D problem. For high-dimensional problems, the

method, the proof of the structure preservation, and the error analysis are all similar. In 1D,

the NLSW (1.1) with periodic boundary conditions collapses to

i∂tu(x, t)−α∂ttu(x, t)+∆u(x, t)−ε2|u(x, t)|2u(x, t)=0, x ∈ Ω = (a, b), t > 0,

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω = [a, b],

u(a, t) = u(b, t), ∂xu(a, t) = ∂xu(b, t), t ≥ 0.

(2.1)

For brevity, we use the notation

G(u) = |u|2u. (2.2)

For Ω = [a, b], we denote by Hm(Ω) with integerm ≥ 0, the standard Sobolev space and express

the corresponding norm as

‖f‖2m =
∑

l∈Z

(1 + |µl|2)m
∣∣f̂l
∣∣2, f(x) =

∑

l∈Z

f̂le
iµl(x−a), µl =

2πl

b− a
. (2.3)

Choose the mesh size h := ∆x = (b−a)/M withM a positive even integer, time step τ := ∆t > 0

and denote grid points as xj := a+ jh for j = 0, 1, . . . ,M, tn := nτ for n = 0, 1, . . . . Let

YM := span

{
eiµl(x−a)

∣∣∣µl =
2πl

b− a
, l ∈ ΩM

}
,

XM := span {v = (v0, · · · , vM ) | v0 = vM} ∈ CM+1,

(2.4)
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where

ΩM =

{
l | l = −M

2
, · · · , M

2
− 1

}
.

For any periodic function v(x) on [a, b] and vector v ∈ XM , define PM : L2(a, b) → YM as the

standard projection operator, IM : C(a, b) → YM and IM : XM → YM as the trigonometric

interpolation operators [36], i.e.

(PMv)(x) =
∑

l∈ΩM

v̂le
iµl(x−a), (IMv)(x) =

∑

l∈ΩM

ṽle
iµl(x−a), x ∈ [a, b] (2.5)

with l ∈ ΩM and the coefficients

v̂l =
1

b− a

∫ b

a

v(x)e−iµl(x−a)dx, ṽl =
1

M

M−1∑

j=0

vje
−iµl(xj−a), (2.6)

respectively, where vj=v(xj) for the case where v(x) is a periodic function satisfying v(a)=v(b).

The Fourier spectral method for solving (2.1) is finding uM (x, t) ∈ YM , i.e.

uM (x, t) =
∑

l∈ΩM

(̂uM )l(t)e
iµl(x−a), x ∈ [a, b], t ≥ 0, (2.7)

satisfying

i∂tuM − α∂ttuM + ∂xxuM − ε2PMG(uM ) = 0, x ∈ [a, b], t ≥ 0. (2.8)

Plugging (2.7) into (2.8) and using the orthogonality of eiµl(x−a) for l ∈ ΩM , we find

i
d

dt
(̂uM )l(t)− α

d2

dt2
(̂uM )l(t)− |µl|2(̂uM )l(t)− ε2Ĝ(uM )l(t) = 0, l ∈ ΩM , t ≥ 0. (2.9)

After a simple arrangement, we obtain

d2

dt2
(̂uM )l(t) =

i

α

d

dt
(̂uM )l(t)−

|µl|2
α

(̂uM )l(t)−
ε2

α
Ĝ(uM )l(t), l ∈ ΩM , t ≥ 0. (2.10)

For l ∈ ΩM , we denote

al =
√
1 + 4α|µl|2. (2.11)

From the variation-of-constants formula, we know that

(̂uM )l(tn+s) = Al(s)(̂uM )l(tn) +Bl(s)(̂u̇M )l(tn)−
ε2

α

∫ s

0

Bl(s− z)Ĝ(uM )l(tn+z)dz,

(̂u̇M )l(tn+s) = Cl(s)(̂uM )l(tn) +Dl(s)(̂u̇M )l(tn)−
ε2

α

∫ s

0

Dl(s− z)Ĝ (uM )l(tn+z)dz,

(2.12)

where u̇M (x, tn) = ∂tuM (x, tn) and

Al(s) = e
is
2α

(
cos
(sal
2α

)
− i

al
sin
(sal
2α

))
, Bl(s) = e

is
2α

2α

al
sin
(sal
2α

)
,

Cl(s) = −e
is
2α

2µ2
l

al
sin
(sal
2α

)
, Dl(s) = e

is
2α

(
cos
(sal
2α

)
+

i

al
sin
(sal
2α

))
.

(2.13)

In order to construct an energy-preseving method, we define the functions Pl(s) and Ql(s) as

Pl(s) =

∫ s

0

Bl(s− z)dz, Ql(s) =

∫ s

0

Dl(s− z)dz. (2.14)
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The functions Pl(s) and Ql(s) are continuous with respect to s. Direct calculation gives

Pl(s) =





α

µ2
l

(
1− e

is
2α

(
cos
(sal
2α

)
− i

al
sin
(sal
2α

)))
, µl 6= 0,

α
(
α− αe

is
α + is

)
, µl = 0,

Ql(s) = e
is
2α

2α

al
sin
(sal
2α

)
.

(2.15)

Using the functions (2.14) and taking s = τ in (2.12), we approximate the integrals as follows:

∫ τ

0

Bl(τ − z)Ĝ(uM )l(tn + z)dz ≈ Pl(τ)
̂

G
(
uM (x, tn+1), uM (x, tn)

)
l
,

∫ τ

0

Dl(τ − z)Ĝ(uM )l(tn + z)dz ≈ Ql(τ)
̂

G
(
uM (x, tn+1), uM (x, tn)

)
l
,

(2.16)

where

G
(
uM (x, tn+1), uM (x, tn)

)
=

1

4

(
|uM (x, tn+1)|2 + |uM (x, tn)|2

)

×
(
uM (x, tn+1) + uM (x, tn)

)
. (2.17)

In practice, because that computing (̂uM )l in (2.6) is difficult, we approximate it by the nu-

merical quadratures defined in (2.6). Let un
j and u̇n

j (j = 0, . . . ,M) be the approximations

of u(xj , tn) and ∂tu(xj , tn), respectively. Choose u0
j = u0(xj) and u̇0

j = u1(xj), then for

n = 0, 1, . . . , a time symmetric and energy-preserving exponential wave integrator Fourier

pseudo-spectral discretization for (2.1) is

un+1
j =

∑

l∈ΩM

(̃un+1)le
2ijlπ
M , u̇n+1

j =
∑

l∈ΩM

(̃u̇n+1)le
2ijlπ
M , (2.18)

where

(̃un+1)l = Al(τ)(̃un)l +Bl(τ)(˜̇un)l −
ε2

α
Pl(τ) ˜G(un+1, un)l, (2.19)

(̃u̇n+1)l = Cl(τ)(̃un)l +Dl(τ)(̃u̇n)l −
ε2

α
Ql(τ) ˜G(un+1, un)l (2.20)

with G(un+1, un)j given as

G(un+1, un)j =
1

4

(
|un+1

j |2 + |un
j |2
)(
un+1
j + un

j

)
. (2.21)

Remark 2.1. In the papers [19, 24], the authors applied the variation-of-constants formula

to (2.10) and then get another integral equation that looks different form our integral equation

(2.12). In fact, the two integral equations are essentially equivalent to each other.

3. Time Symmetry and Unique Solvability

In this section we study the time symmetry and unique solvability of the SEPEWIFP

method. The following lemmas are useful.
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Lemma 3.1. For the coefficients in (2.13), the following relationship is established:

(
Al(−τ) Bl(−τ)

Cl(−τ) Dl(−τ)

)−1

=

(
Al(τ) Bl(τ)

Cl(τ) Dl(τ)

)
, l ∈ ΩM . (3.1)

Proof. Obviously, we just need to prove for l ∈ ΩM ,

(
Al(−τ) Bl(−τ)

Cl(−τ) Dl(−τ)

)(
Al(τ) Bl(τ)

Cl(τ) Dl(τ)

)
=

(
1 0

0 1

)
. (3.2)

Firstly, we prove that the elements of the first row and first column of the two matrices on two

side of (3.2) are equal. Direct calculation gives

Al(−τ)Al(τ) +Bl(−τ)Cl(τ)

=

(
cos
(sal
2α

)
− i

al
sin
(sal
2α

))(
cos
(sal
2α

)
+

i

al
sin
(sal
2α

))
− 4αµ2

a2l
sin2

(sal
2α

)

=

(
cos2

(sal
2α

)
+

1

a2l
sin2

(sal
2α

))
− 4αµ2

a2l
sin2

(sal
2α

)
= 1. (3.3)

The equality of other elements can be proved similarly. �

Lemma 3.2. For the coefficients in (2.13), the following relationship is established:

ReP−1
l (τ) > 0, τ 6= 2kπα, (3.4)

where l ∈ ΩM and k is arbitrary integer.

Proof. From the fact that for µl 6= 0 and s 6= 0,

∣∣∣∣e
is
2α

(
cos
(sal
2α

)
− i

al
sin
(sal
2α

))∣∣∣∣ =
∣∣∣∣cos

(sal
2α

)
− i

al
sin
(sal
2α

)∣∣∣∣

=

√
cos2

(sal
2α

)
+

1

a2l
sin2

(sal
2α

)
< 1, (3.5)

we have for any step size τ(6= 0) and µl 6= 0,

RePl(τ) =
α

µ2
l

Re

(
1− e

is
2α

(
cos
(sal
2α

)
− i

a
sin
(sal
2α

)))

=
α

µ2
l

(
1− Re

[
e

is
2α

(
cos
(sal
2α

)
− i

a
sin
(sal
2α

))])

≥ α

µ2
l

(
1−

∣∣∣∣e
is
2α

(
cos
(sal
2α

)
− i

a
sin
(sal
2α

))∣∣∣∣
)

> 0. (3.6)

For µl = 0, we have for τ 6= 2kπα,

RePl(τ) = Re
(
1− e

iτ
α

)
α2 = 1− cos

( τ
α

)
> 0. (3.7)

The results (3.6) and (3.7) imply the result (3.4). �

For the time symmetry of the SEPEWIFP method, we have theorem.
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Theorem 3.1. The SEPEWIFP method is time symmetric, i.e. interchanging un+1, u̇n+1 and

τ with un, u̇n and −τ , respectively, the method remains unchanged.

