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Abstract

In this paper, we consider the numerical solution of decoupled mean-field forward back-

ward stochastic differential equations with jumps (MFBSDEJs). By using finite differ-

ence approximations and the Gaussian quadrature rule, and the weak order 2.0 Itô-Taylor

scheme to solve the forward mean-field SDEs with jumps, we propose a new second order

scheme for MFBSDEJs. The proposed scheme allows an easy implementation. Some nu-

merical experiments are carried out to demonstrate the stability, the effectiveness and the

second order accuracy of the scheme.
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1. Introduction

To characterise the jumps in a Lévy process on a given probability space (Ω,F , P ), we

introduce the Poisson random measure µ on E× [0, T ]

µ : Ω× E × [0, T ] → N,

(ω,A, [0, t]) → µ(A× [0, t]),

where E = R
q\{0} and E is its Borel field. For given t ∈ [0, T ] and A ∈ E , µ(A×[0, t]) is a random

variable counting the number of jumps occurring in [0, t] whose jump sizes belong to A. We

usually suppress ω in µ for simplicity.

We call the measure ν : E × [0, T ] defined by ν(A × [0, t]) = E[µ(A × [0, t])] the intensity

measure of µ. Suppose that ν(de, dt) = λ(de)dt with λ being a Lévy measure on (E, E) satisfying
∫

E
(1 ∧ |e|2)λ(de) < +∞, then the compensated Poisson random measure is defined as

µ̃(de, dt) = (µ− ν)(de, dt) = µ(de, dt)− λ(de)dt

such that {µ̃(A× [0, t])}0≤t≤T is a martingale for any A ∈ E with λ(A) < ∞. Moreover, let F

and ρ be the distribution and the probability density function of the jump size e, respectively,

then it holds that

λ(de) = λF (de) = λρ(e)de,
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where λ = λ(E) is the intensity of µ. For more details of the Poisson random measure, the

readers are referred to [6, 18].

Then we can get a complete filtered probability space (Ω,F ,F, P ) by letting F = {Ft}0≤t≤T

be the filtration generated by the mutually independent m-dimensional Brownian motion Wt

and the Poisson random measure µ, that is Ft = F0
t+ ∨ F0, where F0

t+ =
⋂

s≥t F0
s with

F0
s = σ

{

Wr, µ(A× [0, r])
∣

∣A ∈ E , r ≤ s
}

, s ∈ [0, T ],

and the σ-field F0 ⊂ F satisfies:

• The Brownian motion Wt and the measure µ are independent of F0.

• Np ⊂ F0 with Np being the set of all P -null subset of F .

Now we consider decoupled mean-field forward backward stochastic differential equations

with jumps (MFBSDEJs) on (Ω,F ,F, P )

X0,X0

t = X0 +

∫ t

0

E
[

b
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,X0
s

ds+

∫ t

0

E
[

σ
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,X0
s

dWs

+

∫ t

0

∫

E

E
[

c
(

s,X0,x0

s− , x, e
)]

∣

∣

∣

x=X
0,X0
s−

µ̃(de, ds),

Y 0,X0

t = E
[

Φ
(

X0,x0

T , x
)]

∣

∣

∣

x=X
0,X0
T

+

∫ T

t

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θ
0,X0
s

ds−
∫ T

t

Z0,X0

s dWs

−
∫ T

t

∫

E

U0,X0

s (e)µ̃(de, ds),

(1.1)

where t ∈ [0, T ], x0, X0 ∈ F0 is the initial values of mean-field forward stochastic differential

equations with jumps (MSDEJs) and E[Φ(X0,x0

T , x)]|
x=X

0,X0
T

∈ FT with Φ : Ωd = R
d×R

d → R
p

is the terminal condition of mean-field backward stochastic differential equations with jumps

(MBSDEJs); b : [0, T ] × Ωd → R
d, σ : [0, T ] × Ωd → R

d×m, and c : [0, T ]× Ωd × E → R
d are

the drift, diffusion and jump coefficients of MSDEJs, respectively; f : [0, T ]× Ωf → R
p is the

so called generator of MBSDEJs with Ωf = R
d ×R

p ×R
p×m ×R

p ×R
d ×R

p ×R
p×m ×R

p; the

term Θ0,x
s = (X0,x

s , Y 0,x
s , Z0,x

s ,Γ0,x
s ) with x = x0 or X0, and

Γ0,x
s =

∫

E

U0,x
s (e)η(e)λ(de)

for some Borel function η : E → R satisfying supe∈E |η(e)| < ∞. We call a quadruplet

(X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t ) an L2-adapted solution of (1.1) if it is Ft-adapted, square inte-

grable and satisfies (1.1). In general, initial values x0 and X0 are different, and

(

X0,x0

t , Y 0,x0

t , Z0,x0

t , U0,x0

t

)

=
(

X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t

)∣

∣

X0=x0
.

In this paper, we shall numerically solve the solutions (X0,X0

t , Y 0,X0

t , Z0,X0

t ,Γ0,X0

t ) instead of

(X0,X0

t , Y 0,X0

t , Z0,X0

t , U0,X0

t ). Here the MFBSDEJs (1.1) is called decoupled because the coef-

ficients of MSDEJs do not depend on the solutions of MBSDEJs.

In 2009, Buckdahn et al. [4] first studied the existence and uniqueness of the solutions of

mean-field forward backward stochastic differential equations (MFBSDEs) in a general Marko-

vian setting. Then based on those researches, Li [12] further proved the existence and unique-

ness of the solutions of decoupled MFBSDEJs, and gave a probability interpretation of the
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solutions of the nonlocal parabolic partial integral-differential equations (PIDEs). By com-

prising Lévy jump processes, mean-field forward and backward SDEs with jumps can model

the event-driven stochastic phenomena much more accurately, and the theory of MFBSDEJs

have found many applications in diverse research areas such as the mean-field problems with

delay [1], nonlocal diffusion problems [8, 23], mean-field games [16, 27, 29] and stochastic opti-

mal control [9, 13–15,17, 28], to name a few. Therefore it is important and interesting to solve

MFBSDEJs numerically.

Notice that the solutions of MFBSDEJs depend on the distributions of the forward MS-

DEJs which makes its structure very complicated and brings a challenge to construct accurate

numerical schemes. Moreover, when designing high order schemes, the random jump times

of the measure µ can be coupled with the Brownian motion which is difficult to deal with in

practice. Because of these reasons, up to now, there are few works on the numerical methods

for MFBSDEJs.

Some numerical methods for mean-field forward and backward SDEs have been studied in

recent years, see e.g. [3,5,11,19,21,22,24]. A class of explicit θ-schemes for mean-field backward

stochastic differential equations were constructed in [24] and its error estimates were theoret-

ically proved by using the mean-field Itô formula and Itô-Taylor expansion developed in [19].

After that, by solving mean-filed stochastic differential equations with Itô-Taylor schemes, the

authors proposed an explicit second order one-step scheme [22] and an explicit high order multi-

step scheme [21] for decoupled MFBSDEs. By using the full-history recursive multilevel Picard

approximations, the authors constructed some efficient schemes for solving high dimensional

MSDEs [2, 10].

For solving MFBSDEs with jumps, the authors in [23] developed the associated Itô formula

and Itô-Taylor expansions, and proposed Itô-Taylor type schemes for MSDEJs. Then by com-

bining with Itô-Taylor schemes, the authors in [20] derived an explicit second order scheme for

decoupled MFBSDEJs and rigorously analyzed its stability and second order accuracy. However

the conditional expectations for solving the solutions Z0,X0

t and Γ0,X0

t in the scheme proposed

in [20] are complicated to calculate, which makes the scheme inefficient in application.

In this paper, we shall design a new second order numerical scheme for solving decoupled

MFBSDEJs. By the nonlinear Feynman-Kac formula in (2.1) given in Section 2, the solutions of

Z0,X0

t and Γ0,X0

t can be represented by the derivative and the integral of Y 0,X0

t , respectively. By

using finite difference approximation and the Gaussian quadrature rule to approximate Z0,X0

t

and Γ0,X0

t , respectively, we propose a new second order scheme for solving the decoupled MF-

BSDEJs (1.1). By adopting the finite difference approximation and the Gaussian quadrature

rule, the proposed scheme avoids to solve the complicated conditional expectations used to

solve Z0,X0

t and Γ0,X0

t in [20] and thus is much simplified in structure, which makes it easier

to implement in practice. Several numerical examples are performed to verify the accuracy,

the convergence and the stability of the proposed scheme. The numerical results show that the

scheme can be convergent with second order when the weak order 2.0 Itô-Taylor scheme is used

to solve the associated MSDEJs in (1.1). It is also shown that the accuracy of the scheme is not

sensitive to the step size used in the finite difference approximation. This observation allows us

to use the small step size in finite difference approximation to guarantee the required accuracy

of the scheme. Moreover, the numerical results indicate that the new second order scheme is

more efficient and accurate than the one in [20], especially for multi-dimensional cases.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries on

the nonlinear Feynman-Kac formula, numerical derivatives and integrals, and general Itô-Taylor
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schemes for solving MSDEJs. In Section 3, we discuss the design of a new second order scheme

for solving decoupled MFBSDEJs, and present the details of the approximations of expectations

and conditional expectations in the scheme in Section 4. In Section 5, numerical experiments

are carried out to verify the effectiveness of the scheme and we finally give some conclusions in

Section 6.

We close this section by listing some notation that will be used in what follows:

• Ck
b (Ωd): The set of continuous differential functions φ(x, y) with uniformly bounded par-

tial derivatives up to the k-th order.

