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Abstract

This article presents an image space branch-reduction-bound algorithm for globally

solving the sum of affine ratios problem. The algorithm works by solving its equivalent

problem, and by using convex hull and concave hull approximation of bilinear function,

we can construct the affine relaxation problem of the equivalent problem, which can be

used to compute the lower bounds during the branch-and-bound search. By subsequently

refining the initial image space rectangle and solving a series of affine relaxation problems,

the proposed algorithm is convergent to the global optima of the primal problem. For

improving the convergence speed, an image space region reducing method is adopted for

compressing the investigated image space rectangle. In addition, the global convergence of

the algorithm is proved, and its computational complexity is analyzed. Finally, compar-

ing with some existing methods, numerical results indicate that the algorithm has better

computational performance.
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1. Introduction

Consider the following sum of affine ratios problem defined by

minG(x) =

p
∑

i=1

cTi x+ fi
dTi x+ gi

s.t. x ∈ D = {x ∈ Rn |Ax ≤ b},

(1.1)

where p ≥ 2, A is an m × n order real matrix, b is an m dimensional column vector, D is

a nonempty bounded polyhedron set, cTi x + fi and dTi x + gi are all affine functions defined

over D, and for any x ∈ D, and for each ratio, the denominator dTi x+ gi 6= 0.

From 1980s, the problem (1.1) has attracted a growing attention of many practitioners and

researchers. From the perspective of applications, the general form and special form of the

problem (1.1) have a wide range of applications in information theory, optical processing of in-
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formation, macroeconomic planning, cluster analysis, loading problem, optimum transportation

plan, game theory problem, optimal paths in graph theory, computer vision, location problem,

and so on, see [10–13,17,22,34,35]. From a theoretical point of view, since the objective function

of the problem (1.1) is neither quasiconvex nor quasiconcave, that is to say, it is a nonconvex

global optimization problem, which usually possesses many local optimal solutions that are not

globally optimal. Therefore, there are some important theoretical and computational difficul-

ties in solving the problem (1.1).

Especially in the past 30 years, many algorithms have been proposed and developed for glob-

ally solving the problem (1.1). For example, Konno et al. [18] and Cambini et al. [2] propose

separately a parametric simplex algorithm and a parametric linear programming algorithm for

solving the problem (1.1) with only two affine ratios terms, and with that the numerator and de-

nominator of each affine ratio are positive over the feasible region. By solving the corresponding

equivalent concave minimization problem, Konno and Yamashita [19] propose an outer approx-

imation algorithm for solving the problem (1.1) with the assumptions that all numerators must

be nonnegative and all denominators must be positive over the feasible region. By iteratively

searching the image space of affine ratios, Falk and Palocsay [4] first propose an image space

analysis method for solving the sum of affine ratios problem. Based on the monotonic opti-

mization theory, and by solving a parametric linear programming problem at each iteration,

Phuong and Tuy [24] propose a unified monotonic optimization algorithm for globally solving

the generalized affine fractional programming problem which includes the sum of affine ratios

problem.

In addition, a large number of branch-and-bound algorithms have been also proposed

for solving the problem (1.1). For example, Quesada and Grossman [25], and Konno and

Fukaishi [16] propose two rectangular branch-and-bound algorithms for solving the problem

(1.1) with the assumptions that each numerator must be nonnegative and each denominator

must be positive over the feasible region. By using trapezoidal partition and concave envelope

bound, Kuno [20,21] propose two trapezoidal branch-and-bound algorithms for globally solving

the problem (1.1) with the assumptions that all numerators and denominators of affine ra-

tios must be positive over the feasible region. By utilizing simplicial partition and Lagrangian

duality bound technique, Benson [1] presents a simplicial branch-and-bound duality bound

method for globally solving the problem (1.1). By replacing each denominator with the up-

per bound of its interval, to construct the affine relaxation of the original problem, Ji and

Zhang [7] propose a branch-and-bound algorithm for solving the problem (1.1) with that all

numerators and denominators of ratios must be positive over the feasible region. Recently, by

utilizing the new two-level affine relaxation technique to construct the linear relaxation problem,

Jiao et al. [14] present a rectangle branch-and-bound algorithm for globally solving the general-

ized affine multiplicative programming problem which includes the sum of affine ratios problem;

by using region division and reduction techniques, Shen et al. [27,29,31] propose three different

polynomial-time approximation algorithms for special cases of the problem (1.1) and the gen-

eralized affine fractional programming problem, respectively; by using the well-known concave

envelope and convex underestimation method to derive the relaxation problem, Shen et al. [28]

present a simplicial branch-and-bound algorithm for globally solving the sum of convex-convex

ratios problem. For an excellent review of fractional programming algorithms, we can refer to

Schaible and Shi [26] and Stancu-Minasian [36].