Proof. Exchanging (un+1, u̇n+1, τ) ↔ (un, u̇n,−τ) in (2.19) and (2.20) results in

(̃un)l = Al(−τ)(̃un+1)l +Bl(−τ)(˜̇un+1)l −
ε2

α
Pl(−τ) ˜G(un+1, un)l,

(̃u̇n)l = Cl(−τ)(̃un+1)l +Dl(−τ)(̃u̇n+1)l −
ε2

α
Ql(−τ) ˜G(un+1, un)l,

(3.8)

where ˜G(un+1, un)l =
˜G(un, un+1)l clearly holds. The above formula (3.8) can be expressed as



(̃un)l +

ε2

α
Pl(−τ ) ˜G(un+1, un)l

(̃u̇n)l +
ε2

α
Ql(−τ) ˜G(un+1, un)l


 =

(
Al(−τ) Bl(−τ)

Cl(−τ) Dl(−τ)

)(
(̃un+1)l

(̃u̇n+1)l

)
. (3.9)

From (3.9) and Lemma 3.1, we obtain

(
(̃un+1)l

(̃u̇n+1)l

)
=

(
Al(τ) Bl(τ)

Cl(τ) Dl(τ)

)


(̃un)l +

ε2

α
Pl(−τ) ˜G(un+1, un)l

(̃u̇n)l +
ε2

α
Ql(−τ) ˜G(un+1, un)l


 . (3.10)

From (3.10) and the following relations:

Al(τ)Pl(−τ) +Bl(τ)Q1(−τ) + Pl(τ) = 0,

Cl(τ)Pl(−τ) +Dl(τ)Q1(−τ) +Ql(τ) = 0,

we obtain (2.19) and (2.20), which implies that the method SEPEWIFP method is time sym-

metric. Theorem is proved. �

To prove the existence and uniqueness of the solution for the SEPEWIFP method, we

introduce the M ×M matrix T with

Tj,k =
1√
M

e
−2ijkπ

M .

It is easy to prove that the matrix T is invertible and satisfies T ∗ = T−1,

Lemma 3.3 (Unique Solvability of SEPEWIFP). Given un and u̇n (n ≥ 0), there exists

the solutions un+1 and u̇n+1 satisfying the SEPEWIFP method if τ 6= 2qαπ for arbitrary

integer q. In addition, for sufficiently small values τ0 > 0 sufficiently small, when 0 < τ ≤ τ0,

the solution is unique.

Proof. Due to un+1
0 = un+1

M and u̇n+1
0 = u̇n+1

M , we only analyze the solution

un+1 =
(
un+1
0 , · · · , un+1

M−1

)T ∈ X−
M ,

u̇n+1 =
(
u̇n+1
0 , · · · , u̇n+1

M−1

)T ∈ X−
M ,

where

X−
M := span{v = (v0, · · · , vM−1)} ∈ CM .
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Using

un+1
j =

M−1∑

l=0

(̃un+1)le
2ijlπ
M ,

we express (2.19) as

Tun+1 = ATun +BT u̇n − ε2

α
PTG(un+1, un), (3.11)

where A = diag(Al(τ)), B = diag(Bl(τ)) and P = diag(Pl(τ)) with l = 0, . . . ,M − 1. Taking

the symbol un+1/2 = (un+1 + un)/2, we express (3.11) as

Tun+ 1
2 =

1

2
(IM +A)Tun +

1

2
BT u̇n

− ε2

4α
PT

(
DF

(
2un+ 1

2 − un
)
+DF (un)

)
un+ 1

2 , (3.12)

where IM is the M ×M identity matrix and

DF (w) = diag
(
|w0|2, |w1|2, · · · , |wM−1|2

)
, w ∈ X−

M .

From Lemma 3.2, when τ 6= 2qαπ for arbitrary integer q, we have ReP−1
l (τ) > 0. So the

matrix P is invertible. Multiplying both sides of (3.12) from left by T ∗P−1, we obtain

T ∗P−1Tun+ 1
2 =

1

2
T ∗P−1(IM +A)Tun +

1

2
T ∗P−1BT u̇n

− ε2

4α

(
DF

(
2un+ 1

2 − un
)
+DF (un)

)
un+ 1

2 .

Define a continuous map Fn : X−
M → X−

M as

Fnw = T ∗P−1Tw − 1

2
T ∗P−1(IM +A)Tun−1

2
T ∗P−1BT u̇n

+
ε2

4α

(
DF (2w−un) +DF (un)

)
w.

Introducing the inner product 〈u, v〉 = h
∑M−1

j=0 ūjvj and the norm ‖u‖l2 =
√
〈u, u〉, it is easy

to get

Re 〈T ∗P−1Tw,w〉 = Re 〈P−1Tw, Tw〉

=
1

2

(
〈P−1Tw, Tw〉+ 〈Tw, P−1Tw〉

)

=
1

2

(
〈P−1Tw, Tw〉+ 〈(P−1)∗Tw, Tw〉

)

= 〈ReP−1Tw, Tw〉,

where ReP−1 = diag(ReP−1
l (τ)) is a positive definite matrix. For a matrix, we use ‖ · ‖ to

denote its spectral norm. The fact

Re〈Fnw,w〉 = Re〈T ∗P−1Tw,w〉 − 1

2
Re
〈
T ∗P−1(IM +A)Tun + T ∗P−1BT u̇n, w

〉
(3.13)

+
ε2

4α
Re
〈(
DF (2w − un) +DF (un)

)
w,w

〉
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≥ 〈ReP−1Tw, Tw〉 − 1

2
Re
〈
T ∗P−1(IM +A)Tun + T ∗A−1

3 BT u̇n, w
〉

≥
∥∥(ReP−1)

1
2T
∥∥−2‖w‖2l2 −

1

2
Re
〈
T ∗P−1(IM +A1)Tu

n + T ∗P−1A2T u̇
n, w

〉

≥
∥∥w
∥∥
l2

(∥∥(ReP−1)
1
2 T
∥∥−2‖w‖l2 −

1

2

∥∥T ∗P−1(IM+A)Tun + T ∗P−1BT u̇n
∥∥
l2

)

implies

lim
‖w‖l2→∞

〈Fnw,w〉
‖w‖l2

= ∞.

From the Brouwer fixed point theorem [4, 9], we can conclude that there exists w∗ such that

Fnw∗ = 0, which implies that the Eq. (2.19) is solvable.

Now, we proceed to prove the uniqueness of the numerical solution. Suppose that there are

two solutions un+1, vn+1 ∈ X−
M to the SEPEWIFP method. From Theorem 4.1 in the next

section, we get

‖un‖∞ ≤ CE0, ‖un+1‖∞ ≤ CE0, ‖vn+1‖∞ ≤ CE0. (3.14)

Denoting wn+1 = un+1 − vn+1 ∈ X−
M , we have from (3.11) that

wn+1 = −ε2

α
T ∗PT

(
G(un+1, un)−G(vn+1, un)

)
. (3.15)

Using |Pl(τ)| ≤ τ2/2 in (3.15), we obtain

‖wn+1‖l2 ≤ ε2

α
‖T ∗PT ‖ ‖G(un+1, un)−G(vn+1, un)‖l2

=
ε2

4α
‖P‖

∥∥(|un+1|2 + |un|2
)
wn+1 +

(
|vn+1|2 − |un+1|2

)
(vn+1 + un)

∥∥
l2

≤ 3

4α
ε2τ2(E0)2‖wn+1‖l2 .

Thus, for sufficiently small value τ , we have

‖wn+1‖l2 = ‖un+1 − vn+1‖l2 = 0 ⇒ un+1 = vn+1,

i.e. the SEPEWIFPmethod (2.18)-(2.20) has the unique solution. The existence and uniqueness

of solution u̇n+1 are obvious because that the formula (2.20) is explicit. �

4. Energy-Preservation

Firstly we introduce the lemma.

Lemma 4.1. Given u, v ∈ XM and ũl, ṽl defined in (2.6), we have

h

M−1∑

j=0

ujvj = (b− a)
∑

l∈ΩM

ũlṽl. (4.1)

From this lemma, we obtain the following results about the discrete energy.
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Theorem 4.1. The SEPEWIFP method preserves exactly the energy in discrete level as

En : = α‖u̇n‖2l2 +
∥∥Dxu

n
∥∥2
l2
+ ε2h

M−1∑

j=0

F
(∣∣un

j

∣∣2)

≡ α‖u̇0‖2l2 +
∥∥Dxu

0
∥∥2
l2
+ ε2h

M−1∑

j=0

F
(∣∣u0

j

∣∣2) =: E0, n = 0, 1, . . . . (4.2)

Here

‖u‖2l2 = h

M−1∑

j=0

|uj |2, F (v) =
1

2
v2,

and (
Dxu

n
)
j
=
∑

l∈ΩM

iµl(̃un)le
iµ(xj−a) =

∑

l∈ΩM

iµl(̃un)le
2ijlπ
M . (4.3)

Proof. Based on Lemma 4.1, the discrete energy (4.2) can be expressed as

En :=
∑

l∈ΩM

(b− a)
[
α
∣∣(̃u̇n)l

∣∣2 + µ2
l

∣∣(̃un)l
∣∣2
]
+ ε2h

M−1∑

j=0

F
(∣∣un

j

∣∣2), n = 0, 1, . . . . (4.4)

Inserting (2.19) and (2.20) into (4.4), we have

En+1 − En

b− a
:=

∑

l∈ΩM

α
∣∣∣Cl(τ)(̃un)l +Dl(τ)(̃u̇n)l −Q1(τ)S̃n

l

∣∣∣
2

+
∑

l∈ΩM

µ2
l

∣∣∣Al(τ)(̃un)l +Bl(τ)(˜̇un)l − P1(τ)S̃n
l

∣∣∣
2

−
∑

l∈ΩM

α
∣∣(̃u̇n)l

∣∣2 −
∑

l∈ΩM

µ2
l

∣∣(̃un)l
∣∣2

+
ε2h

b− a

M−1∑

j=0

(
F
(∣∣un+1

j

∣∣2)− F
(∣∣un

j

∣∣2)
)
, (4.5)

where

Sn
l =

ε2

α
G(un+1, un). (4.6)

On the other hand, it holds that

2(b− a)Re
∑

l∈ΩM

S̃n
l

(
(ũn+1)l − (̃un)l

)

= 2
ε2h

α
Re

M−1∑

j=0

G(un+1, un)j
(
un+1
j − un

j

)

=
ε2h

2α
Re

M−1∑

j=0

(
|un+1

j |2 + |un
j |2
)(
un+1
j + un

j

)(
un+1
j − un

j

)

=
ε2h

2α

M−1∑

j=0

(∣∣un+1
j

∣∣2 +
∣∣un

j

∣∣2)(∣∣un+1
j

∣∣2 −
∣∣un

j

∣∣2)

=
ε2

α
h

M−1∑

j=0

[
F
(∣∣un+1

j

∣∣2)− F
(∣∣un

j

∣∣2)
]
. (4.7)
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From the following relations:

αCl(τ)Dl(τ) + µ2
lRe(Al(τ)Bl(τ) = 0,

µ2
l

α
|Al(τ)|2 + |Cl(τ)|2 =

µ2
l

α
,

µ2

α
|Bl(τ)|2 + |Dl(τ)|2 = 1,

(4.8)

and inserting (4.7) into (4.5), we have

En+1 − En

b− a
:= −

∑

l∈ΩM

2Re
(
αCl(τ)Ql(τ) + µ2

lAl(τ)Pl(τ)
)
(̃un)l (̃S

n)l

−
∑

l∈ΩM

2Re
(
αDl(τ)Ql(τ) + µ2

lB1(τ)Pl(τ)
)
(̃u̇n)l (̃S

n)l

+
∑

l∈ΩM

(
α|Ql(τ)|2 + µ2

l |Pl(τ)|2
)∣∣S̃n

l

∣∣2

+ 2αRe
∑

l∈ΩM

(
(̃un+1)l − (̃un)l

)
(̃Sn)l. (4.9)

Inserting (2.19) into (4.9), we have

En+1 − En

b− a
:= −

∑

l∈ΩM

2Re

[(
αCl(τ)Ql(τ) + µ2

lAl(τ)Pl(τ) − αAl(τ) + α
)
(̃un)l (̃S

n)l

]

−
∑

l∈ΩM

2Re

[(
αDl(τ)Ql(τ) + µ2

lB1(τ)Pl(τ)− αB1(τ)
)
(̃u̇n)l(̃S

n)l

]

+
∑

l∈ΩM

(
α|Ql(τ)|2 + µ2

l |Pl(τ)|2 − 2αRePl(τ)
) ∣∣(̃Sn)l

∣∣2. (4.10)

It is easy to verify that the following relationship holds:

αCl(τ)Ql(τ) + µ2
lAl(τ)Pl(τ)− αAl(τ) + α = 0,

αDl(τ)Ql(τ) + µ2
lB1(τ)Pl(τ)− αB1(τ) = 0,

α|Ql(τ)|2 + µ2
l |Pl(τ)|2 − 2αRePl(τ) = 0.

(4.11)

Plugging (4.11) into (4.10) results in En+1 ≡ En for n = 0, 1, . . . , which implies that the result

(4.2) holds. �

For the projection and interpolation errors, we have lemma.

Lemma 4.2 ([36]). For any µ, k ≥ 0, we obtain

‖u− PM (u)‖µ ≤ Chk‖u‖µ+k, ‖PM (u)‖µ+k ≤ C‖u‖µ+k, u ∈ Hµ+k
p (Ω). (4.12)

Moreover, if µ+ k > 1/2, we have

‖u− IM (u)‖µ ≤ Chk‖u‖µ+k, ‖IM (u)‖µ+k ≤ C‖u‖µ+k, u ∈ Hµ+k
p (Ω). (4.13)

Here the generic constant C > 0 does not depend on h and f .
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Lemma 4.3. For µ > 1/2, u1, u2, w ∈ Hµ(Ω), we obtain
∥∥(|u1|2 − |u2|2

)
w
∥∥
µ
≤ (‖u1‖µ + ‖u2‖µ)‖u1 − u2‖µ‖w‖µ. (4.14)

Proof. It is easy to get
(
|u1|2 − |u2|2

)
w = Re(u1 + u2)(u1 − u2)w.

Then the bilinear estimate

‖fg‖µ ≤ Cµ‖f‖µ‖g‖µ, f, g ∈ Hµ(Ω), µ > 1/2, (4.15)

immediately confirms the correctness of the conclusion. �

Lemma 4.4. For k > 1/2 and sufficiently regular u,w, we have
∥∥|u1|2u2

∥∥
k
≤ ‖u1‖2k‖u2‖k,

∥∥∂t|u1|2u2

∥∥
k
≤ 2‖u1‖k‖∂tu1‖k‖u2‖k,

∥∥∂tt|u1|2u2

∥∥
k
≤ 2
(
‖∂tu1‖2k + ‖u1‖k‖∂ttu1‖k

)
‖u2‖k.

(4.16)

Lemma 4.5. For the functions given in (2.13) and (2.14), we have

A′
l(s) = Cl(s), B′

l(s) = Dl(s), P ′
l (s) = Ql(s).

Lemma 4.6. For the functions given in (2.13) and (2.14), we have the following bounds:

|Al(s)| ≤ 1, |Bl(s)| ≤ |s|, |Cl(s)| ≤
µ2
l

α
|s|,

|Dl(s)| ≤ 1, |Pl(s)| ≤ 2α|s|, |Ql(s)| ≤ |s|,
∣∣∣∣
∫ s

0

Bl(s− z)zdz − s

2
Pl(s)

∣∣∣∣ ≤
s3

12
,

∣∣∣∣
∫ s

0

Dl(s− z)zdz − s

2
Ql(s)

∣∣∣∣ ≤
s3

12α
.

Proof. The first four results and the sixth result are obvious. Due to |Bl(s)| ≤ 2|α|, we
obtain the fifth result. To prove the seventh inequality, we denote

∫ s

0

Bl(s− z)zdz − s

2
Pl(s) =

∫ s

0

Bl(s− z)
(
z − s

2

)
dz.

Using the Taylor expansion based on the integral remainder, we obtain
∫ s

0

Bl(s− z)zdz − s

2
Pl(s)

=

∫ s

0

Bl(s− z)d

(
z2

2
− sz

2

)

=

[
Bl(s− z)

(
z2

2
− sz

2

)]s

0

−
∫ s

0

(
z2

2
− sz

2

)[
d

dz
Bl(s− z)

]
dz

=

∫ s

0

(
z2

2
− sz

2

)
B′

l(s− z)dz. (4.17)

From B′
l(s) = Dl(s) in Lemma 4.5, we have

∣∣∣∣
∫ s

0

Bl(s− z)zdz − s

2
Pl(s)

∣∣∣∣ ≤
∫ s

0

∣∣∣∣
z2

2
− sz

2

∣∣∣∣
∣∣B′

l(s− z)
∣∣dz

≤ 1

2

∫ s

0

z(s− z)dz ≤ s2

12
, (4.18)

and we are done. Similarly, we can prove the last result. �



Error Bounds of a Pseudo-Spectral Method for Nonlinear Schrödinger Equation 13

5. Convergence Result

For our convergence analysis, we assume that the true solution of (2.1) in the time interval

[0, T0/ε
β] satisfies

u ∈ C
(
[0, T0/ε

β];Hm0+m
p

)
∩ C1

(
[0, T0/ε

β];Hm+m0−1
p

)
∩ C2

(
[0, T0/ε

β];Hm
p

)
, (A)

where m0 ≥ 2,m > 1/2 and

Hm
p (Ω) =

{
u ∈ Hm(Ω), ∂l

x(a) = ∂l
x(b), 0 ≤ l ≤ m− 1

}
.

Define the norm in Hm
p (Ω) as

‖f‖2m,p =
∑

l∈Z

|µl|2m|f̂l|2, f(x) =
∑

l∈Z

f̂le
iµl(x−a), µl =

2πl

b − a
, (5.1)

which is equivalent to the Hm norm (2.3) in Hm
p (Ω). In this paper, we still refer to the norm

(5.1) as ‖ · ‖m. That is, in our error analysis, we always use the notation ‖ · ‖m for the norm

(5.1). Define the error function as

en := u(x, tn)− IMun, ėn := ∂tu(x, tn)− IM u̇n, n = 0, 1, . . . , T0ε
−β/τ (5.2)

with un, u̇n ∈ XM being the approximations provided by the SEPEWIFP method. Then we

obtain the error analysis results of the SEPEWIFP method as follows.

Theorem 5.1. Under the assumption (A), there exist sufficiently small constants h0 > 0 and

τ0 > 0, which are independent of ε and satisfy the conditions of Lemma 3.3, such that for

any 0 < ε ≤ 1, when 0 < h ≤ h0 and 0 < τ ≤ εβ/2−1τ0, we obtain the error bounds for

0 ≤ n ≤ T0ε
−β/τ as

‖en(x)‖m . hm0 + ε2−βτ2,
∥∥IMun

∥∥
m

≤ 1 +Mu

‖ėn(x)‖m−1 . hm0 + ε2−βτ2,
∥∥IM u̇n

∥∥
m−1

≤ 1 +M ′
u,

(5.3)

where

Mu := ‖u(x, t)‖L∞([0,T0/εβ ];Hm(Ω))

M ′
u := ‖∂tu(x, t)‖L∞([0,T0/εβ ];Hm−1(Ω)).

Remark 5.1. Crank-Nicolson finite-difference (CNFD) methods have been proposed for the

NLSW (1.1) with ε = 1 and proved to be energy-preserving [14, 15, 23, 28, 38]. In the weak

nonlinear case 0 < ε ≪ 1, we can take a very similar analysis which has been taken for the

long-time dynamics of the KG equations and Dirac equations with weak nonlinearity or small

potential [8, 18, 22] and conclude that under the sufficient regularity conditions, the errors of

CNFD methods are O(ε−βh2 + ε−βτ2) up to the time at O(1/εβ) with β ∈ [0, 2]. That means

that for CNFD, in order to obtain a reasonable numerical solution, we must take very small

time step τ = O(εβ/2) and mesh size h = O(εβ/2), respectively. This is an unsatisfactory

result because the limit on the time step τ and mesh size h is too strict. In contrast, our

SEPEWIFP method not only preserve the energy but also is uniformly bounded with respect

to h and τ in the long-term integration interval [0, T0/ε
β] with β ∈ [0, 2]. More specifically,

for SEPEWIFP method, in order to obtain a reasonable numerical solution, we just take the

time step τ = O(εβ/2−1) and mesh size h = O(1), respectively, which allow for larger scales in

time step.
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The main difficulty in proving Theorem 5.1 is to show that ‖IMun‖m . 1. For this goal, we

adapt the cut-off technique [5, 29]. Denote B = 1+Mu and define

|u|2B = ρ (‖u‖m/B) |u|2 with ρ(θ) =





1, 0 ≤ θ ≤ 1,

∈ [0, 1], 1 ≤ θ ≤ 2,

0, θ ≥ 2,

(5.4)

where ρ(θ) ∈ C∞
0 (R+). For the function |u|2B, we have lemma.

Lemma 5.1. Given m > 1/2, for w ∈ Hm(Ω), u1, u2 and |u|2B defined in (5.4), the following

inequality holds:

∥∥(|u1|2B − |u2|2B
)
w
∥∥
m

≤ CB‖u1 − u2‖m‖w‖m, w ∈ Hm(Ω), (5.5)

where CB = 4B(1 + maxθ∈[0,2] |ρ′(θ)|) with B = 1 +Mu.