• Cl,k
b ([0, T ] × Ωd): The set of continuous differential functions φ(t, x, y) with uniformly

bounded partial derivatives up to the l-th order with respect to the time variable and

up to the k-th order with respect to the spatial variables. Moreover, we can define

Cl,k
b ([0, T ]× Ωf ) in a similar way.

2. Preliminaries

2.1. The nonlinear Feynman-Kac formula

We recall the nonlinear Feynman-Kac formula in this subsection. To proceed, we make the

following assumptions on the coefficients of MFBSDEJs.

Assumption 2.1. Assume that b, σ ∈ C1,2
b ([0, T ]×Ωd),Φ ∈ C2

b (Ωd) and f ∈ C1,2
b ([0, T ]×Ωf).

Moreover, c(· , · , · , e) ∈ C1,2
b ([0, T ]× Ωd) with the bound of K(1 ∧ |e|) for all its derivatives of

first and second order, where K is a positive constant.

Now we give the nonlinear Feynman-Kac formula [12] in the following lemma.

Lemma 2.1. Under Assumption 2.1, the MFBSDEJs (1.1) has a unique solution, and the

solution (Y 0,X0

t , Z0,X0

t ,Γ0,X0

t ) can be represented as

Y 0,X0

t = u
(

t,X0,X0

t

)

,

Z0,X0

t = ∇xu
(

t,X0,X0

t

)

E
[

σ
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,X0
t

,

Γ0,X0

t =

∫

E

(

u

(

t,X0,X0

t− +E
[

c
(

t,X0,x0

t− , x, e
)]

∣

∣

∣

x=X
0,X0
t−

)

−u
(

t−, X0,X0

t−

)

)

η(e)λ(de),

(2.1)

where u(t, x) is the unique classical solution of the nonlocal PIDE

A[u](t, x)+E

[

f
(

t,X0,x0

t , u
(

t,X0,x0

t

)

,∇xu
(

t,X0,x0

t

)

E
[

σ
(

t,X0,x0

t , x
)]

∣

∣

∣

x=X
0,x0
t

,

B[u]
(

t−, X0,x0

t−

)

, x, u(t, x),∇xu(t, x)E
[

σ
(

t,X0,x0

t , x
)]

,B[u](t, x)
)

]

= 0 (2.2)

with the terminal condition u(T, x) = E[Φ(X0,x0

T , x)]. Here the differential-integral operator A
and integral operator B are defined by

A[u](t, x) =
∂u

∂t
(t, x) +

d
∑

i=1

∂u

∂xi
(t, x)E

[

bi
(

t,X0,x0

t , x
)]
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+
1

2

d
∑

i,j=1

∂2u

∂xi∂xj
(t, x)

(

E
[

σ
(

t,X0,x0

t , x
)]

E
[

σ⊤
(

t,X0,x0

t , x
)]

)

ij

+

∫

E

(

u
(

t, x+ E
[

c
(

t,X0,x0

t− , x, e
)])

− u(t, x)

−
d
∑

i=1

∂u

∂xi
(t, x)E

[

ci
(

t,X0,x0

t− , x, e
)]

)

λ(de), (2.3)

B[u](t, x) =
∫

E

(

u
(

t, x+ E
[

c
(

t,X0,x0

t− , x, e
)])

− u(t, x)
)

η(e)λ(de). (2.4)

Remark 2.1. It is known that when the functions b, σ, c, f and Φ satisfy the conditions in

Assumption 2.1, the PIDE (2.2) has a unique smooth solution u(t, x), which is also bounded

and smooth with bounded derivatives [12].

Remark 2.2. In this paper, we shall construct our numerical scheme for the MFBSDEJs (1.1)

based on the nonlinear Feynman-Kac formula (2.1). The formulas in (2.1) indicate that once

Y 0,X0

t is known, we can approximate Z0,X0

t and Γ0,X0

t by using some numerical methods for

approximating derivatives and integrals, respectively.

2.2. Numerical derivatives and integrals

In this subsection, we recall the finite difference approximation and the Gaussian quadrature

rule for approximating derivatives and integrals, respectively. For simplicity, we consider the

one-dimensional case and all the results below can be generated to the multi-dimensional cases

in a natural way.

(i) Numerical derivatives. For a given function g : R → R, we define the following

difference quotient operators:

D−1
h g(x) =

1

h

(

g(x)− g(x− h)
)

,

D0
hg(x) =

1

2h

(

g(x+ h)− g(x− h)
)

,

D1
hg(x) =

1

12h

(

−g(x+ 2h) + 8g(x+ h)− 8g(x− h) + g(x− 2h)
)

,

(2.5)

where h > 0 is a small positive real number. It is easy to deduce

D−1
h g(x)− g′(x) = O(h), g ∈ C2

b ,

D0
hg(x)− g′(x) = O(h2), g ∈ C3

b ,

D1
hg(x)− g′(x) = O(h4), g ∈ C5

b ,

(2.6)

which show that D−1
h g(x), D0

hg(x) and D1
hg(x) approximate the first order derivative g′(x)

with errors O(h),O(h2) and O(h4), respectively.

(ii) Numerical integrals. Let L be a positive integer and {xk}Lk=1 be the Gaussian quadra-

ture points. Suppose that g has a continuous derivative of order 2L on [a, b] and ω is

a positive weight function defined and integrable on (a, b), then there exists a number

η ∈ (a, b) such that (see [25, Eq. (10.6)])
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∫ b

a

ω(x)g(x)dx =

L
∑

k=1

ωkg(xk) +KLg
(2L)(η), (2.7)

where the quadrature weights {ωk}Lk=1 and the constant KL are defined as

ωk =

∫ b

a

ω(x)





L
∏

i=1,i6=k

x− xi

xk − xi





2

dx,

KL =
1

(2L)!

∫ b

a

ω(x) [(x− x1) · · · (x− xL)]
2
dx.

When g(2L) is bounded, it holds that (see [25, Eq. (10.18)])

∣

∣KLg
(2L)(η)

∣

∣ ≤ C(b − a)2L

(2L)!
, (2.8)

where the constant C is given as

C = max
x∈(a,b)

∣

∣g(2L)(x)
∣

∣ ·
∫ b

a

ω(x)dx.

The sum
∑L

k=1 ωkg(xk) is called the Gaussian quadrature for the integral
∫ b

a
ω(x)g(x)dx.

2.3. Itô-Taylor schemes for MSDEJs

In this subsection, we introduce the general Itô-Taylor scheme for solving the forward MS-

DEJs [23].

Assume that λ(E) < ∞. Then Nt = µ(E × [0, t]) is a Poisson process with the param-

eter λ(E) counting the number of jumps occurring in [0, t], and the random measure µ can

generate a sequence of pairs {(τi, ei)}NT

i=1 with {τi}NT

i=1 representing the jump times and {ei}NT

i=1

the corresponding jump sizes. To proceed, we introduce the following partition on the time

interval [0, T ]:

0 = t0 < t1 < · · · < tN = T,

and define

∆tn = tn+1 − tn, ∆Wn = Wtn+1
−Wtn , ∆Nn = Ntn+1

−Ntn .

Let XX0
n (Xx0

n ) denote the numerical approximations of the solutions X0,X0

t (X0,x0

t ) at time

t = tn, n = 0, 1, . . . , N , then the general Itô-Taylor scheme for MSDEJs developed in [23] can

be written as

XX0

n+1 = XX0

n + E
[

ϕ
(

tn,∆tn, X
x0

n , V
)]

∣

∣

∣

V=(x,w,m,τ ,e)
, (2.9)

where ϕ is a method dependent function, x=XX0
n ,w=∆Wn,m=∆Nn, and τ = (τ1, . . . , τ∆Nn

)

and e = (e1, . . . , e∆Nn
) with (τi, ei) the i-th pair of jump time and jump size occurring in

(tn, tn+1]. For instance, for the Euler scheme [23]

XX0

n+1 = XX0

n +

(

E
[

b
(

tn, X
x0

n , x
)]

∣

∣

∣

x=X
X0
n

−
∫

E

E
[

c
(

tn, X
x0

n , x, e
)]

∣

∣

∣

x=X
X0
n

λ(de)

)

∆tn

+ E
[

σ
(

tn, X
x0

n , x
)]

∣

∣

∣

x=X
X0
n

∆Wn +

∆Nn
∑

k=1

E
[

c
(

tn, X
x0

n , x, ek
)]

∣

∣

∣

x=X
X0
n

,
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the function ϕ is

ϕ
(

tn,∆tn, x
′, x, w,m, τ, e

)

=

(

b
(

tn, x
′, x
)

−
∫

E

c
(

tn, x
′, x, e

)

λ(de)

)

∆tn

+ σ
(

tn, x
′, x
)

w +
m
∑

k=1

c
(

tn, x
′, x, ek

)

.

To solve the MSDEJ in (1.1) by the above general Itô-Taylor scheme (2.9), one needs the

following two steps:

Step 1. Solve the MSDEJ with X0 = x0 to obtain {Xx0
n }Nn=0.

Step 2. Using {Xx0
n }, solve the MSDEJ with X0 6= x0 to obtain {XX0

n }Nn=0.

3. The New Numerical Schemes for MFBSDEJs

In this section, based on the nonlinear Feynman-Kac formula (2.1), we develop a new numer-

ical scheme for solving the decoupled MFBSDEJs (1.1) by combining with the finite difference

approximation and the Gaussian quadrature rule. For notational simplicity, we consider the

one-dimensional case.