In this paper, we will present a practical image space branch-and-bound algorithm for glob-

ally solving the problem (1.1), where the branch-and-bound search takes place in the image
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space Rp of affine ratios. To this end, first of all, we transform the problem (1.1) into an equiv-

alent problem (2.4), which has the same global optimum solution as the problem (1.1). Next, by

utilizing convex hull and concave hull approximation of bilinear function, we construct the affine

relaxation of nonlinear equality constraints in the problem (2.4), so that the affine relaxation

problem of the problem (2.4) can be established, and which can be employed to compute the

lower bound of the global minimum of the problem (2.4). In addition, a new image space region

reducing method is proposed for improving the computational efficiency of the algorithm. In

this light, an image space branch-reduction-bound algorithm is established by combining the

affine relaxation problem and the branching rule with the image space region reducing method.

The algorithm iteratively subdivides and successively searches the refined image space rectan-

gles of Rp, and solves a series of affine relaxation problems, feasible solutions of the problem

(1.1) can be found, and when the algorithm is infinite, any of accumulation points of the feasible

solutions sequence is the global optimal solution of the problem (1.1).

Comparing with the algorithms reviewed above, the presented algorithm in this paper has

the following several potential practical and computational superiorities. First of all, the pre-

sented algorithm does not impose any special sign restrictions on all numerators and denomi-

nators of affine ratios, the only assumption is that all denominators of affine ratios are nonzero

over the feasible region, but some reviewed methods can solve only particular cases. Secondly,

the branch-and-bound search occurs in the image space Rp of affine ratios rather than the

space Rn of decision variable x, where p is the number of affine ratios. Since the dimension

number n of decision variable x usually far exceeds the number p of affine ratios, by analyzing

the computational complexity of the algorithm, it can be concluded that this will reduce the

maximum number of iterations of the algorithm, so that this significantly shortens the compu-

tational time required to find a global optimum solution of the problem (1.1), it is to say, the

image space branch-reduction-bound algorithm economizes the required computation. Thirdly,

during the branch-and-bound searching process, all subproblems which need to be solved are

linear programming problems, which can be solved by any effective linear programming solvers.

Fourthly, the new image space region reducing technique is presented for enhancing the compu-

tational efficiency of the algorithm. Finally, numerical experimental results are given to validate

that the presented algorithm can solve all test problems for finding their approximate global

optimal solutions within the given tolerance with better computational performance.

The remaining sections of the paper are organized as follows. In Section 2, the problem

(1.1) is transformed into the equivalent problems (2.3) and (2.4). Next, in Section 3, we derive

the affine relaxation problem of the problem (2.4). In Section 4, the approximation of affine

relaxation is derived by successive refinement of the image space region. In Section 5, an image

space branch-reduction-bound algorithm is designed, the global convergence of the algorithm

is proved, and the computational complexity of the algorithm is analyzed. In Section 6, nu-

merical experimental results are given to verify the computational advantages of the presented

algorithm. In Section 7, comparing the existing relaxation methods, the superiority of the

algorithm is implied. Further improvement in the future are explored and discussed, and the

improvement ideas are briefly described in Section 8. Finally, some conclusions are drawn in

Section 9.

2. Preliminary Results

To find a global optimal solution of the problem (1.1), we need to transform the problem

(1.1) into the equivalent problems (2.3) and (2.4). Next, the fundamental assignment is to
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globally solve the problem (2.4). To this end, for each i = 1, 2, . . . , p, we need to compute the

lower bound

L0
i = min

x∈D

cTi x+ fi
dTi x+ gi

,

and the upper bound

U0
i = max

x∈D

cTi x+ fi

dTi x+ gi

of affine ratio (cTi x+ fi)/(d
T
i x+ gi). Clearly, first of all, we consider solving the following linear

fractional programming problems:

L0
i = min

x∈D

cTi x+ fi
dTi x+ gi

, i = 1, 2, . . . , p. (2.1)

Notice that each affine ratio (cTi x+ fi)/(d
T
i x+ gi) is quasi-convex, so it can attain the

minimum value at some vertex of D. Since dTi x + gi 6= 0, and without loss of generality,

we can assume that dTi x + gi > 0. Therefore, in order to solve the problem (2.1), for each

i ∈ {1, 2, . . . , p}, by introducing new variables ti = 1/(dTi x+ gi) and z = tix, then the above

problem (2.1) can be reformulated as the following linear programming problems:

min cTi z + fiti

s.t. dTi z + giti = 1,

Az ≤ bti, ti > 0, i = 1, 2, . . . , p.

(2.2)

The key equivalence for the problems (2.1) and (2.2) is given by the following theorem.