Proof. The proof is similar to that of [17, Lemma 3.1] and is omitted here. We should note

that here u1 and u2 are complex valued functions. �

We introduce the following modified EWIFP (MEWIFP) method by choosing ū0
j = u0

j ,
¯̇u0
j = u̇0

j and for n = 0, 1, . . . ,

ūn+1
j =

∑

l∈ΩM

(̃ūn+1)le
2ijlπ
M , ¯̇un+1

j =
∑

l∈ΩM

(̃¯̇un+1)le
2ijlπ
M , (5.6)

where

(̃ūn+1)l = Al(τ)(̃ūn)l +Bl(τ)(
˜̇̄un)l −

ε2

α
Pl(τ)

˜GB

(
IM ūn+1, IM ūn

)
l
, (5.7)

(̃¯̇un+1)l = Cl(τ)(̃ūn)l +Dl(τ)(̃¯̇un)l −
ε2

α
Ql(τ)

˜GB

(
IM ūn+1, IM ūn

)
l

(5.8)

with GB(u, v) given by

GB(u, v) =
1

4

(
|u|2B + |v|2B

)
(u + v). (5.9)

Define the error function as

ēn := u(x, tn)− IM ūn, ¯̇en := ∂tu(x, tn)− IM ¯̇un, n = 0, 1, . . . , T0ε
−β/τ. (5.10)

Lemma 5.2. Based on the assumption (A), we have for GB(u, v) of (5.9),

∥∥GB

(
u(x, tn+1), u(x, tn)

)∥∥
m+m0

≤ ‖u(x, t)‖3L∞([0,T/εβ ];Hm+m0(Ω)),∥∥GB

(
u(x, tn+1), u(x, tn)

)
−GB

(
IM ūn+1, IM ūn

)∥∥
m

≤ CB2

(
‖ēn+1‖m + ‖ēn‖m

)
,

(5.11)

where CB2 = (CBMu + 2B2)/2 with CB = 4B(1 + maxθ∈[0,2] |ρ′(θ)|).

Proof. The proof is similar to that of [17, Lemma 3.1] but here u(x, tn+1), u(x, tn), IM ūn+1

and IM ūn are complex valued functions.

With ūn, ¯̇un ∈ XM being the approximations provided by the MEWIFP method, we obtain

error analysis results of the MEWIFP method as follows.
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Theorem 5.2. Under the assumption (A), there exist sufficiently small constants h0 > 0 and

τ0 > 0, which are independent of ε and satisfy the conditions of Lemma 3.3, such that for

any 0 < ε ≤ 1, when 0 < h ≤ h0 and 0 < τ ≤ εβ/2−1τ0, we obtain the error bounds for

0 ≤ n ≤ T0ε
−β/τ as

‖en(x)‖m . hm0 + ε2−βτ2,
∥∥IM ūn

∥∥
m

≤ 1 +Mu, (5.12)

‖¯̇en(x)‖m−1 . hm0 + ε2−βτ2,
∥∥IM ¯̇un

∥∥
m−1

≤ 1 +M ′
u, (5.13)

where

Mu := ‖u(x, t)‖L∞([0,T0/εβ ];Hm(Ω)),

M ′
u := ‖∂tu(x, t)‖L∞([0,T0/εβ ];Hm−1(Ω)).

Proof. Firstly, we introduce the projected error ēnM (x) and ¯̇enM (x) as

ēnM (x) = PMu(x, tn)− IM ūn(x), ¯̇enM (x) = PM∂tu(x, tn)− IM ¯̇un(x). (5.14)

Using triangle inequality and Lemma 4.2 and taking into account the assumption (A), we have

‖ēn(x)‖m ≤
∥∥ēnM

∥∥
m
+ ‖u(x, tn)− PMu(x, tn)‖m

≤
∥∥ēnM

∥∥
m
+ Chm0‖u(tn, x)‖m+m0

.
∥∥ēnM

∥∥
m
+ hm0 ,

‖¯̇en(x)‖m−1 ≤
∥∥¯̇enM

∥∥
m−1

+ ‖∂tu(x, tn)− PM∂tu(x, tn)‖m−1

≤
∥∥¯̇enM

∥∥
m−1

+ Chm0‖∂tu(tn, x)‖m+m0−1 .
∥∥¯̇enM

∥∥
m−1

+ hm0 .

(5.15)

Obviously, we can transform the proof of (5.12)-(5.13) to the estimates for ēnM and ¯̇enM , which

often require the following three steps.

Step 1. Bounds of local truncation errors. Plugging Fourier series

u(x, t) =
∑

l∈Z

ûl(t)e
iµl(x−a)

for the true solution of (2.1) into (5.7) and (5.8), we obtain

ûl(tn+1) = Al(τ)ûl(tn) +Bl(τ)̂̇ul(tn)−
ε2

α
Pl(τ)

̂GB

(
u(x, tn+1), u(x, tn)

)
l
+ ̂̄ξn+1

l ,

̂̇ul(tn+1) = Cl(τ)ûl(tn) +Dl(τ)̂̇ul(tn)−
ε2

α
Ql(τ)

̂GB

(
u(x, tn+1), u(x, tn)

)
l
+

̂̇̄
ξn+1
l .

(5.16)

The Fourier coefficients of u(x, t) satisfy

d2

dt2
ûl(t) =

i

α

d

dt
ûl(t)−

|µl|2
α

ûl(t)−
ε2

α
Ĝ(u)l(t), l ∈ ΩM , t ≥ 0. (5.17)

From (5.17), we have

ûl(tn+1) = Al(τ)ûl(tn) +Bl(τ)̂̇ul(tn)−
ε2

α

∫ τ

0

Bl(τ − z)Ĝ(u)l(tn + z)dz,

̂̇ul(tn+1) = Cl(τ)ûl(tn) +Dl(τ)̂̇ul(tn)−
ε2

α

∫ τ

0

Dl(τ − z)Ĝ(u)l(tn + z)dz.

(5.18)
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Subtract (5.16) from the above formula, we get

̂̄ξn+1
l = −ε2

α

(∫ τ

0

Bl(τ − z)Ĝ(u)l(tn + z)dz − Pl(τ)
̂GB

(
u(x, tn+1), u(x, tn)

)
l

)
,

̂̇̄
ξn+1
l = −ε2

α

(∫ τ

0

Dl(τ − z)Ĝ(u)l(tn + z)dz −Ql(τ)
̂GB

(
u(x, tn+1), u(x, tn)

)
l

)
.

(5.19)

From the definition (5.9), we obtain

GB

(
u(x, tn+1), u(x, tn)

)
= G

(
u(x, tn+1), u(x, tn)

)
,

respectively with

̂̄ξn+1
l = −ε2

α

(∫ τ

0

Bl(τ − z)Ĝ (u)l(tn + z)dz − Pl(τ)
̂G

(
u(x, tn+1), u(x, tn)

)
l

)
,

̂̇̄
ξn+1
l = −ε2

α

(∫ τ

0

Dl(τ − z)Ĝ (u)l(tn + z)dz −Ql(τ)
̂G

(
u(x, tn+1), u(x, tn)

)
l

)
.

(5.20)

For the convenience of expression, we denote

(Gu)(x, t) = G
(
u(x, t)

)
= |u(x, t)|2u(x, t). (5.21)

Using Taylor’s expansion, we obtain

(Gu)(x, tn + z) = (Gu)
(
x, tn+ 1

2

)
+
(
z − τ

2

)
∂t(Gu)(x, tn) +R1(x, tn, z), (5.22)

where tn+1/2 = tn + τ/2 and the integral remainder is

R1(x, tn, z) =
(
z − τ

2

)2 ∫ 1

0

(1− ξ)∂tt(Gu)
(
x, tn+ 1

2
+ ξ

(
z − τ

2

))
dξ. (5.23)

On the other hand, using Taylor’s expansion, we have

G
(
u(x, tn+1), u(x, tn)

)
=

1

4

(
|u(x, tn+1)|2 + |u(x, tn)|2

)(
u(x, tn+1) + u(x, tn)

)

=

(
∣∣u
(
x, tn+ 1

2

)∣∣2 + 1

2

τ/2∫

−τ/2

(τ
2
− |z|

)
∂tt
∣∣u
(
x, tn+ 1

2
+ z
)∣∣2dz

)

×
(
u
(
x, tn+ 1

2

)
+

1

2

τ/2∫

−τ/2

(τ
2
− |z|

)
∂ttu

(
x, tn+ 1

2
+ z
)
dz

)

=
∣∣u
(
x, tn+ 1

2

)∣∣2u
(
x, tn+ 1

2

)
+R2(x, tn), (5.24)

where

R2(x, tn) =
1

2

∣∣u
(
x, tn+ 1

2

)∣∣2
∫ τ/2

−τ/2

(τ
2
− |z|

)
∂ttu

(
x, tn+ 1

2
+ z
)
dz

+
1

4

∫ τ/2

−τ/2

(τ
2
− |z|

)
∂tt
∣∣u
(
x, tn+ 1

2
+ z
)∣∣2dz

(
u(x, tn+1) + u(x, tn)

)
. (5.25)
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Plugging (5.22) and (5.24) into (5.20), respectively, and using (2.13), we obtain

̂̄ξn+1
l = −ε2

α

(∫ τ

0

Bl(τ − z)zdz − τ

2
Pl(τ)

)
̂∂t(Gu)(x, tn)l

− ε2

α

(∫ τ

0

Bl(τ − z) ̂R1(x, tn, z)ldz − Pl(τ) ̂R2(x, tn)l

)
,

̂̇̄
ξn+1
l = −ε2

α

(∫ 1

0

Dl(τ − z)ξdξ − τ

2
Ql(τ)

)
̂∂t(Gu)(x, tn)l

− ε2

α

(∫ τ

0

Dl(τ − z) ̂R1(x, tn, z)ldz −Ql(τ) ̂R2(x, tn)l

)
.

(5.26)

Applying the boundedness of the function in Lemma 4.6 to the above formula gives

∣∣̂̄ξn+1
l

∣∣ . ε2τ3
∣∣ ̂∂t(Gu)(x, tn)l

∣∣+ ε2
(∫ τ

0

∣∣ ̂R1(x, tn, z)l
∣∣dz + τ

∣∣ ̂R2(x, tn)l
∣∣
)
,

∣∣̂̇̄ξn+1
l

∣∣ . ε2τ3
∣∣ ̂∂t(Gu)(x, tn)l

∣∣+ ε2
(∫ τ

0

∣∣ ̂R1(x, tn, z)l
∣∣dz + τ

∣∣ ̂R2(x, tn)l
∣∣
)
.