3.1. Reference equations

Let Θt,x
s = (Xt,x

s , Y t,x
s , Zt,x

s ,Γt,x
s ) be the adapted solution of the MFBSDEJs (1.1) with the

MSDEJ starting from the point (t, x). Then we have for n = 0, 1, . . . , N − 1,

Y tn,x
tn = Y tn,x

tn+1
+

∫ tn+1

tn

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θtn,x
s

ds−
∫ tn+1

tn

Ztn,x
s dWs

−
∫ tn+1

tn

∫

E

U tn,x
s (e)µ̃(de, ds). (3.1)

By Lemma 2.1, it holds that

Y tn,x
tn = u(tn, x),

Ztn,x
tn = ∇xu(tn, x)E

[

σ
(

tn, X
0,x0

tn , x
)]

,

Γtn,x
tn =

∫

E

(

u
(

tn, x+ E
[

c
(

tn, X
0,x0

tn− , x, e
)])

− u(tn, x)
)

η(e)λ(de),

(3.2)

where u is the smooth solution of (2.2). Then we get the approximation

Ztn,x
tn = ∇xu(tn, x)E

[

σ
(

t,X0,x0

t , x
)]

= Di
hu(tn, x)E

[

σ
(

t,X0,x0

t , x
)]

+Rn,X0

z

= Di
hY

tn,x
tn E

[

σ
(

t,X0,x0

t , x
)]

+Rn,X0

z , (3.3)

where Di
h, i = −1, 0, 1, are finite difference operators defined by (2.5) and

Rn,X0

z =
(

∇xu(tn, x)−Di
hu(tn, x)

)

E
[

σ
(

tn, X
0,x0

tn , x
)]

. (3.4)
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Let ρ be the probability density function of e. Then for a given function g : E → R, we

let GL
ρ [g(·)] denote the approximation of

∫

E
g(e)ρ(e)de using L-points Gaussian quadrature

rule (2.7) chosen by ρ(e). Take η(e) = 1 and define

cxtn(e) = E
[

c
(

tn, X
0,x0

tn− , x, e
)]

.

Then we have

Γtn,x
tn = λ

∫

E

(

u
(

tn, x+ cxtn(e)
)

− u (tn, x)
)

ρ(e)de

= λ

∫

E

u
(

tn, x+ cxtn(e)
)

ρ(e)de− λu (tn, x)

= λGL
ρ

[

u
(

tn, x+ cxtn(·)
)]

− λu (tn, x) +Rn,X0

γ

= λ
(

GL
ρ

[

Y
tn,x+cxtn(·)

tn

]

− Y tn,x
tn

)

+Rn,X0

γ , (3.5)

where

Rn,X0

γ = λ

(∫

E

u
(

tn, x+ cxtn(e)
)

ρ(e)de−GL
ρ

[

u
(

tn, x+ cxtn(·)
)]

)

. (3.6)

Now we turn to the approximation of Y tn,x
tn . By taking the conditional expectation

E
x
tn [·] := E

[

· | Ftn , X
0,X0

tn = x
]

on both sides of (3.1), we obtain

Y tn,x
tn = E

x
tn

[

Y tn,x
tn+1

]

+

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θtn,x
s

]

ds

= E
x
tn

[

Y tn,x
tn+1

]

+
1

2
∆tnE

[

f
(

tn,Θ
0,x0

tn , θ
)]

∣

∣

∣

θ=Θtn,x
tn

+
1

2
∆tnE

x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

+Rn,X0

y1
, (3.7)

where

Rn,X0

y1
=

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θtn,x
s

]

ds

− 1

2
∆tnE

[

f
(

tn,Θ
0,x0

tn , θ
)]

∣

∣

∣

θ=Θtn,x
tn

− 1

2
∆tnE

x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

.

Similarly, we have

Y tn,x
tn = E

x
tn

[

Y tn,x
tn+1

]

+∆tnE
x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

+Rn,X0

yr , (3.8)

where

Rn,X0

yr =

∫ tn+1

tn

E
x
tn

[

E
[

f
(

s,Θ0,x0

s , θ
)]

∣

∣

∣

θ=Θtn,x
s

]

ds

−∆tnE
x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

.
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By removing R0,X0
yr in (3.8), we define the prediction value

Ȳ tn,x
tn = E

x
tn

[

Y tn,x
tn+1

]

+∆tnE
x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

, (3.9)

and let

Z̄tn,x
tn = Di

hȲ
tn,x
tn E

[

σ
(

tn, X
0,x0

tn , x
)]

, i = −1, 0, 1, (3.10)

Γ̄tn,x
tn = λ

(

GL
ρ

[

Ȳ
tn,x+cxtn(·)

tn

]

− Ȳ tn,x
tn

)

. (3.11)

Note that
(

Y 0,x0

tn , Z0,x0

tn ,Γ0,x0

tn

)

=
(

Y
tn,X

0,x0
tn

tn , Z
tn,X

0,x0
tn

tn ,Γ
tn,X

0,x0
tn

tn

)

.

Thus, we define

(

Ȳ 0,x0

tn , Z̄0,x0

tn , Γ̄0,x0

tn

)

=
(

Ȳ
tn,X

0,x0
tn

tn , Z̄
tn,X

0,x0
tn

tn , Γ̄
tn,X

0,x0
tn

tn

)

.

Let

Θ̄0,x0

tn =
(

X0,x0

tn , Ȳ 0,x0

tn , Z̄0,x0

tn , Γ̄0,x0

tn

)

,

Θ̄tn,x
tn =

(

Xtn,x
tn , Ȳ tn,x

tn , Z̄tn,x
tn , Γ̄tn,x

tn

)

,

then, by (3.7), we get

Y tn,x
tn = E

x
tn

[

Y tn,x
tn+1

]

+
1

2
∆tnE

[

f
(

tn, Θ̄
0,x0

tn , θ
)]

∣

∣

∣

θ=Θ̄tn,x
tn

+
1

2
∆tnE

x
tn

[

E
[

f
(

tn+1,Θ
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θtn,x
tn+1

]

+Rn,X0

y , (3.12)

where Rn,X0
y = Rn,X0

y1
+Rn,X0

y2
with

Rn,X0

y2
=

1

2
∆tn

(

E
[

f
(

tn,Θ
0,x0

tn , θ
)]

∣

∣

∣

θ=Θtn,x
tn

− E
[

f
(

tn, Θ̄
0,x0

tn , θ
)]

∣

∣

∣

θ=Θ̄tn,x
tn

)

.

3.2. The time semidiscrete scheme

For n = 0, . . . , N , we let

Θx0

n =
(

Xx0

n , Y x0

n , Zx0

n ,Γx0

n

)

,

ΘX0

n =
(

XX0

n , Y X0

n , ZX0

n ,ΓX0

n

)

denote the numerical approximations of the solutions of (1.1) at time tn with the initial values

of x0 and X0, respectively. Moreover, we define the function cX0
n : E → R as

cX0

n (e) = E
[

c
(

tn, X
x0

n , x, e
)]

∣

∣

∣

x=X
X0
n

.

Then by letting (tn, x) = (tn, X
X0
n ) in (3.3), (3.5), (3.9)-(3.12), and removing the truncation

errors R0,X0
z , R0,X0

γ and R0,X0
y from (3.3), (3.5) and (3.12), we get our time semidiscrete scheme

for solving the decoupled MFBSDEJs (1.1).
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Scheme 3.1. Step 1. Given initial value x0, solve Xx0
n , n = 1, . . . , N , by the Itô-Taylor

scheme (2.9).

Step 2. Given initial value X0 and terminal conditions Y X0

N , ZX0

N ,ΓX0

N , for n = N − 1, . . . , 0,

solve the random variables Y X0
n , ZX0

n and ΓX0
n by

Ȳ X0

n = E
XX0

n

tn

[

Y X0

n+1

]

+∆tnE
XX0

n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

]

,

Z̄X0

n = Di
hȲ

X0

n E
[

σ
(

tn, X
x0

n , x
)]

∣

∣

∣

x=X
X0
n

,

Γ̄X0

n = λ
(

GL
ρ

[

Ȳ
XX0

n +cX0
n (·)

n

]

− Ȳ X0

n

)

,

Y X0

n = E
XX0

n

tn

[

Y X0

n+1

]

+
1

2
∆tnE

[

f
(

tn, Θ̄
x0

n , θ
)]

∣

∣

∣

θ=Θ̄
X0
n

+
1

2
∆tnE

XX0
n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

]

,

ZX0

n = Di
hY

X0

n E
[

σ
(

tn, X
x0

n , x
)]

∣

∣

∣

x=X
X0
n

,

ΓX0

n = λ
(

GL
ρ

[

Y
XX0

n +cX0
n (·)

n

]

− Y X0

n

)

,

where Di
h, i = 0,±1, are finite difference operators defined by (2.5), XX0

n is solved by

the Itô-Taylor scheme (2.9) and

Θ̄x
n =

(

Xx
n , Ȳ

x
n , Z̄x

n , Γ̄
x
n

)

, x = x0 or X0.

As a comparison, we present the scheme given in [20] in the following Scheme 3.2. To this

end, for n = 0, . . . , N − 1, we define ∆W̃n and ∆µ̃∗
n by

∆W̃n =

∫ tn+1

tn

p(r)dWr , ∆µ̃∗
n =

∫ tn+1

tn

∫

E

p(r)µ̃(de, dr),

where p(r) = 2− 3(r − tn)/∆tn.

Scheme 3.2. Step 1. Given initial value x0, solve Xx0
n for n = 1, . . . , N by the Itô-Taylor

scheme (2.9).