Theorem 2.1 ([27]). x∗ ∈ Rn is a global optimum solution of the problem (2.1) if and only if

(z∗, t∗i ) ∈ Rn+1 is a global optimum solution of the problem (2.2) with z∗ = t∗i x
∗. In addition,

the problems (2.1) and (2.2) have the equal global optimal value.

Proof. The conclusion of the theorem is easily deduced by the well-known Charnes-Cooper

transformation [3], thus the proof is omitted. �

Theorem 2.1 shows that each L0
i can be obtained by solving a linear programming prob-

lem (2.2). Similarly, we can give the upper bound

U0
i = max

x∈D

cTi x+ fi
dTi x+ gi

of each affine ratio (cTi x+ fi)/(d
T
i x+ gi). Without loss of generality, we can obtain the initial

image space rectangle

Λ0 =
{

s ∈ Rp | L0
i ≤ si ≤ U0

i , i = 1, 2, . . . , p
}

,

so that we can get the equivalent problem (2.3) of the problem (1.1) as follows:

min F (x, s) =

p
∑

i=1

si

s.t. si =
cTi x+ fi

dTi x+ gi
, i = 1, 2, . . . , p,

x ∈ D, s ∈ Λ0.

(2.3)
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It is obvious that the feasible region

Z =

{

(x, s) ∈ Rn+p
∣

∣

∣

cTi x+ fi
dTi x+ gi

− si = 0, i = 1, 2, . . . , p, x ∈ D, s ∈ Λ0

}

of the problem (2.3) is a nonempty compact convex set, and the feasible region Z 6= ∅ if and

only if D 6= ∅. The important equivalence conclusions of the problems (1.1) and (2.3) are given

by the following theorem.

Theorem 2.2. Assume that x∗ is a global optimum solution for the problem (1.1), then (x∗, s∗)

is a global optimum solution for the problem (2.3), where

s∗i =
cTi x

∗ + fi
dTi x

∗ + gi
, i = 1, 2, . . . , p.

Conversely, assume that (x∗, s∗) is a global optimum solution for the problem (2.3) with that

s∗i =
cTi x

∗ + fi

dTi x
∗ + gi

, i = 1, 2, . . . , p,

then x∗ is a global optimum solution for the problem (1.1).

Proof. The conclusions of the theorem can be easily obtained, so the proof is omitted. �

By the equivalence conclusions of Theorem 2.2, for globally solving the problem (1.1), we

can substitute for solving its equivalent problem (2.3). In addition, the problems (1.1) and (2.3)

have the same global minimum value.

By the denominator dTi x + gi 6= 0 of each ratio, the problem (2.3) can be rewritten into

the following equivalent problem (2.4), which has the same global optimal solution and optimal

value as the problem (2.3):

min F (x, s) =

p
∑

i=1

si

s.t. si
(

dTi x+ gi
)

= cTi x+ fi, i = 1, 2, . . . , p,

x ∈ D, s ∈ Λ0.

(2.4)

It is obvious that the feasible region

Z =
{

(x, s) ∈ Rn+p | si
(

dTi x+ gi
)

= cTi x+ fi, i = 1, 2, . . . , p, x ∈ D, s ∈ Λ0
}

of the problem (2.3) is a nonempty compact convex set, and the feasible region Z 6= ∅ if and

only if D 6= ∅.

3. Deduction of Affine Relaxation

To globally solve the problem (2.4), we need to construct its affine relaxation problem,

which can offer the reliable lower bounds in the branch-and-bound search. By extending the

Reformulation-Linearization Technique of bilinear function proposed by Sherali and Adams [32],

we give an affine relaxation approach for the problem (2.4). The detailed deriving process of

the affine relaxation problem of the problem (2.4) is given as follows.
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Without loss of generality, for each i = 1, 2, . . . , p, solving the linear programming problems

αi = minx∈D d
T
i x + gi and βi = maxx∈D d

T
i x + gi, we can get the lower bound and the upper

bound of the denominator of each ratio. First of all, for any Λ = {s ∈ Rp | Li ≤ si ≤ Ui,

i = 1, 2, . . . , p} ⊆ Λ0, we define the set

RCi =
{

(x, si) ∈ Rn+1 | αi ≤ dTi x+ gi ≤ βi, Li ≤ si ≤ Ui

}

, i = 1, 2, . . . , p.

For any (x, si) ∈ RCi with si 6= 0, by the definition of the set RCi, we have

dTi x+ gi − αi ≥ 0, si − Li ≥ 0, dTi x+ gi − βi ≤ 0, si − Ui ≤ 0.

Therefore, we can get that
(

dTi x+ gi − αi

)

(si − Li) ≥ 0,
(

dTi x+ gi − βi
)

(si − Ui) ≥ 0,

i.e.

si
(

dTi x+ gi
)

≥ αisi + Li

(

dTi x+ gi
)

− αiLi,

si
(

dTi x+ gi
)

≥ βisi + Ui

(

dTi x+ gi
)

− βiUi.