(5.27)

We define the local truncation error functions as

ξ̄n+1(x) =
∑

l∈ΩM

̂̄ξn+1
l eiµl(x−a),

¯̇
ξn+1(x) =

∑

l∈ΩM

̂̇̄
ξn+1
l eiµl(x−a). (5.28)

From the definition of the norm (2.3) and Cauchy inequality, we have the following Hm-

estimates on ξ̄n+1 and Hm−1-estimates on
¯̇
ξn+1 as:

∥∥ξ̄n+1
∥∥2
m

=
∑

l∈ΩM

(
1 + |µl|2

)m∣∣̂̄ξn+1
l

∣∣2

. ε4τ6
∑

l∈ΩM

(
1 + |µl|2

)m∣∣ ̂∂t(Gu)(x, tn)l
∣∣

+ ε4
∑

l∈ΩM

(
1 + |µl|2

)m
(
τ

∫ τ

0

∣∣ ̂R1(x, tn, z)l
∣∣2dz + τ2

∣∣ ̂R2(x, tn)l
∣∣2
)

= ε4τ6‖∂t(Gu)(x, tn)‖2m + ε4
(
τ

∫ τ

0

‖R1(x, tn, z)‖2mdz + τ2‖R2(x, tn)‖2m
)
,

∥∥ ¯̇ξn+1
∥∥2
m−1

=
∑

l∈ΩM

(
1 + |µl|2

)m−1∣∣̂̇̄ξn+1
l

∣∣2

. ε4τ6
∑

l∈ΩM

(
1 + |µl|2

)m−1∣∣ ̂∂t(Gu)(x, tn)l
∣∣

+ ε4
∑

l∈ΩM

(
1 + |µl|2

)m−1
(
τ

∫ τ

0

∣∣ ̂R1(x, tn, z)l
∣∣2dz + τ2

∣∣ ̂R2(x, tn)l
∣∣2
)

. ε4τ6
∥∥ ̂∂t(Gu)(x, tn)l

∥∥2
m−1

+ ε4
(
τ

∫ τ

0

‖R1(x, tn, z)‖2m−1dz + τ2‖R2(x, tn)‖2m−1

)
.

(5.29)

From the assumption (A), Lemma 4.4 and (4.15), we get

‖ξ̄n+1‖2m . ε4τ6, ‖ ¯̇ξn+1‖2m−1 . ε4τ6. (5.30)
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Step 2. Estimates on nonlinear errors. We subtract (5.7)-(5.8) from (5.16) and then get

(̂
ēn+1
M

)
l
= Al(τ)

(̂
ēnM
)
l
+Bl(τ)

(̂
¯̇enM
)
l
+ ̂̄ηn+1

l + ̂̄ξn+1
l ,

(̂
¯̇en+1
M

)
l
= Cl(τ)

(̂
ēnM
)
l
+Dl(τ)

(̂
¯̇enM
)
l
+ ̂̇̄ηn+1

l +
̂̇̄
ξn+1
l ,

(5.31)

where
̂̄ηn+1
l = −ε2

α
Pl(τ)

(
̂GB

(
u(x, tn+1), u(x, tn)

)
l
− ˜GB

(
IM ūn+1, IM ūn

)
l

)
,

̂̇̄ηn+1
l = −ε2

α
Ql(τ)

(
̂GB

(
u(x, tn+1), u(x, tn)

)
l
− ˜GB

(
IM ūn+1, IM ūn

)
l

)
.

(5.32)

We introduce the nonlinear error for n = 0, 1, . . . , T0ε
−β/τ

η̄n+1(x) =
∑

l∈ΩM

̂̄ηn+1
l eiµl(x−a), ¯̇ηn+1(x) =

∑

l∈ΩM

̂̇̄ηn+1
l eiµl(x−a). (5.33)

Using the bounds of Pl(τ) and Ql(τ) in Lemma 4.6 and the definition of (2.3), we obtain

‖η̄n+1‖m . ε2τ‖R‖m, ‖ ¯̇ηn+1‖m−1 . ε2τ‖R‖m−1, (5.34)

where

R = PMGB

(
u(x, tn+1), u(x, tn)

)
− IMGB

(
IM ūn+1, IM ūn

)
.

From (4.12), (4.13) and (5.11), we get

‖R‖m−1 ≤ ‖R‖m ≤
∥∥IMGB

(
u(x, tn+1), u(x, tn)

)
− IMGB

(
IM ūn+1, IM ūn

)∥∥
m

+ Chm0

∥∥GB

(
u(x, tn+1), u(x, tn)

)∥∥
m+m0

.
∥∥GB

(
u(x, tn+1), u(x, tn)

)
−GB

(
IM ūn+1, IM ūn

)∥∥
m
+ hm0

. ‖ēn+1‖m + ‖ēn‖m + hm0

.
∥∥ēn+1

M

∥∥
m
+
∥∥ēnM

∥∥
m
+ hm0 . (5.35)

Plugging (5.35) into (5.34) immediately leads to

‖η̄n+1‖2m . ε4τ2
(∥∥ēnM

∥∥2
m
+
∥∥ēn+1

M

∥∥2
m
+ h2m0

)
,

‖ ¯̇ηn+1‖2m−1 . ε4τ2
(∥∥ēnM

∥∥2
m
+
∥∥ēn+1

M

∥∥2
m
+ h2m0

)
.

(5.36)

Step 3. Error equations on ēnM and ¯̇enM . Firstly we consider the case α > 0. It follows from

(5.31) that

∣∣(̂ēn+1
M

)
l

∣∣2 . (1 + εβτ)
∣∣∣Al(τ)

(̂
ēnM
)
l
+Bl(τ)

(̂
¯̇enM
)
l

∣∣∣
2

+

(
1 +

1

εβτ

)(∣∣̂̄ηn+1
l

∣∣2 + b̂̄ξn+1
l

2
)
,

∣∣(̂¯̇en+1
M

)
l

∣∣ . (1 + εβτ)
∣∣∣Cl(τ)

(̂
ēnM
)
l
+Dl(τ)

(̂
¯̇enM
)
l

∣∣∣
2

+

(
1 +

1

εβτ

)(∣∣̂̇̄ηn+1
l

∣∣2 +
∣∣̂̇̄ξn+1

l

∣∣2
)
.

Adding the first formula to the second one multiplied by α/µ2
l , we obtain

∣∣(̂ēn+1
M

)
l

∣∣2+ α

µ2
l

∣∣(̂¯̇en+1
M

)
l

∣∣2

.(1+εβτ)

(∣∣(̂ēnM
)
l

∣∣2 + α

µ2
l

∣∣(̂¯̇enM
)
l

∣∣2
)

+

(
1+

1

εβτ

)(∣∣̂̄ηn+1
l

∣∣2+
∣∣̂̄ξn+1

l

∣∣2+ α

µ2
l

∣∣̂̇̄ηn+1
l

∣∣2+ α

µ2
l

∣∣̂̇̄ξn+1
l

∣∣2
)
. (5.37)
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From the definition (2.3), it is easy to get

∥∥ēn+1
M

∥∥2
m
+α
∥∥¯̇en+1

M

∥∥2
m−1

≤ (1 + εβτ)
(∥∥ēnM

∥∥2
m∗

+ α
∥∥¯̇enM

∥∥2
m−1

)

+

(
1+

1

εβτ

)(∥∥η̄n+1
l

∥∥2
m
+
∥∥ξ̄n+1

l

∥∥2
m
+ α

∥∥ ¯̇ηn+1
∥∥2
m−1

+ α
∥∥ ¯̇ξn+1

l

∥∥2
m−1

)
. (5.38)

Plugging (5.30) and (5.36) into (5.38), it is easy to get

∥∥ēn+1
M

∥∥2
m∗

+ α
∥∥¯̇en+1

M

∥∥2
m−1

.
(∥∥ēnM

∥∥2
m∗

+ α
∥∥¯̇enM

∥∥2
m−1

)

+ εβτ
(∥∥ēn+1

M

∥∥2
m
+
∥∥ēnM

∥∥2
m
+ α

∥∥¯̇enM
∥∥2
m−1

)

+ ε4−βτh2m0 + ε4−βτ5, (5.39)

where ε4−β ≤ εβ has been used. Define the energy

En =
∥∥ēnM

∥∥2
m∗

+ α
∥∥¯̇enM

∥∥2
m
. (5.40)

From (5.39) and the definition of the energy (5.40), we obtain

En+1 − En . τ(En+1 + En) + ε4−βτh2m0 + ε4−βτ5, n = 0, . . . , T0ε
−β/τ − 1. (5.41)

Summing up (5.41) for n = 1, . . . , k, using (5.34), we derive

Ek+1 − E0 . τ
k+1∑

j=1

Ej + ε4−2βh2m0 + ε4−2βτ4, k = 0, . . . , T0ε
−β/τ − 1. (5.42)

Obviously, we have ∥∥ē0M
∥∥
m

. hm0 ,
∥∥¯̇e0M

∥∥
m−1

. hm0 . (5.43)

Using the discrete Gronwall’s lemma to the above inequality, we can conclude that there exist

sufficiently small values h1>0 and τ1>0, when 0 < h ≤ h1 and 0 < τ ≤ ε1−β/2τ1, it is hold that

Ek+1 . h2m0 + ε4−2βτ4, k = 0, . . . , T0ε
−β/τ − 1. (5.44)

From the inequality
√
a+ b ≤ √

a+
√
b and the definition of energy in (5.40), we have

∥∥enM
∥∥
m

. hm0 + ε2−βτ2,
∥∥¯̇enM

∥∥
m

. hm0 + ε2−βτ2. (5.45)

From (5.45), we have

‖ēn‖m .
∥∥enM

∥∥
m
+ hm0 . hm0 + ε2−βτ2,

‖¯̇en‖m .
∥∥¯̇enM

∥∥
m
+ hm0 . hm0 + ε2−βτ2.

(5.46)

It follows from (5.46) that for sufficiently small constants h2 > 0 and τ2 > 0, when 0 < h ≤ h2

and 0 < τ ≤ ε1−β/2τ2, the following result holds:

∥∥IM ūn
∥∥
m

≤ ‖ēn‖m + ‖u(x, tn)‖m ≤ 1 +Mu,∥∥IM ¯̇un
∥∥
m−1

≤ ‖¯̇en‖m−1 + ‖∂tu(x, tn)‖m−1 ≤ 1 +M ′
u.

(5.47)

Thus, if we take h0 = min {h1, h2} and τ0 = min {τ1, τ2}, the theorem holds. �
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From the definition (5.4), we know that for such τ0 and h0, the modified EWIFP method

(5.6) with (5.7)-(5.8) collapses exactly to the SEPEWIFP method. Thus, the proof of Theo-

rem 5.1 is complete.