Step 2. Given initial value X0 and terminal conditions Y X0

N , ZX0

N ,Γ0,X0

N , for n = N − 1, . . . , 0,

solve random variables Y X0
n , ZX0

n and ΓX0
n by

1

2
∆tnZ

X0

n = E
XX0

n

tn

[

Y X0

n+1∆W̃n

]

+∆tnE
XX0

n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

∆W̃n

]

,

1

2
∆tnΓ

X0

n = E
XX0

n

tn

[

Y X0

n+1∆µ̃∗
n

]

+∆tnE
XX0

n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

∆µ̃∗
n

]

,

Ȳ X0

n = E
XX0

n

tn

[

Y X0

n+1

]

+∆tnE
XX0

n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

]

,

Y X0

n = E
XX0

n

tn

[

Y X0

n+1

]

+
1

2
∆tnE

[

f
(

tn, Θ̂
x0

n , θ
)]

∣

∣

∣

θ=Θ̂
X0
n

+
1

2
∆tnE

XX0
n

tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

]

,

where XX0
n is solved by the Itô-Taylor scheme (2.9) and

Θ̂x
n =

(

Xx
n , Ȳ

x
n , Zx

n ,Γ
x
n

)

, x = x0 or X0.
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Remark 3.1. Compared with Scheme 3.2 for solving ZX0
n and ΓX0

n , Scheme 3.1 avoids calcu-

lating some complicated conditional expectations coupled with the random variables defined

by the increments of the Brownian motion and the Poisson random measure, which makes it

simpler in structure and easier to implement in practice. On the other hand, Scheme 3.1 still

suffers from the curse of dimensionality and thus can be only used to solve multi-dimensional

problems such as two or three dimensions as shown in the Example 5.3.

3.3. The fully discrete scheme

To propose a fully discrete scheme based on Scheme 3.1, the partition of the space R
d is

needed. To this end, we introduce a general uniform space partition Sn
∆x at time level t = tn

such that Sn
∆x = S∆x with

S∆x = S1,∆x × S2,∆x × · · · × Sd,∆x,

where Sj,∆x is the partition of the one-dimensional real axis R

Sj,∆x =
{

xj
i : x

j
i = i∆x, i = 0,±1, . . . ,±∞

}

for j = 1, 2, . . . , d, and S∆x,x ⊂ S∆x denotes the set of some neighbor grids near x.

Then by Scheme 3.1, for each x ∈ Sn
∆x, we solve Y X0

n = Y X0
n (x), ZX0

n = ZX0
n (x) and

ΓX0
n = ZX0

n (x) by

Ȳ X0

n = E
x
tn

[

Y X0

n+1

]

+∆tnE
x
tn

[

E
[

f
(

tn+1,Θ
x0

n+1, θ
)]

∣

∣

∣

θ=Θ
X0
n+1

]

,

Z̄X0

n = Di
hȲ

X0

n E
[

σ
(

tn, X
x0

n , x
)]

,

Γ̄X0

n = λ
(

GL
ρ

[

Ȳ
x+cxn(·)
n

]

− Ȳ X0

n

)

,

Y X0

n = E
x
tn

[

Y X0

n+1

]

+
1

2
∆tnE

[

f
(

tn, Θ̄
x0

n , θ
)]

∣

∣

∣

θ=Θ̄
X0
n

+
1

2
∆tnE

x
tn

[

E
[

f(tn+1,Θ
x0

n+1, θ)
]

∣

∣

∣

θ=Θ
X0
n+1

]

,

ZX0

n = Di
hY

X0

n E
[

σ(tn, X
x0

n , x)
]

,

ΓX0

n = λ
(

GL
ρ

[

Y
x+cxn(·)
n

]

− Y X0

n

)

,

(3.13)

where

cxn(e) = E
[

c
(

tn, X
x0

n , x, e
)]

,

Θ̄X0

n =
(

x, Ȳ X0

n , Z̄X0

n , Γ̄X0

n

)

,

XX0

n+1 = x+ E
[

ϕ
(

tn,∆tn, X
x0

n , V
)]∣

∣

V =(x,w,m,τ ,e)

with w,m, τ , e being defined in (2.9).

Generally, XX0

n+1 does not belong to Sn+1
∆x for x ∈ Sn

∆x. Thus we need to approximate the

values of Y X0

n+1, Z
X0

n+1 and ΓX0

n+1 at XX0

n+1 using the values of them on Sn+1
∆x . Let InX be a local

interpolation operator such that InXg is the interpolation value of the function g at space points

X ∈ R
d by using the values of g only on Sn

∆x,X . Then we can define

Θ̂X0

n+1 =
(

XX0

n+1, I
n+1

X
X0
n+1

Y X0

n+1, I
n+1

X
X0
n+1

ZX0

n+1, I
n+1

X
X0
n+1

ΓX0

n+1

)

. (3.14)
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Similarly, Xx0
n does not belong to Sn

∆x in general, thus we define

ˆ̄Θx0

n =
(

Xx0

n , In
X

x0
n
Ȳ X0

n , In
X

x0
n
Z̄X0

n , In
X

x0
n
Γ̄X0

n

)

,

Θ̂x0

n =
(

Xx0

n , InXx0
n
Y X0

n , InXx0
n
ZX0

n , InXx0
n
ΓX0

n

)

.
(3.15)

Moreover, we define the operators ĜL
ρ and D̂1

h by

ĜL
ρ g(x) =

L
∑

k=1

ωkI
n
xk
g, D̂−1

h g(x) =
Inx g − Inx−hg

h
,

where {xk, k = 1, . . . , L} are the Gaussian quadrature points. The operators D̂0
h and D̂1

h can

be defined similarly.

To apply Scheme 3.1 in practice, one also needs to approximate the expectation E[·] and
the conditional expectation E

x
tn [·]. Let Ê[·] and Ê

x
tn [·] denote the approximation operators of

E[·] and E
x
tn [·], respectively, which will be made clear in the next section. Then by using the

operators InX , Ê[·] and Ê
x
tn [·], we can rewrite the reference equations (3.3), (3.5), (3.9)-(3.12) in

the form of

Ȳ tn,x
tn = Ê

x
tn

[

In+1

Xtn,x
tn+1

Y tn,x
tn+1

]

+∆tnÊ
x
tn

[

Ê
[

f
(

tn+1, Θ̂
0,x0

tn+1
, θ
)]

∣

∣

∣

θ=Θ̂tn,x
tn+1

]

+Rn,I,E
yr ,

Z̄tn,x
tn = D̂i

hȲ
tn,x
tn Ê

[

σ
(

tn, X
0,x0

tn , x
)]

+ R̄n,I,E
z ,

Γ̄tn,x
tn = λ

(

ĜL
ρ

[

Ȳ
tn,x+cxtn(·)

tn

]

− Ȳ tn,x
tn

)

+ R̄n,I,E
γ ,

Y tn,x
tn = Ê

x
tn

[

In+1

Xtn,x
tn+1

Y tn,x
tn+1

]

+
1

2
∆tnÊ

[

f
(

tn,
ˆ̄Θ0,x0

tn , θ
)]

∣

∣

∣

θ=Θ̄tn,x
tn

+
1

2
∆tnÊ

x
tn

[

Ê
[

f(tn+1, Θ̂
0,x0

tn+1
, θ)
]

∣

∣

∣

θ=Θ̂tn,x
tn+1

]

+Rn,X0

y +Rn,I,E
y ,

Ztn,x
tn = D̂i

hY
tn,x
tn Ê

[

σ
(

tn, X
0,x0

tn , x
)]

+ Rn,X0

z +Rn,I,E
z ,

Γtn,x
tn = λ

(

ĜL
ρ

[

Y
tn,x+cxtn(·)

tn

]

− Y tn,x
tn

)

+Rn,X0

γ +Rn,I,E
γ ,

(3.16)

where the terms Rn,I,E
yr , Rn,I,E

y , R̄n,I,E
z , R̄n,I,E

γ , Rn,I,E
z and Rn,I,E

γ are the local truncation errors

come from the interpolations and the approximations of expectations. Here the notations ˆ̄Θ0,x0

tn ,

Θ̂0,x0

tn and Θ̂tn,x
tn+1

are defined as

ˆ̄Θ0,x0

tn =
(

X0,x0

tn , In
X

0,x0
tn

Ȳ 0,x0

tn , In
X

0,x0
tn

Z̄0,x0

tn , In
X

0,x0
tn

Γ̄0,x0

tn

)

,

Θ̂0,x0

tn =
(

X0,x0

tn , In
X

0,x0
tn

Y 0,x0

tn , In
X

0,x0
tn

Z0,x0

tn , In
X

0,x0
tn

Γ0,x0

tn

)

,

Θ̂tn,x
tn+1

=
(

Xtn,x
tn+1

, In
Xtn,x

tn+1

Y tn,x
tn+1

, In
Xtn,x

tn+1

Ztn,x
tn+1

, In
Xtn,x

tn+1

Γtn,x
tn+1

)

.

By removing the nine error terms Rn,X0
y , Rn,X0

z , Rn,X0
γ , Rn,I,E

yr , Rn,I,E
y , Rn,I,E

z , Rn,I,E
γ , R̄n,I,E

z

and R̄n,I,E
γ from (3.16), we obtain our fully discrete scheme for solving the decoupled MFBSDEJs

(1.1) as below.

Scheme 3.3. Step 1. Given initial value x0, solve Xx0
n , n = 1, . . . , N , by the Itô-Taylor

scheme (2.9).
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Step 2. Given initial value X0 and terminal conditions Y X0

N , ZX0

N and ΓX0

N , for n = N−1, . . . , 0

and for x ∈ Sn
∆x, solve the random variables Y X0

n = Y X0
n (x), ZX0

n = ZX0
n (x) and

ΓX0
n = ΓX0

n (x) by

Ȳ X0

n = Ê
x
tn

[

In+1

X
X0
n+1

Y X0

n+1

]

+∆tnÊ
x
tn

[

Ê
[

f
(

tn+1, Θ̂
x0

n+1, θ
)]

∣

∣

∣

θ=Θ̂
X0
n+1

]

, (3.17)

Z̄X0

n = D̂i
hȲ

X0

n Ê
[

σ
(

tn, X
x0

n , x
)]

, (3.18)

Γ̄X0

n = λ
(

ĜL
ρ

[

Ȳ
x+cxn(·)
n

]

− Ȳ X0

n

)

, (3.19)

Y X0

n = Ê
x
tn

[

In+1

X
X0
n+1

Y X0

n+1

]

+
1

2
∆tnÊ

[

f
(

tn,
ˆ̄Θx0

n , θ
)]

∣

∣

∣

θ=Θ̄
X0
n

+
1

2
∆tnÊ

x
tn

[

Ê
[

f
(

tn+1, Θ̂
x0

n+1, θ
)]

∣

∣

∣

θ=Θ̂
X0
n+1

]

, (3.20)

ZX0

n = D̂i
hY

X0

n Ê
[

σ
(

tn, X
x0

n , x
)]

, (3.21)

ΓX0

n = λ
(

ĜL
ρ

[

Y
x+cxn(·)
n

]

− Y X0

n

)

, (3.22)

where XX0

n+1 is solved by the Itô-Taylor scheme (2.9) with XX0
n = x, and the notations

ˆ̄Θx0
n , Θ̂x0

n and Θ̂X0
n are defined in (3.14) and (3.15).

Among the local truncation errors Rn,X0
y , Rn,X0

z , Rn,X0
γ , Rn,I,E

yr , Rn,I,E
y , Rn,I,E

z , Rn,I,E
γ , R̄n,I,E

z ,

R̄n,I,E
γ , the six terms Rn,I,E

yr , Rn,I,E
y , Rn,I,E

z , Rn,I,E
γ , R̄n,I,E

z and R̄n,I,E
γ are local errors generated

by the interpolations and the approximations of expectations, which can be sufficiently small by

carefully choosing the numerical interpolation and integral methods used in Scheme 3.3. And

the three terms Rn,X0
y , Rn,X0

z and Rn,X0
γ are defined in (3.4), (3.6) and (3.12).

Without loss of generality, we set L≥3. Assume that b, σ∈CL,2L
b ([0, T ]×R

2),Φ∈C2L
b (R2)

and f ∈ CL,2L
b ([0, T ] × R

8). Moreover, assume that c(· , · , · , e) ∈ CL,2L
b ([0, T ] × R

2) with

the upper bound of the form K(1 ∧ |e|). Then the solution of the PIDE (2.2) satisfies u ∈
CL,2L

b ([0, T ] × R). Thus, by combining with the estimates (2.6) and (2.8) and the Itô-Taylor

expansion [23], we get
∣

∣Rn,X0

z

∣

∣ ≤ Chr,

∣

∣Rn,X0

γ

∣

∣ ≤ C

(2L)!
,

∣

∣Rn,X0

y

∣

∣ ≤ C

(

(∆tn)
3 + hr∆tn +

∆tn
(2L)!

)

,

(3.23)

where r = 1, 2, 4 when the difference operators Di
h for i = −1, 0, 1 are used in the scheme,

respectively. Here C > 0 is a constant depending on T, ρ, and the upper bounds of derivatives

of b, σ, c, f and Φ.

Assume that the Itô-Taylor schemes used to solve the MSDEJ in (3.1) are accurate enough,

then by (3.23), we come to the following conclusions:

1. If h = O((∆tn)
1/r) and 1/(2L)! = O(∆tn), we have

Rn,X0

y = O
(

(∆tn)
2
)

, Rn,X0

z = O (∆tn) , Rn,X0

γ = O (∆tn) ,

which indicates that Scheme 3.3 is first order accurate in time.
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2. If h = O((∆tn)
2/r) and 1/(2L)! = O((∆tn)

2), we have

Rn,X0

y = O
(

(∆tn)
3
)

, Rn,X0

z = O
(

(∆tn)
2
)

, Rn,X0

γ = O
(

(∆tn)
2
)

,

which indicates that Scheme 3.3 is second order accurate in time.

4. The Approximations of Mathematical Expectations

In this section, by using the Monte-Carlo method and the Gauss quadrature rules, we show

how to approximate the expectation E[·] and the conditional expectation E
x
tn [·] in Scheme 3.1

and further give the definitions of operators Ê[·] and Ê
x
tn [·] in Scheme 3.3.

We use the Monte Carlo method with the sample times Mc to approximate the expec-

tation E[·] in the scheme and the definition of the corresponding operator Ê[·] can be found

in [22]. Note that in high order Itô-Taylor schemes, the Brownian motion and the jump times

are coupled together [23], which will bring us some technique difficulties to approximate the

conditional expectation E
x
tn [·].

For simplicity of presentation, for two given functions g1 : R
+ × R × R → R and g2 :

R
+ × R× R× E → R, we define

g
Xx0

n

1 (tn, x) = E
[

g1
(

tn, X
x0

n , x
)]

,

g
Xx0

n

2 (tn, x, e) = E
[

g2
(

tn, X
x0

n , x, e
)]

.

Moreover, we define the operators L0, L1 and L−1
e by

L0g
Xx0

n

1 (tn, x) =
∂g

Xx0
n

1

∂t
(tn, x) +

∂g
Xx0

n

1

∂x
(tn, x)b

Xx0
n (tn, x)

+
1

2

∂2g
Xx0

n

1

∂x2

(

σXx0
n (tn, x)

)2
,

L1g
Xx0

n

1 (tn, x) =
∂g

Xx0
n

1

∂x
(tn, x)σ

Xx0
n (tn, x),

L−1
e g

Xx0
n

1 (tn, x) = g
Xx0

n

1

(

tn, x+ cX
x0
n (tn−, x, e)

)

− g
Xx0

n

1 (tn−, x).

4.1. The Euler scheme

In this subsection, we show how to approximate E
x
tn [Y

X0

n+1] when the Euler scheme is used

to solve MSDEJ, that is,

XX0

n+1 = XX0

n + b̃X
x0
n

(

tn, X
X0

n

)

∆tn + σXx0
n

(

tn, X
X0

n

)

∆Wn

+

∆Nn
∑

k=1

cX
x0
n

(

tn, X
X0

n , ek
)

, (4.1)

where the function

b̃(t, x′, x) = b(t, x′, x)−
∫

E

c(t, x′, x, e)λ(de), ∀ (t, x′, x) ∈ [0, T ]× R
d × R

d.

For convenience of presentation, we write Y X0
n = Yn and let

b̃n = b̃X
x0
n (tn, x), σn = σXx0

n (tn, x), cn(ek) = cX
x0
n (tn, x, ek).
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Then we get

E
x
tn [Yn+1] = E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

∆Nn
∑

k=1

cn(ek)

)]

= E

[

∞
∑

m=0

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

m
∑

k=1

cn(ek)

)

I{∆Nn=m}

]

=

∞
∑

m=0

E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

m
∑

k=1

cn(ek)

)]

P{∆Nn = m}

= E
x
tn,My

[Yn+1] +O
(

(∆tn)
My+1

)

, (4.2)

where My is the number of the truncated jumps and

E
x
tn,My

[Yn+1] =

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!
E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +

m
∑

k=1

cn(ek)

)]

is the approximation of E
x
tn [Yn+1]. Since {e1, · · · , em} are independent and identically dis-

tributed, we have

E
x
tn,My

[Yn+1] =

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!

×
∫

R

∫

E

· · ·
∫

E

Yn+1

(

x+ b̃n∆tn + σn

√

∆tns+

m
∑

k=1

cn(ek)

)

× exp(−s2/2)√
2π

m
∏

k=1

ρ(ek)de1 · · · demds

=

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!
√
π

L1
∑

j=1

L2
∑

j1=1

· · ·
L2
∑

jm=1

wjvj1 · · · vjm

× Yn+1

(

x+ b̃n∆tn + σn

√

2∆tnpj +

m
∑

k=1

E
[

c
(

tn, X
x0

n , x, qjk
)]

)

+Rρ,

where {pj}L1

j=1 are the roots of the Hermite polynomial of degree L1 and {wj}L1

j=1 the corre-

sponding weights, {qjk}L2

jk=1 are the points of the Gaussian quadrature rules chosen by ρ for

k = 1, . . . ,m, and {vjk}L2

jk=1 the corresponding weights, and Rρ is the corresponding error of

the Gaussian quadrature rules used in the above approximation, which can be sufficiently small

when L1 and L2 are large enough. Then we can define the approximation Ê
x
tn [Yn+1] by

Ê
x
tn [Yn+1] :=

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!
√
π

L1
∑

j=1

L2
∑

j1=1

· · ·
L2
∑

jm=1

wjvj1 · · · vjmIn+1
Xj

Yn+1, (4.3)

where InX denotes the cubic spline interpolation operator and

Xj = x+
ˆ̃
bn∆tn + σ̂n

√

2∆tnpj +

m
∑

k=1

Ê
[

c
(

tn, X
x0

n , x, qjk
)]

,

where
ˆ̃
bn = Ê

[

b̃
(

tn, X
x0

n , x
)]

, σ̂n = Ê
[

σ
(

tn, X
x0

n , x
)]

.
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Remark 4.1. The definition (4.3) shows that the local errors generated by the approximations

of conditional expectations can be neglected when the interpolation step size ∆x is sufficiently

small, and the sample times of Monte-Carlo method Mc, the numbers of Gaussian quadrature

points L1 and L2, and the number of the truncated jumps My are sufficiently large. We take ∆x

and My as an example to illustrate this assertion. Since the cubic spline interpolation method is

fourth order accurate, to balance the time discrete truncation error and the interpolation error,

that is, (∆x)4 = (∆t)3, we require ∆x = (∆t)3/4 to guarantee the second order of temporal

convergence rate of the scheme. On the other hand, the Eq. (4.2) indicates that the error

generated by the jump truncation is O((∆t)My+1) and thus it is enough to take My = 2 so as

not to affect the temporal convergence rate.