Remark 5.2. We can extend the SEPEWIFP method and corresponding error estimates to the

NLSW with a general power nonlinearity ε2p|u(x, t)|2pu(x, t). For one-dimensional problems,

we only need replace (2.21) with the following formula:

G(un+1, un)j =

∣∣un+1
j

∣∣2(p+1) −
∣∣un

j

∣∣2(p+1)

∣∣un+1
j

∣∣2 −
∣∣un

j

∣∣2

(
un+1
j + un

j

)

2(p+ 1)
. (5.48)

Furthermore, for the more general nonlinearity εf(|u(x, t)|2)u(x, t), we can also construct our

method. In one-dimensionalcase, we only need replace (2.21) with the following formula:

G(un+1, un)j =

∫ 1

0

f
(
θ
∣∣un+1

j

∣∣2 + (1− θ)
∣∣un

j

∣∣2
)
dθ

(
un+1
j + un

j

)

2
. (5.49)

The relevant analysis is completely similar to the analysis in this paper and will not be made in

detail here due to space limitations. In particular, when f(v) = −v, we obtain the nonlinearity

in the defocusing case and express (2.2) as G(u) = −|u|2u.

6. Numerical Results

In this section we present numerical results for the SEPEWIFP method for the NLSW with

weak nonlinearity.

6.1. The one-dimensional problem

Since the method is implicit, here we specify how to solve the nonlinear equation in practical

computation. Since (2.19) is implicit, we evaluate un+1 through fixed point iteration. Firstly,

for a given un, we provide an explicit approximation un+1,0 of u(x, tn+1) by an explicit method

and then we use the iteration

˜(un+1,k+1)l = Al(τ)(̃un)l +Bl(τ)(˜̇un)l −
ε2

α
Pl(τ) ˜G(un+1,k, un)l,

un+1,k+1
j =

∑

l∈ΩM

˜(un+1,k+1)le
2ijlπ
M , k = 0, 1, . . . .

Giving a tolerance Tol, when ‖un+1,k+1 − un+1,k‖l2 ≤ Tol, the program stops and we take

un+1 = un+1,k+1. Then u̇n+1 can be calculated directly because that (2.20) is explicit.

In our numerical tests, we choose α = 1, computational domain Ω = [−π, π], and initial

data in the NLSW (2.1) as

u0(x) =
1

2 + cos2(x) + sin(x)
, u1(x) =

1

2 + sin2(x) + cos(x)
, x ∈ [−π, π]. (6.1)

In order to describe the error, we take

‖e(·, tn)‖m =
∥∥u(·, tn)− un

∥∥
m
+
∥∥u(·, tn)− un

∥∥
m−1

,
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where u(x, t) and ∂tu(x, t) are the exact solution and its derivative, respectively. Here we only

take m = 1 as examples and do not consider m ≥ 2 in that case the results are similar. The

time intervals are [0, 1/εβ] with β = 0, 1, 2, respectively.

Tables 6.1-6.3 shows the temporal errors of the SEPEWIFP method under different ε and τ

with h = π/25. We describe the numerical results by ‖e(·, 1/εβ)‖1/ε2−β for reflecting that the

temporal errors are O(ε2−βτ2), Table 6.4 shows the spatial errors of the SEPEWIFP method

under different ε and h with τ = 10−4.

Numerically describing energy-preservation of the method is necessary and interesting. In

order to describe the long-term behavior of energy errors for the SEPEWIFP method, we

take the long enough computational interval [0, 1000], lager mesh size h = π/4 and time step

τ = 0.2. In this case the error of the numerical solution tends to be large due to the long-term

accumulation. The discrete energy are shown in Fig. 6.1. It should be noted that some minor

errors appear in Fig. 6.1. This is mainly because of the iterative process included and discrete

Fourier transform (FFT).

Table 6.1: Temporal error of the SEPEWIFP method for different ε and τ with β = 0.

‖e(·, 1/εβ)‖1/ε2−β τ0 = 0.2 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5

ε0 = 1 1.27E-2 3.28E-3 8.28E-4 2.07E-4 5.19E-5 1.29E-5

order − 1.95 1.99 2.00 2.00 2.00

ε0/2 6.75E-3 1.71E-3 4.28E-4 1.07E-4 2.68E-5 6.70E-6

order − 1.98 2.00 2.00 2.00 2.00

ε0/2
2 5.36E-3 1.35E-3 3.37E-4 8.43E-5 2.11E-5 5.27E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
3 4.98E-3 1.25E-4 3.12E-4 7.81E-5 1.95E-5 4.88E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
4 4.83E-3 1.21E-3 3.03E-4 7.57E-5 1.89E-5 4.73E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
5 4.76E-3 1.19E-3 2.98E-4 7.46E-5 1.87E-5 4.66E-6

order − 2.00 2.00 2.00 2.00 2.00

Table 6.2: Temporal error of the SEPEWIFP method for different ε and τ with β = 1.

‖e(·, 1/εβ)‖1/ε2−β τ0 = 0.2 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5

ε0 = 1 1.27E-2 3.28E-3 8.28E-4 2.07E-4 5.19E-5 1.30E-5

order − 1.95 1.99 2.00 2.00 2.00

ε0/2 9.51E-3 2.40E-3 6.03E-4 1.51E-4 3.77E-5 9.42E-6

order − 1.98 2.00 2.00 2.00 2.00

ε0/2
2 1.17E-2 2.94E-3 7.36E-4 1.84E-4 4.60E-5 1.15E-5

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
3 6.97E-3 1.75E-3 4.37E-4 1.09E-4 2.73E-5 6.83E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
4 9.33E-3 2.34E-3 5.86E-4 1.47E-4 3.67E-5 9.16E-6

order − 1.99 2.00 2.00 2.009 2.00

ε0/2
5 9.59E-3 2.41E-3 6.02E-4 1.51E-4 3.77E-5 9.41E-6

order − 1.99 2.00 2.00 2.00 2.00
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Table 6.3: Temporal error of the SEPEWIFP method for different ε and τ with β = 2.

‖e(·, 1/εβ)‖1/ε2−β τ0 = 0.2 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5

ε0 = 1 1.27E-2 3.28E-3 8.27E-4 2.07E-4 5.19E-5 1.30E-5

order − 1.95 1.99 2.00 2.00 2.00

ε0/2 8.69E-3 2.19E-3 5.49E-4 1.37E-4 3.43E-5 8.58E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
2 9.51E-3 2.39E-3 5.98E-4 1.50E-4 3.74E-5 9.35E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
3 7.93E-3 1.99E-3 4.99E-4 1.25E-4 3.12E-5 7.79E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
4 9.85E-3 2.47E-3 6.18E-4 1.55E-4 3.86E-5 9.66E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
5 7.13E-3 1.79E-3 4.47E-4 1.12E-4 2.79E-5 6.98E-6

order − 2.00 2.00 2.00 2.00 2.00

Table 6.4: Spatial error of the SEPEWIFP method for different ε and h with β = 0, 1, 2, respectively.

‖e(·, 1/εβ)‖1 h0 = π/2 h0/2 h0/2
2 h0/2

3

ε0 = 1 1.05E-1 9.40E-3 4.69E-5 4.98E-10

ε0/2 1.07E-1 8.60E-3 4.49E-5 5.09E-10

β = 0 ε0/2
2 1.08E-1 8.38E-3 4.40E-5 5.07E-10

ε0/2
3 1.08E-1 8.32E-3 4.38E-5 5.06E-10

ε0/2
4 1.08E-1 8.31E-3 4.37E-5 5.06E-10

ε0 = 1 1.05E-1 9.40E-3 4.69E-5 4.98E-10

ε0/2 1.01E-1 9.92E-3 4.75E-5 4.33E-10

β = 1 ε0/2
2 9.98E-2 9.86E-3 4.05E-5 4.86E-10

ε0/2
3 1.12E-1 9.33E-3 5.17E-5 3.98E-10

ε0/2
4 3.82E-2 3.29E-3 1.53E-5 1.76E-10

ε0 = 1 1.05E-1 9.40E-3 4.69E-5 4.98E-10

ε0/2
1 1.02E-1 9.85E-3 3.80E-5 4.84E-10

β = 2 ε0/2
2 3.59E-2 3.04E-3 1.56E-5 2.27E-10

ε0/2
3 7.94E-2 9.99E-3 4.69E-5 3.87E-10

ε0/2
4 8.60E-2 1.04E-2 4.11E-5 4.94E-10

In addition, with the same data, we also show long-term stability of the discrete mass of

the SEPEWIFP method in Fig. 6.2. Here we take the discrete mass as

Mn := ‖un‖2l2 − 2h

M−1∑

j=0

Im
[
un
j u̇

n
j

]
, n = 0, 1, . . . , (6.2)

where

‖u‖2l2 = h

M−1∑

j=0

|uj|2.

From Tables 6.1-6.4 and Figs. 6.1-6.2, the following observations on the SEPEWIFP method

for the NLSW (2.1) can be drawn:
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Fig. 6.1. Energy preservation of SEPEWIFP.

Fig. 6.2. Long-term stability of mass of SEPEWIFP.

(i) The temporal errors of the SEPEWIFP method behave like O(ε2−βτ2) up to the time

at O(ε−β) (see Tables 6.1-6.3).

(ii) The spatial errors of the SEPEWIFP method are O(hm0) which imply that the method

is uniformly spectrally accurate for any ε ∈ (0, 1] and β ∈ [0, 2] (see each row in Table 6.4).

(iii) The discrete energy is preserved along the numerical solution of the SEPEWIFP method

for the NLSW (2.1) (see Fig. 6.1). This verifies that the conclusion of Theorem 4.1 is correct.

(iv) The numerical solution still exhibits good convergence without a CFL-type stability

condition.
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(v) Although this method does not preserve the mass, it exhibits good long-term stability

of the discrete mass (see Fig. 6.2).

In summary, numerous numerical results strongly confirm the correctness of our theoretical

analysis in this paper.

6.2. A higher-dimensional problem

Due to space limitations, we only consider a 2D NLSW (1.1). Here we take Ω = [0, 2π] ×
[0, 2π], T0 = 1 and the initial condition

u0(x, y) =
1

4 + cos2(x) + cos2(y)
, u̇0(x, y) = sin(x) + sin(y).

We only take β = 2 which can better reflect the long time error of the numerical solution.

Table 6.5 shows the temporal errors of the method at t = T0/ε
β under different τ with a small

mesh size h = π/26. Table 6.6 shows the spatial errors of the method at t = T0/ε
β under

different h with a very small time step τ = 10−4.

In order to describe the long-term behavior of energy errors and mass errors for the method,

we take the long enough time interval [0, 1000], lager mesh size h = π/2 and time step τ = 0.1.

The discrete energy-preservation and long-term stability of mass for SEPEWIFP are shown in

Figs. 6.3 and 6.4, respectively.

Table 6.5: Temporal errors of SEPEWIFP for the 2D NLSW (1.1) with different ε and τ for β = 2.