4.2. The Milstein scheme

In this subsection, we show how to approximate E
x
tn [Yn+1] when we take the Itô-Taylor

scheme (2.9) as the Milstein scheme

XX0

n+1 = XX0

n + b̃X
x0
n

(

tn, X
X0

n

)

∆tn + σXx0
n

(

tn, X
X0

n

)

∆Wn

+

∆Nn
∑

k=1

cX
x0
n

(

tn, X
X0

n , ek
)

+
1

2
L1σXx0

n

(

tn, X
X0

n

) (

(∆Wn)
2 −∆tn

)

+

∆Nn
∑

k=1

L1cX
x0
n

(

tn, X
X0

n , ek
)

(Wτk −Wtn)

+

∆Nn
∑

k=1

L−1
ek

σXx0
n

(

tn, X
X0

n

)

(Wtn+1
−Wτk)

+

∆Nn
∑

k=1

Nτk−

∑

j=Ntn+1

L−1
ej c

Xx0
n

(

tn, X
X0

n , ek
)

. (4.4)

Notice that the Milstein scheme (4.4) is much more complex than the Euler scheme (4.1), in

which the random jump times and the Brownian motion are coupled together. Hence, the

approximation of Ex
tn [Yn+1] in this case will be much more complicated as shown in the below.

To proceed, we let τ0 = tn and τ∆Nn+1 = tn+1, and define

∆Wτi = Wτi −Wτi−1
, i = 1, . . . ,∆Nn + 1.

Then by the same procedures used in (4.2), we deduce

E
x
tn [Yn+1] =

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!

× E

[

Yn+1

(

x+ b̃n∆tn + σn∆Wn +
m
∑

k=1

cn(ek)

+

m
∑

k=1

L1cn(ek) (Wτk −Wtn) +

m
∑

k=1

L−1
ek σn(Wtn+1

−Wτk)

+
1

2
L1σn

(

(∆Wn)
2 −∆tn

)

+

m
∑

k=1

k−1
∑

j=1

L−1
ej cn(ek)

)]

+O
(

(∆tn)
My+1

)

= E
x
tn,My

[Yn+1] +O
(

(∆tn)
My+1

)

.
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Then by the definition ∆Wτi = Wτi+1
−Wτi and the fact that the jump sizes are independent

with the jump times and the Brownian motion, we get

E
x
tn,My

[Yn+1] =

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!

×
∫

E

· · ·
∫

E

E

[

Yn+1

(

x+b̃n∆tn+σn

m+1
∑

i=1

∆Wτi+

m
∑

k=1

cn(ek)+

m
∑

k=1

L1cn(ek)

k
∑

i=1

∆Wτi

+

m
∑

k=1

L−1
ek σn

m+1
∑

i=k+1

∆Wτi+
1

2
L1σn

((

m+1
∑

i=1

∆Wτi

)2

−∆tn

)

+

m
∑

k=1

k−1
∑

j=1

L−1
ej cn(ek)

)]

m
∏

k=1

ρ(ek)de1 · · · dem. (4.5)

Since the random jump times and the Brownian motion are coupled together, it is difficult to

handle the expectation contained in the integrand. To settle this problem, we consider to use

the Monte Carlo method to approximate it. To this end, we sample the jump times {τ1, · · · , τm}
for Mc times and denote the s-th sample as

{τs1 , · · · , τsm}, s = 1, . . . ,Mc.

Let τs0 = tn and τsm+1 = tn+1, and define

∆τsi = τsi − τsi−1, i = 1, . . . ,m+ 1.

Then we can generate the s-th increments {∆W s
τ1 , · · · ,∆W s

τm+1
} of the Brownian motion by

∆W s
τi ∼

√

∆τsi N(0, 1), i = 1, . . . ,m+ 1. (4.6)

Now based on (4.6), we apply the Monte-Carlo method to (4.5) thus obtaining

E
x
tn,My

[Yn+1] =
1

Mc

Mc
∑

s=1

My
∑

m=0

exp(−λ∆tn)
(λ∆tn)

m

m!

×
∫

E

· · ·
∫

E

Yn+1

(

x+b̃n∆tn+σn

m+1
∑

i=1

∆W s
τi+

m
∑

k=1

cn(ek)+

m
∑

k=1

L1cn(ek)

k
∑

i=1

∆W s
τi

+

m
∑

k=1

L−1
ek

σn

m+1
∑

i=k+1

∆W s
τi +

1

2
L1σn

((

m+1
∑

i=1

∆W s
τi

)2

−∆tn

)

+

m
∑

k=1

k−1
∑

j=1

L−1
ej cn(ek)

)

m
∏

k=1

ρ(ek)de1 · · · dem +O
(

1√
Mc

)

,

which can be approximated by the appropriate Gaussian quadrature rules chosen by the prob-

ability density function ρ. Then the approximation Ê
x
tn [Yn+1] can be defined by the same way

as in (4.3). Moreover, we can obtain the same conclusions on the local errors for approximating

conditional expectations as in Remark 4.1.

4.3. The weak order 2.0 Itô-Taylor scheme

In this subsection, we consider to use the following weak order 2.0 Itô-Taylor scheme to

solve the MSDEJ in (1.1):
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XX0

n+1 = XX0

n + b̃X
x0
n

(

tn, X
X0

n

)

∆tn + σXx0
n

(

tn, X
X0

n

)

∆Wn

+

∆Nn
∑

k=1

cX
x0
n

(

tn, X
X0

n , ek
)

+
1

2
L0b̃X

x0
n

(

tn, X
X0

n

)

(∆tn)
2

+

∆Nn
∑

k=1

L−1
ek

σXx0
n

(

tn, X
X0

n

)

(Wtn+1
−Wτk)

+

∆Nn
∑

k=1

L1cX
x0
n

(

tn, X
X0

n , ek
)

(Wτk −Wtn)

+
1

2

(

L1b̃X
x0
n

(

tn, X
X0

n

)

+ L0σXx0
n

(

tn, X
X0

n

)

)

∆Wn∆tn

+
1

2
L1σXx0

n

(

tn, X
X0

n

) (

(∆Wn)
2 −∆tn

)

+

∆Nn
∑

k=1

Nτk−

∑

j=Ntn+1

L−1
ej c

Xx0
n

(

tn, X
X0

n , ek
)

+

∆Nn
∑

k=1

L0cX
x0
n

(

tn, X
X0

n , ek
)

(τk − tn) +

∆Nn
∑

k=1

L−1
ek b̃

Xx0
n

(

tn, X
X0

n

)

(tn+1 − τk) . (4.7)

The approximation of Ex
tn [Yn+1] for the weak order 2.0 Itô-Taylor scheme (4.7) is similar to

the one for the Milstein scheme (4.4) as shown in the above subsection. So we omit it here.

We close this section by giving some remarks about the above methods used to approximate

the conditional expectations:

• For the simulations of the jump times of Poisson random measure, the readers are referred

to [6, Chapter 6].

• The Eq. (4.2) indicates that taking the truncated jump number My = 2 is enough to

guarantee the second order accuracy of Scheme 3.3.

• Gaussian quadrature rules are used to approximate the solution Γt as well as the con-

ditional expectations in Scheme 3.3, which are chosen by the distribution of the jump

size e.

• Note that the approximations of Ex
tn [Yn+1∆W̃n] and E

x
tn [Yn+1∆µ̃∗

n] (see [20,32]) in Sche-

me 3.2 used to solve Zn and Γn are much more complicated than the one of Ex
tn [Yn+1],

since they are coupled with the increments of the Brownian motion and the Poisson

random measure. Thus Scheme 3.3 is easier to implement than the fully discrete version

of Scheme 3.2 in practice.

5. Numerical Experiments

In this section, we shall present several numerical examples to show the performance of

Scheme 3.3.

In the following examples, we set T = 1.0 and take uniform partition in time with time step

∆t = T/N , where the integer N is the partition number. The initial values will be chosen in

a bounded domain [xL, xR] with xL ≤ 0 ≤ xR, i.e. x0, X0 ∈ [xL, xR]. In all our tests, we take

x0 = 0 and adopt the maximum norm to measure the errors between the true solutions and the

numerical ones. We shall also use EY , EZ and EΓ to represent the maximum errors of Y, Z and

Γ, that is
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EY = max
X0∈[xL,xR]

∣

∣Y 0,X0

0 − Y X0

0

∣

∣,

EZ = max
X0∈[xL,xR]

∣

∣Z0,X0

0 − ZX0

0

∣

∣,

EΓ = max
X0∈[xL,xR]

∣

∣Γ0,X0

0 − ΓX0

0

∣

∣.

For periodic cases, without loss of generality, we assume that the period is [−π, π] and we take

[xL, xR] = [−π, π]. For nonpriodic cases, we take [xL, xR] = [−10, 10].

Our main goal of the numerical experiments is to demonstrate the second order temporal

accuracy of the fully discrete Scheme 3.3. Hence in the approximations of expectations and

conditional expectations, we set the sample times of Monte-Carlo method and the numbers of

Gaussian quadrature points to be large enough such that the errors resulted from the use of

Monte-Carlo method and Gaussian quadrature rules are negligible. Besides, we take InX as the

cubic spline interpolation method in Scheme 3.3. Since the cubic spline interpolation method is

fourth order accurate and the finite difference approximation of Di
h is rth order accurate with

r = 1, 2, 4 for i = −1, 0, 1, respectively, to balance the time discrete truncation errors and the

space discrete truncation errors, we require ∆x = (∆t)3/4 and h = (∆t)2/r .

In what follows, the convergence rate (CR) with respect to ∆t is obtained by the least square

fitting.

Example 5.1. In this example, we consider a nonlinear MFBSDEJs driven by multi-dimensi-

onal Brownian moiton and jump size.

Let Wt = (W 1
t , · · · ,Wm

t ) be an m-dimensional Brownian motion and e = (e1, · · · , eq)
a q-dimensional jump size with W i

t and ej being independent with each other. Then we consider

the following MFBSDEJs driven by Wt and e:

dX0,X0

t = bdt+

m
∑

i=1

σidW
i
t +

∫

E

q
∑

i=1

arcsin(ei)µ̃(de, dt),

−dY 0,X0

t =

(

1

2

(

Y 0,X0

t

m
∑

i=1

σ2
i − 2Γ0,X0

t

)

− (1 + b)

m

m
∑

i=1

Z0,X0

i,t

σi

+ E

[((

2q

πq
− 1

)

Y 0,x0

t − 1

λ
Γ0,x0

t

)3
])

dt

−
m
∑

i=1

Z0,X0

i,t dW i
t −

∫

E

U0,X0

t (e)µ̃(de, dt),

Y 0,X0

T = sin
(

T +X0,X0

T

)

− cos
(

T +X0,X0

T

)

.

(5.1)

We take the jump space E = [−1, 1]q and define the Lévy measure by

λ(de) = λρ(e)de = λ
1

πq

q
∏

i=1

1
√

1− e2i
X[−1,1](ei)dei,

where λ = λ(E) is the jump intensity and

ρ(e) =
1

πq

q
∏

i=1

1
√

1− e2i
X[−1,1](ei)

is the probability density of e. Then the analytic solution yields
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Y 0,X0

t = sin
(

t+X0,X0

t

)

− cos
(

t+X0,X0

t

)

,

Z0,X0

i,t = σi

(

cos
(

t+X0,X0

t

)

+ sin
(

t+X0,X0

t

)

)

, i = 1, . . . ,m,

Γ0,X0

t = λ

((

2

π

)q

− 1

)

(

sin
(

t+X0,X0

t

)

− cos
(

t+X0,X0

t

)

)

.

Note that the true solution of the MSDEJ in (5.1) is

X0,X0

t = X0 + bt+

m
∑

i=1

σiW
i
t +

Nt
∑

k=1

q
∑

i=1

arcsin
(

eki
)

.

Hence, the errors of the Itô-Taylor schemes used to solve the MSDEJ vanish, and the orders of

convergence rate of Scheme 3.3 are independent with Itô-Taylor schemes.

In our experiments, we take λ = 2.0 and set b = 1 and σi = 1/m for i = 1, . . . ,m, and carry

out the following two tests:

1. To test the effect of finite difference approximations on convergence rates of Scheme 3.3,

we set m = q = 2 and choose Di
h, i = 0,±1 in the scheme with h = (∆t)1/2,∆t and (∆t)2,

respectively.

2. To compare the effectiveness of Schemes 3.2 and 3.3, we setm = q = 3 and use Schemes 3.2

and 3.3 to solve (5.1), respectively. In the use of Scheme 3.3, we choose the finite difference

approximation of D1
h with h = (∆t)1/2.

It is worth noting that when h = (∆t)2 with ∆t = 1/256, the error of D1
h becomes

h4 = (∆t)8 =
1

264
≈ 0. (5.2)

In Tables 5.1-5.4, we have listed the numerical results of our experiments, in which the unit of

the running time (RT) is second. We also plot the errors of the two schemes against ∆t and

the running times for m = q = 3 in Figs. 5.1-5.4.

Fig. 5.1. Errors of the two schemes against ∆t for solving Y with m = q = 3.
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Fig. 5.2. Errors of the two schemes against ∆t for solving Z with m = q = 3.

Fig. 5.3. Errors of the two schemes against ∆t for solving Γ with m = q = 3.

Fig. 5.4. Errors of the two schemes for the solution Y against the running times with m = q = 3.
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Table 5.1: Errors and convergence rates of Schemes 3.3 for D−1
h with m = q = 2.

N = 16 N = 32 N = 64 N = 128 N = 256 CR

h = (∆t)1/2

EY 2.967E-01 2.238E-01 1.645E-01 1.191E-01 8.552E-02 0.450

EZ 2.298E-01 1.742E-01 1.285E-01 9.337E-02 6.720E-02 0.445

EΓ 3.529E-01 2.662E-01 1.956E-01 1.417E-01 1.017E-01 0.450

h = ∆t

EY 7.360E-02 4.042E-02 2.123E-02 1.088E-02 5.511E-03 0.937

EZ 5.834E-02 3.200E-02 1.678E-02 8.596E-03 4.351E-03 0.939

EΓ 8.755E-02 4.808E-02 2.525E-02 1.295E-02 6.555E-03 0.937

h = (∆t)2

EY 7.786E-03 1.999E-03 5.067E-04 1.275E-04 3.200E-05 1.982

EZ 4.549E-03 1.207E-03 3.115E-04 7.908E-05 2.250E-05 1.925

EΓ 9.263E-03 2.378E-03 6.029E-04 1.517E-04 3.807E-05 1.982

Table 5.2: Errors and convergence rates of Schemes 3.3 for D0
h with m = q = 2.

N = 16 N = 32 N = 64 N = 128 N = 256 CR

h = (∆t)1/2

EY 3.538E-02 1.592E-02 7.614E-03 3.738E-03 1.854E-03 1.060

EZ 2.372E-02 1.145E-02 5.732E-03 2.883E-03 1.448E-03 1.006

EΓ 4.209E-02 1.893E-02 9.056E-03 4.446E-03 2.206E-03 1.060

h = ∆t

EY 1.328E-02 3.402E-03 8.620E-04 2.169E-04 5.442E-05 1.983

EZ 8.846E-03 2.265E-03 5.746E-04 1.443E-04 3.770E-05 1.972

EΓ 1.580E-02 4.046E-03 1.025E-03 2.580E-04 6.472E-05 1.983

h = (∆t)2

EY 1.248E-02 3.217E-03 8.177E-04 2.061E-04 5.176E-05 1.979

EZ 8.831E-03 2.276E-03 5.792E-04 1.464E-04 4.905E-05 1.894

EΓ 1.485E-02 3.827E-03 9.726E-04 2.452E-04 6.157E-05 1.979

From the data in Tables 5.1-5.4, we draw the following conclusions:

• The convergence rates in Tables 5.1-5.3 show that Scheme 3.3 is second order accurate

when the parameter h ≤ (∆t)2,∆t and (∆t)1/2 for the finite difference approximations of

Di
h with i = −1, 0, 1, respectively. This is due to the reason that the errors of these three

approximations are h, h2 and h4, respectively.

• The errors in Tables 5.2-5.3 indicate that the accuracy of Scheme 3.3 is not sensitive

to h when it is small enough. Namely, our scheme is stable with respect to h. The

estimate (5.2) also implies that the finite difference approximations can be regarded as

the derivatives of the approximated functions for small ∆t.
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Table 5.3: Errors and convergence rates of Schemes 3.3 for D1
h with m = q = 2.

N = 16 N = 32 N = 64 N = 128 N = 256 CR

h = (∆t)
1
2

EY 1.262E-02 3.250E-03 8.254E-04 2.080E-04 5.221E-05 1.980

EZ1
8.815E-03 2.269E-03 5.762E-04 1.452E-04 3.644E-05 1.980

EΓ 1.501E-02 3.866E-03 9.818E-04 2.474E-04 6.210E-05 1.980

h = ∆t

EY 1.248E-02 3.217E-03 8.177E-04 2.061E-04 5.176E-04 1.979

EZ1
8.832E-03 2.277E-03 5.790E-04 1.461E-04 4.314E-05 1.932

EΓ 1.485E-02 3.826E-03 9.726E-04 2.451E-04 6.158E-05 1.979

h = (∆t)2

EY 1.248E-02 3.217E-03 8.177E-04 2.061E-04 5.176E-04 1.979

EZ1
8.831E-03 2.276E-03 5.792E-04 1.464E-04 4.904E-05 1.894

EΓ 1.485E-02 3.826E-03 9.726E-04 2.452E-04 6.157E-05 1.979

Table 5.4: Errors and convergence rates of Schemes 3.2 and 3.3 with m = q = 3.

N = 16 N = 32 N = 64 N = 128 N = 256 CR

Scheme 3.2

EY 3.589E-02 9.383E-03 2.402E-03 6.078E-04 1.529E-04 1.970

EZ 2.829E-02 7.328E-03 1.867E-03 4.715E-04 1.185E-04 1.976

EΓ 7.296E-02 1.890E-02 4.815E-03 1.216E-03 3.057E-04 1.976

RT 3.78 8.67 26.25 88.60 303.79

Scheme 3.3

EY 1.499E-02 3.884E-03 9.888E-04 2.495E-04 6.270E-05 1.977

EZ 8.573E-03 2.222E-03 5.655E-04 1.426E-04 3.583E-05 1.977

EΓ 2.225E-02 5.763E-03 1.467E-03 3.702E-04 9.300E-05 1.977

RT 3.64 7.99 24.77 64.29 220.59

• The data in Table 5.4 shows that Scheme 3.3 consumes much less time than Scheme 3.2

to solve the MFBSDEJs (5.1) because of its simpler structure. Moreover, the accuracy of

Scheme 3.3 outperforms Scheme 3.2. For instance, to yield the numerical errors around

10−4, Scheme 3.3 needs the time step size ∆t = 1/128, while ∆t = 1/256 is used for

Scheme 3.2 reaching the same magnitude of the numerical errors. In other words, given

a requirement of accuracy, Scheme 3.3 allows larger time step sizes than Scheme 3.2, and

thus, is less time-consuming and more efficient.