‖e(·, 1/εβ)‖2 τ0 = 0.1 τ0/2 τ0/2
2 τ0/2

3 τ0/2
4 τ0/2

5

ε0 = 1 4.11E-3 1.04E-3 2.59E-4 6.48E-5 1.62E-5 4.05E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2 4.03E-3 1.01E-3 2.53E-4 6.32E-5 1.58E-5 3.95E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
2 5.27E-3 1.32E-3 3.30E-4 8.25E-5 2.06E-5 5.15E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
3 5.49E-3 1.37E-3 3.44E-4 8.59E-5 2.15E-5 5.37E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
4 4.98E-3 1.25E-3 3.11E-4 7.79E-5 1.95E-5 4.86E-6

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
5 3.24E-3 1.63E-3 3.41E-4 7.53E-5 1.82E-5 4.20E-6

order − 1.99 2.00 2.00 2.00 2.00

Table 6.6: Spatial errors of SEPEWIFP for the 2D NLSW (1.1) with different ε and h for β = 2.

‖e(·, 1/εβ)‖2 h0 = π/2 h0/2 h0/2
2 h0/2

3

ε0 = 1 1.79E-2 4.55E-4 2.82E-6 4.73E-11

ε0/2 4.86E-2 1.05E-3 3.44E-6 4.82E-11

ε0/2
2 9.39E-2 4.19E-4 1.37E-6 2.70E-11

ε0/2
3 1.09E-1 4.97E-4 2.27E-6 5.83E-11

ε0/2
4 1.05E-1 4.63E-4 2.58E-6 1.87E-10
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Numerical results from Tables 6.5-6.6 and Figs. 6.3-6.4 strongly confirm the correctness of

our theoretical results for higher-dimensional KGD equation. This means that the conclusions

drawn from one-dimensional KGD equation also apply to higher-dimensional KGD equations.

Fig. 6.3. Energy preservation of SEPEWIFP for 2D problem.

Fig. 6.4. Long-term stability of mass of SEPEWIFP for 2D problem.

7. Extension to an Oscillatory NLSW

In the NLSW (1.1), taking s = εβt with 0 ≤ β ≤ 2 and v(x, s) = u(x, s/εβ), we obtain the

equivalent problem
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{
iεβ∂sv(x, s)−αε2β∂ssv(x, s)+∆v(x, s) − ε2|v(x, s)|2v(x, s) = 0, x ∈ Td, s > 0,

v(x, 0) = u0(x), ∂sv(x, 0) = ε−βu1(x), x ∈ Td,
(7.1)

which has the time symmetry and preserves the mass and energy as

M̄(s) := εβ
∫

Td

|v(x, s)|2dx− 2ε2βα

∫

Td

Im
[
v(x, s)∂tv(x, s)

]
dx = M̄(0), s ≥ 0

Ē(s) :=

∫

Td

[
αε2β |∂sv(x, s)|2 + |∇v(x, s)|2 + ε2

2
|v(x, s)|4

]
dx =: Ē(0), s ≥ 0.

(7.2)

Plugging the plane wave solution v(x, s) = Aei(k·x−ωs) (with ω the time frequency, A the

amplitude and k = (k1, · · · , kd)T ∈ Rd the spatial wave number) into (7.1), we obtain the

following dispersion relation:

αε2βω2 + εβω − |k|2 − ε2A2 = 0, (7.3)

which immediately implies the time frequency

ω := ω(k) =
1

2αεβ

(
−1 +

√
1 + 4α(|k|2 + ε2A2)

)
= O

(
ε−β

)
, (7.4)

and further implies the group velocity

v := v(k) = ∇ω(k) =
2|k|

εβ
√
1 + 4α(|k|2 + ε2A2)

= O
(
ε−β

)
. (7.5)

Thus, the solution of the NLSW (7.1) propagates waves with amplitude at O(1), wavelength

at O(1) in space and O(εβ) in time, respectively, and wave velocity at O(ε−β).

Again, we only consider the 1D problem. For high-dimensional problems, the proposal of

the method, the proof of the structure preservation and the error analysis are all similar to the

1D problem. In 1D, the NLSW (7.1) with periodic boundary conditions collapses to

iεβ∂sv(x, s)− αε2β∂ssv(x, s) + ∂xxv(x, s) − ε2|v(x, s)|2v(x, s) = 0, x ∈ Ω, s > 0,

v(a, s) = v(b, s), ∂xv(a, s) = ∂xv(b, s), s ≥ 0,

v(x, 0) = u0(x), ∂sv(x, 0) = ε−βu1(x), x ∈ Ω̄,

(7.6)

where Ω = (a, b).

7.1. SEPEWIFP method

Choose the time step k := ∆s > 0 and denote grid points as sn := nk for n = 0, 1, . . . . For

l ∈ ΩM , we take al as in (2.11) and denote

γ = εβα. (7.7)

Introduce

Al(s) = eis/(2γ)
(
cos

(
sal
2γ

)
− i

al
sin

(
sal
2γ

))
,

Bl(s) = eis/(2γ)
2γ

al
sin

(
sal
2γ

)
,

Cl(s) = −eis/(2γ)
2µ2

εβal
sin

(
sal
2γ

)
,

Dl(s) = eis/(2γ)
(
cos

(
sal
2γ

)
+

i

al
sin

(
sal
2γ

))
.

(7.8)
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In order to construct the energy-preseving method, we define the functions Pl(s) and Ql(s) as

Pl(s) =

∫ s

0

Bl(s− z)dz, Ql(s) =

∫ s

0

Dl(s− z)dz. (7.9)

The functions Pl(s) and Ql(s) are continuous with respect to s. Direct calculation gives

Pl(s) =





αε2β

µ2
l

(
1− e

is
2γ

(
cos

(
sal
2γ

)
− i

al
sin

(
sal
2γ

)))
, µl 6= 0,

γ
(
γ − γe

is
γ + is

)
, µl = 0,

Ql(s) = e
is
2γ

2γ

al
sin

(
sal
2γ

)
.

(7.10)

The derivation process of the SEPEWIFP method for the NLSW (7.6) is similar to the one in

Section 2. Let vnj and v̇nj (j = 0, . . . ,M) be the approximations of v(xj , sn) and ∂sv(xj , sn),

respectively. Choose v0j = u0(xj) and v̇0j = ε−βu1(xj), then for n = 0, 1, . . . , a SEPEWIFP

discretization for the NLSW (7.6) is

vn+1
j =

∑

l∈ΩM

(̃vn+1)le
2ijlπ
M , v̇n+1

j =
∑

l∈ΩM

(̃v̇n+1)le
2ijlπ
M , (7.11)

where

(̃vn+1)l = Al(k)(̃vn)l + Bl(k)(˜̇vn)l −
ε2−2β

α
Pl(k) ˜G(vn+1, vn)l,

(̃v̇n+1)l = Cl(k)(̃vn)l +Dl(k)(̃v̇n)l −
ε2−2β

α
Ql(k) ˜G(vn+1, vn)l,

(7.12)

where G(vn+1, vn)j has been defined in (2.21). We denote the SEPEWIFP discretization (7.11)-

(7.12) for the oscillatory NLSW (7.6) as SEPEWIFPos.

Similar to Theorem 3.1, Lemma 3.3 and Theorem 4.1, we have the results about time

symmetry, unique solvability and energy-preservation for the SEPEWIFPos method as follows.

Theorem 7.1. The SEPEWIFPos method is time symmetric, i.e. interchanging un+1, u̇n+1

and τ with un, u̇n and −τ , respectively, the methods remain unchanged.

Lemma 7.1 (Unique Solvability of SEPEWIFPos). Given vn and v̇n with n ≥ 0, there

exists vn+1 and v̇n+1 satisfying the SEPEWIFPos method if k 6= 2qαεβπ for arbitrary integer q.

In addition, for sufficiently small values k0 > 0, when 0 < k ≤ k0, the solution is unique.

Theorem 7.2. The SEPEWIFPos method preserves exactly the energy in discrete level as

En := αε2β‖v̇n‖2l2 +
∥∥Dxv

n
∥∥2
l2
+ ε2h

M−1∑

j=0

F
(∣∣vnj

∣∣2)

≡ αε2β‖v̇0‖2l2 +
∥∥Dxv

0
∥∥2
l2
+ ε2h

M−1∑

j=0

F
(∣∣vnj

∣∣2) := E0, n = 0, 1, . . . . (7.13)
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7.2. Convergence results

For our convergence analysis, we assume that the true solution of the NLSW (7.6) in the

time interval [0, T0] satisfies

v ∈ C
(
[0, T0];H

m0+m
p (Ω)

)
∩ C1

(
[0, T0];H

m+m0−1
p (Ω)

)
∩C2

(
[0, T0];H

m
p (Ω)

)
,

‖∂sv(x, s)‖L∞([0,T0];H
m0+m−1
p (Ω))

.
1

εβ
, ‖∂ssv(x, s)‖L∞([0,T0];Hm

p (Ω)) .
1

ε2β
,

‖v(x, s)‖
L∞([0,T0];H

m0+m
p (Ω))

. 1,

(B)

where m0 ≥ 2,m > 1/2. Define the errors as

en := v(x, sn)− IMvn, ėn := ∂sv(x, sn)− IM v̇n, n = 0, 1, . . . , T0/k (7.14)

with approximations vn, v̇n ∈ XM provided by the SEPEWIFPos method. Then we obtain

error analysis results of the SEPEWIFPos method as follows.

Theorem 7.3. Under the assumptions (B), there exist sufficiently small constants h0 > 0 and

k0 > 0 which are independent of ε and satisfy the conditions of Lemma 7.1, such that for

any 0 < ε ≤ 1, when 0 < h ≤ h0 and 0 < k ≤ ε3β/2−1k0, we obtain the error bounds for

0 ≤ n ≤ T0/k as

‖en(x)‖m . hm0 + ε2−3βk2, ‖IMvn‖m ≤ 1 +Mv,

εβ‖ėn(x)‖m−1 . hm0 + ε2−3βk2, εβ‖IM v̇n‖m−1 ≤ 1 +M ′
v,

(7.15)

where

Mv := ‖v(x, s)‖L∞([0,T0];Hm(Ω)),

M ′
v := ‖∂sv(x, s)‖L∞([0,T0];Hm−1(Ω))

When studying numerically oscillatory partial differential equations (PDEs) with a param-

eter ε, we often consider the ε-scalability of the method. The so called ε-scalability is that

how the time step τ and mesh size h depend on the parameter ε. Theorem 7.3 means that the

ε-scalability of the SEPEWIFPos method for the oscillatory NLSW (7.6) is

h = O(1), k = O
(
ε

3β
2
−1
√
δ0

)
= O

(
ε

3β
2
−1
)
, 0 ≤ β ≤ 2. (7.16)

Remark 7.1. For the CNFD method which is also energy-preserving, we can take a very

similar analysis for the NLSW (1.1) which has been taken for the oscillatory Klein-Gordon

equations and Dirac equations [8, 18, 22] and conclude that the errors of CNFD methods are

O(ε−βh2+ε−3βτ2) with β ∈ [0, 2]. That means that for CNFD, in order to obtain a reasonable

numerical solution, we must take very small τ = O(ε3β/2) and h = O(εβ/2), respectively.