According to the above conclusions, for simplicity, we choose the finite difference operator

D1
h with the optimal step size h = (∆t)1/2 in the following examples.
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Example 5.2. Consider the MFBSDEJs with nonperiodic solution

dX0,X0

t =
E
[

X0,x0

t

]

1 + exp(t)
dt+

1

1 + exp
(

t−
(

X0,X0

t

)2
/2
)

dWt +

∫

E

e

2
µ̃(de, dt),

−dY 0,X0

t =

(

− Y 0,X0

t

(

1− X0,X0

t E
[

X0,x0

t

]

1 + exp(t)

)

+
exp

(

t−
(

X0,X0

t

)2
/2
)

2
(

1 + Y 0,X0

t

)2

+
X0,X0

t Z0,X0

t

2
(

1+Y 0,X0

t

)−Γ0,X0

t +
1

3
E

[

(

Y 0,x0

t − exp

(

t−1

2

(

X0,x0

t

)2
))3

])

dt

− Z0,X0

t dWt −
∫

E

U0,X0

t (e)µ̃(de, dt),

Y 0,X0

T = exp

(

T − 1

2

(

X0,X0

T

)2
)

.

(5.3)

Define the Lévy measure by

λ(de) = λρ(e)de = λ
1√
2π

exp

(

−e2

2

)

de,

where λ = λ(E) is the jump intensity and

ρ(e) =
1√
2π

exp

(

−e2

2

)

is the probability density of e. Then the analytic solution is

Y 0,X0

t = exp

(

t− 1

2

(

X0,X0

t

)2
)

,

Z0,X0

t = −X0,X0

t exp
(

t−
(

X0,X0

t

)2
/2
)

1 + exp
(

t−
(

X0,X0

t

)2
/2
)

,

Γ0,X0

t = λ

(

2√
5
exp

(

t− 2

5

(

X0,X0

t

)2
)

− exp

(

t− 1

2

(

X0,X0

t

)2
))

.

We take λ = 0.5 and choose the Euler scheme, the Milstein scheme and the weak order 2.0

Itô-Taylor scheme to solve the MSDEJ, respectively. The numerical results are shown in Ta-

ble 5.5 as below.

The numerical results in Table 5.5 show that Scheme 3.3 is stable and accurate for solving

the MFBSDEJs (5.3) with nonperiodic solution. Moreover, Scheme 3.3 is convergent with first

order when the Euler scheme or the Milstein scheme are used, and second order when the weak

order 2.0 Itô-Taylor scheme is used to solve the MSDEJ. This is mainly due to the fact that

the weak convergence orders of these three schemes are 1.0, 1.0 and 2.0, respectively (see [23]).

Note that when solving the MFBSDEJs with periodic solutions, the space domains are fixed

as [−π, π] for all the time levels. However, in the nonperiodic cases, the space domains grow

larger with the iteration of the time, the speed of which is problem dependent and can be rapid

(see [7]). Therefore it is much more time consuming to solve the MFBSDEJs with nonperiodic

solutions in general.
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Table 5.5: Errors and convergence rates of Scheme 3.3 with λ = 0.5.

N = 4 N = 8 N = 16 N = 32 N = 64 CR

Eul

EY 1.019E-02 4.050E-03 1.895E-03 1.074E-03 5.649E-04 1.026

EZ 8.923E-03 4.543E-03 2.507E-03 1.333E-03 6.873E-04 0.917

EΓ 8.347E-04 5.469E-04 3.058E-04 1.605E-04 8.275E-05 0.844

Mil

EY 1.436E-02 4.908E-03 2.213E-03 9.955E-04 5.479E-04 1.173

EZ 1.356E-02 5.258E-03 2.752E-03 1.275E-03 5.556E-04 1.126

EΓ 1.575E-03 7.190E-04 3.499E-04 1.710E-04 8.369E-05 1.054

W-2.0

EY 1.221E-02 2.784E-03 6.971E-04 1.801E-04 4.605E-05 2.005

EZ 8.301E-03 1.946E-03 5.573E-04 1.651E-04 3.561E-05 1.930

EΓ 5.527E-04 1.392E-04 4.714E-05 1.249E-05 2.975E-06 1.855

Example 5.3. In this example, we consider a two-dimensional problem

(

dX0,X0

1,t

dX0,X0

2,t

)

=

(

E
[

sin
(

X0,x0

2,t

)]

E
[

sin
(

X0,x0

1,t

)]

)

dt+







0
1

3
E
[

cos2
(

X0,x0

1,t

)]

1

3
E
[

cos2
(

X0,x0

2,t

)]

0







×
(

dW 1
t

dW 2
t

)

+

∫

E

(

e1
e2

)

µ̃(de, dt),

−dY 0,X0

t =

(

1

18
Y 0,X0

t

(

(

E
[

cos2
(

X0,x0

1,t

)]

)2

+
(

E
[

cos2
(

X0,x0

2,t

)]

)2
)

−
(

Y 0,X0

t +Γ0,X0

t

)

− exp(t) cos
(

X0,X0

1,t +X0,X0

2,t

)

E
[

sin
(

X0,x0

1,t

)

+sin
(

X0,x0

2,t

)]

+
1

9
E
[

Z0,x0

1,t

]

E
[

cos2
(

X0,x0

1,t

)]

− 1

9
E
[

Z0,x0

2,t

]

E
[

cos2
(

X0,x0

2,t

)]

)

dt

− Z0,X0

1,t dW 1
t − Z0,X0

2,t dW 2
t −

∫

E

U0,X0

t (e)µ̃(de, dt),

Y 0,X0

T = exp(T ) sin
(

X0,X0

1,T +X0,X0

2,T

)

.

(5.4)

Take E = [−δ, δ]2 and define the Lévy measure by

λ(de) = λρ(e)de = λ
1

4δ2
X[−δ,δ]2(e1, e2)de1de2,

where λ = λ(E) is the jump intensity and

ρ(e) =
1

4δ2
X[−δ,δ]2(e1, e2)

is the probability density of e. Then the analytic solution is

Y 0,X0

t = exp(t) sin
(

X0,X0

1,t +X0,X0

2,t

)

,

Z0,X0

1,t =
1

3
exp(t) cos

(

X0,X0

1,t +X0,X0

2,t

)

E
[

cos2
(

X0,x0

2,t

)]

,

Z0,X0

2,t =
1

3
exp(t) cos

(

X0,X0

1,t +X0,X0

2,t

)

E
[

cos2
(

X0,x0

1,t

)]

,

Γ0,X0

t =
λ

4δ2
exp(t)

(

2 sin
(

X0,X0

1,t +X0,X0

2,t

)

− sin
(

X0,X0

1,t +X0,X0

2,t + 2δ
)

− sin
(

X0,X0

1,t +X0,X0

2,t − 2δ
)

− 4δ2 sin
(

X0,X0

1,t +X0,X0

2,t

)

)

.
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Table 5.6: Errors and convergence rates of Scheme 3.3 with λ = 1.0.

N = 4 N = 8 N = 16 N = 32 N = 64 CR

Eul

EY 3.558E-02 1.738E-02 8.509E-03 4.253E-03 2.123E-03 1.017

EZ 9.392E-02 4.717E-02 2.356E-02 1.173E-02 5.844E-03 1.002

EΓ 1.249E-02 5.782E-03 2.834E-03 1.409E-03 7.049E-04 1.033

Mil

EY 5.378E-02 2.894E-02 1.409E-02 6.072E-03 3.089E-03 1.050

EZ 8.488E-02 5.251E-02 2.810E-02 1.528E-02 7.250E-03 0.888

EΓ 2.971E-02 8.555E-03 2.645E-03 1.507E-03 5.510E-04 1.401

W-2.0

EY 1.757E-02 2.223E-03 5.667E-04 2.021E-04 6.104E-05 1.980

EZ 8.416E-03 9.422E-04 2.069E-04 8.032E-05 2.499E-05 2.034

EΓ 1.848E-03 2.621E-04 4.639E-05 1.661E-05 5.102E-06 2.098

We take λ = 4δ2 and set δ = 0.5, i.e. λ = 1.0. We implement Scheme 3.3 to solve the two-

dimensional MFBSDEJs (5.4) and test the Euler scheme, the Milstein scheme and the weak

order 2.0 Itô-Taylor scheme for solving the MSDEJ, respectively. The numerical results are

listed in Table 5.6.

The results in Table 5.6 clearly show that Scheme 3.3 also works well and is an order

two scheme for solving the multi-dimensional MFBSDEJs if the associated multi-dimensional

MSDEJ is solved by the weak order 2.0 Itô-Taylor scheme.

6. Conclusions

In this work, we proposed a new second order accurate scheme for solving decoupled MF-

BSDEJs. The key features are that the finite difference approximations and the Gaussian

quadrature rule are respectively used to approximate the derivative and the integral in the

solution representations, which dramatically simplify the structure of the proposed scheme.

Numerical results showed that the proposed scheme is stable, efficient, and can be of second

order accuracy for solving MFBSDEJs when the weak order 2.0 Itô-Taylor scheme is used to

solve the MSDEJ.
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