In contrast, our SEPEWIFPos method not only preserve the energy but also has the better

ε-stability: τ = O(ε3β/2−1) and h = O(1).

7.3. Numerical results of the oscillatory NLSW

To avoid repetitions, we consider the oscillatory NLSW (7.1) in the whole space Rd. We only

report numerical results with d = 1 to confirm the correctness of our theoretical analysis. Due

to the fast decay of the solution at the far field, we truncate the original whole space problem
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onto a large enough bounded domain such as Ω = [−16, 16] with periodic boundary conditions.

In the NLSW (7.1), we choose

u0(x) = e−x2

, u1(x) = 2e−x2

, x ∈ Ω. (7.17)

In order to describe the error, we take

‖e(·, sn)‖m =
∥∥v(·, sn)− vn

∥∥
m
+ εβ

∥∥v(·, sn)− vn
∥∥
m−1

,

where v(x, s) and ∂sv(x, s) are the exact and its derivative, respectively. Here we only takem=1

as examples and do not consider m ≥ 2 in that case the results are similar. We take the time

intervals are [0, 1] and β = 0, 4/3, 2, respectively. Choosing β = 4/3 rather than β = 1 is

to facilitate the selection of different ε and k. Tables 7.1-7.3 show the temporal errors of

SEPEWIFPos method for different ε and k with h = 1/16. Table 7.4 shows the spatial errors

of SEPEWIFPos method for different ε and h with k = 10−4.

Next we will verify that this method is energy-preserving. In order to describe the long-term

behavior of energy errors for the SEPEWIFPos method, we take the long enough time interval

[0, 1000], lager mesh size h = 1 and time step τ = 0.2. In this case the error of the numerical

solution tends to be large due to the long-term accumulation. The discrete energy are shown

in Fig. 7.1. It should be noted that the minor errors appear in Fig. 7.1. The reason for this

phenomenon has been explained in the previous sections.

In addition, with the same data, we also show long-term stability of the discrete mass of

the SEPEWIFPos method in Fig. 7.2. Here we take the discrete mass as

Mn := εβ‖vn‖2l2 − 2ε2βh

M−1∑

j=0

Im
[
vnj v̇

n
j

]
, n = 0, 1, . . . , (7.18)

where

‖v‖2l2 = h

M−1∑

j=0

|vj |2.

Table 7.1: Temporal errors of the SEPEWIFPos method for different ε and k with β = 0.

‖e(·, 1)‖1 k0 = 0.1 k0/2 k0/2
2 k0/2

3 k0/2
4 k0/2

5

ε0 = 1 4.24E-3 1.07E-3 2.68E-4 6.69e-5 1.67e-5 4.18e-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2 7.42E-4 1.86E-4 4.66E-5 1.16E-5 2.91E-6 7.27E-7

order − 1.99 2.00 2.00 2.00 2.00

ε0/2
2 1.34E-4 3.36E-5 8.40E-6 2.10E-6 5.25E-7 1.31E-7

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
3 2.82E-5 7.07E-6 1.77E-6 4.42E-7 1.10E-7 2.76E-8

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
4 6.40E-6 1.60E-6 4.01E-7 1.00E-7 2.50E-8 6.26E-9

order − 2.00 2.00 2.00 2.00 2.00

ε0/2
5 1.50E-6 3.74E-7 9.36E-8 2.34E-8 5.85E-9 1.46E-9

order − 2.00 2.00 2.00 2.00 2.00
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Table 7.2: Temporal errors of the SEPEWIFPos method for different ε and k with β = 4/3.

‖e(·, 1)‖1 k0 = 0.1 k0/2 k0/2
2 k0/2

3 k0/2
4 k0/2

5

ε0 = 1 4.24E-3 1.07E-3 2.68E-4 6.69E-5 1.67E-5 4.18E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/2 9.17E-3 2.33E-3 5.85E-4 1.46E-4 3.66E-5 9.14E-6

order − 1.98 1.99 2.00 2.00 2.00

ε0/2
2 1.94E-2 5.13E-3 1.30E-3 3.27E-4 8.18E-5 2.04E-5

order − 1.92 1.98 1.99 2.00 2.00

ε0/2
3 3.90E-2 1.20E-2 3.21E-3 8.15E-4 2.05E-4 5.11E-5

order − 1.70 1.91 1.98 1.99 2.00

ε0/2
4 3.74E-2 2.32E-2 8.01E-3 2.21E-3 5.66E-4 1.42E-4

order − 0.69 1.53 1.86 1.96 1.99

ε0/2
5 1.82E-2 1.95E-2 1.54E-2 5.89E-3 1.67E-3 4.33E-4

order − -0.10 0.34 1.39 1.81 1.95

Table 7.3: Temporal errors of the SEPEWIFPos method for different ε and k with β = 2.

‖e(·, 1)‖1 k0 = 0.1 k0/2 k0/2
2 k0/2

3 k0/2
4 k0/2

5

ε0 = 1 4.24E-3 1.07E-3 2.68E-4 6.69E-5 1.67E-5 4.18E-6

order − 1.99 2.00 2.00 2.00 2.00

ε0/
√
2 8.45E-3 2.14E-3 5.37E-4 1.34E-4 3.36E-5 8.40E-6

order − 1.98 2.00 2.00 2.00 2.00

ε0/
√
2
2

2.09E-2 5.39E-3 1.36E-3 3.41E-4 8.52E-5 2.13E-5

order − 1.95 1.99 2.00 2.00 2.00

ε0/
√
2
3

5.13E-2 1.39E-2 3.56E-3 4.24E-3 8.96E-4 5.61E-5

order − 1.88 1.97 1.99 2.00 2.00

ε0/
√
2
4

1.23E-1 3.77E-2 1.00E-2 2.55E-3 6.41E-4 1.60E-4

order − 1.71 1.91 1.98 1.99 2.00

ε0/
√
2
5

1.88E-1 9.04E-2 2.76E-2 7.33E-3 1.86E-3 4.67E-4

order − 1.06 1.71 1.91 1.98 2.00

From Tables 7.1-7.4 and Figs. 7.1-7.2, the following observations on the SEPEWIFPos

method for the oscillatory NLSW (7.6) can be drawn:

(i) The temporal errors of the SEPEWIFPos method behave like O(ε2−3βτ2) (see Tab-

les 7.1-7.3).

(ii) The spatial errors of the SEPEWIFPos method are O(hm0) which imply that the method

is uniformly spectrally accurate for any ε ∈ (0, 1] and β ∈ [0, 2] (see each row in Table 7.4).

(iii) The discrete energy is preserved along the numerical solution of the SEPEWIFP method

for the NLSW (7.6) (see Fig. 7.1). This verifies that the conclusion of Theorem 7.2 is correct.

(iv) Although this method does not preserve the discrete mass, it exhibits good long-term

stability of the mass.

In summary, numerous numerical results strongly confirm the correctness of our theoretical

analysis in this paper.
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Fig. 7.1. Energy preservation for SEPEWIFPos with β = 0, 1, 2, respectively.



32 J.Y. LI

Fig. 7.2. Long-term stability of the mass for SEPEWIFPos with β = 0, 1, 2, respectively.
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Table 7.4: Spatial errors of the SEPEWIFPos method for different ε and h with β = 0, 1, 2, respectively.

‖e(·, 1)‖1 h0 = 1 h0/2 h0/2
2 h0/2

3

ε0 = 1 5.46E-2 1.23E-3 6.90E-7 8.61E-13

ε0/2 3.13E-2 4.06E-4 2.86E-8 9.58E-13

β = 0 ε0/2
2 2.71E-2 1.02E-4 2.42E-9 1.01E-12

ε0/2
3 2.68E-2 2.99E-5 3.08E-10 1.03E-12

ε0/2
4 2.67E-2 1.47E-5 5.82E-11 1.07E-12

ε0 = 1 5.46E-2 1.23E-3 6.90E-7 8.61E-13

ε0/2 5.34E-2 9.24E-4 1.89E-7 6.74E-13

β = 1 ε0/2
2 5.40E-2 4.44E-4 3.98E-8 5.92E-13

ε0/2
3 5.12E-2 1.88E-4 8.14E-9 6.56E-13

ε0/2
4 2.67E-3 3.23E-5 1.24E-9 6.05E-13

ε0 = 1 5.46E-2 1.23E-3 6.90E-7 8.61E-13

ε0/2 7.14E-2 1.77E-3 9.96E-7 6.02E-13

β = 2 ε0/2
2 8.33E-3 4.89E-4 2.15E-7 5.89E-13

ε0/2
3 2.90E-2 6.91E-5 6.17E-9 5.69E-13

ε0/2
4 5.01E-2 2.48E-5 1.18E-9 5.31E-13

8. Conclusions and Discussions

In this paper, we propose a time symmetric and energy-preserving exponential wave in-

tegrators Fourier pseudo-spectral (SEPEWIFP) method for the nonlinear Schrödinger equa-

tion (NLS) with wave operator (NLSW) and weak nonlinearity controlled by a small parame-

ter ε ∈ (0, 1]. The new method is proved to be time symmetric and along the numerical solution,

the discrete energy is preserved. By carrying out rigorous error estimates, we establish the uni-

form error bounds at O(hm0 + ε2−βτ2) up to the time at O(1/εβ) for β ∈ [0, 2] where h and τ

are the mesh size and time step, respectively and m0 depends on the regularity conditions. The

tools for error analysis mainly include the cut-off technique to deal with the nonlinearity and the

standard energy method. We also extend the results on error bounds, energy-preservation and

time symmetry to the oscillatory NLSW with wavelength at O(εβ) in time which is equivalent

to the NLSW with weak nonlinearity. Specifically, the error bounds for the oscillatory NLSW

are O(hm0 + ε2−3βk2) and the ε-scalability is h = O(1) and k = O(ε3β/2−1) for β ∈ [0, 2],

where k is the time step. Numerical results confirm the correctness of our theoretical analysis.

To the best of our knowledge there is no energy-preserving exponential wave integrator method

for the NLSW.
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[11] L. Bergé and T. Colin, A singular perturbation problem for an envelope equation in plasma

physics, Phys. D, 84:3-4 (1995), 437–459.
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