Hence, we have

max
{

αisi + Li

(

dTi x+ gi
)

− αiLi, βisi + Ui

(

dTi x+ gi
)

− βiUi

}

≤ si
(

dTi x+ gi
)

.

Similarly, for any (x, si) ∈ RCi with si 6= 0, by the definition of the set RCi, we have

dTi x+ gi − αi ≥ 0, si − Ui ≤ 0, dTi x+ gi − βi ≤ 0, si − Li ≥ 0.

Therefore, we can get that
(

dTi x+ gi − αi

)

(si − Ui) ≤ 0,
(

dTi x+ gi − βi
)

(si − Li) ≤ 0,

i.e.

si
(

dTi x+ gi
)

≤ αisi + Ui

(

dTi x+ gi
)

− αiUi,

si
(

dTi x+ gi
)

≤ βisi + Li

(

dTi x+ gi
)

− βiLi.

Hence, we have

min
{

αisi + Ui

(

dTi x+ gi
)

− αiUi, βisi + Li

(

dTi x+ gi
)

− βiLi

}

≥ si
(

dTi x+ gi
)

.

Consequently, we can construct the affine relaxation problem (3.1) of the problem (2.4) over

Λ as follows, which is a linear programming problem:

min F (x, s) =

p
∑

i=1

si

s.t. αisi + Li

(

dTi x+ gi
)

− αiLi ≤ cTi x+ fi, i = 1, 2, . . . , p,

βisi + Ui

(

dTi x+ gi
)

− βiUi ≤ cTi x+ fi, i = 1, 2, . . . , p,

αisi + Ui

(

dTi x+ gi
)

− αiUi ≥ cTi x+ fi, i = 1, 2, . . . , p,

βisi + Li

(

dTi x+ gi
)

− βiLi ≥ cTi x+ fi, i = 1, 2, . . . , p,

x ∈ D, s ∈ Λ.

(3.1)
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For any Λ = {s ∈ Rp | Li ≤ si ≤ Ui, i = 1, 2, . . . , p} ⊆ Λ0, by the deriving method of the

above affine relaxation problem, all feasible points of the problem (2.4) over sub-rectangle Λ

are all feasible to the problem (3.1), and the optimal value of the problem (3.1) is not more

than that of the problem (2.4) over Λ. Therefore, the optimal value of the problem (3.1)

can provide a valid lower bound for that of the problem (2.4) over Λ during the image space

branch-and-bound search.

4. Approximation of Affine Relaxation

In this section, we will derive the approximation of affine relaxation, which guarantees the

global convergence of the image space branch-and-bound algorithm.

Without losing generality, for any Λ = {s ∈ Rp | Li ≤ si ≤ Ui, i = 1, 2, . . . , p} ⊆ Λ0, for

any (x, si) ∈ RCi = {(x, si) ∈ Rn+1 | αi ≤ dTi x+ gi ≤ βi, Li ≤ si ≤ Ui}, i = 1, 2, . . . , p, define

the following functions:

ψi(x, si) = si
(

dTi x+ gi
)

,

ψ
i
(x, si) = max

{

H1
i (x, si), H

2
i (x, si)

}

,

ψi(x, si) = min
{

H3
i (x, si), H

4
i (x, si)

}

,

H1
i (x, si) = αisi + Li

(

dTi x+ gi
)

− αiLi,

H2
i (x, si) = βisi + Ui

(

dTi x+ gi
)

− βiUi,

H3
i (x, si) = αisi + Ui

(

dTi x+ gi
)

− αiUi,

H4
i (x, si) = βisi + Li

(

dTi x+ gi
)

− βiLi,

then we get the following theorem.

Theorem 4.1. For any i ∈ {1, 2, . . . , p}, let ψi(x, si), ψi
(x, si), ψi(x, si), RCi, H

1
i (x, si),

H2
i (x, si), H

3
i (x, si), and H4

i (x, si) be defined in the former, and let ∆si = Ui − Li. Then,

we have

∣

∣ψi(x, si)− ψ
i
(x, si)

∣

∣ → 0, as ∆si → 0,
∣

∣ψi(x, si)− ψi(x, si)
∣

∣ → 0, as ∆si → 0.

Proof. By the definitions of the functions H1
i (x, si), H

2
i (x, si), ψi

(x, si) and ψi(x, si), for any

(x, si) ∈ RCi, we get that

∣

∣ψi(x, si)−H1
i (x, si)

∣

∣ =
∣

∣si
(

dTi x+ gi
)

−
[

αisi + Li

(

dTi x+ gi
)

− αiLi

]∣

∣

=
∣

∣

[

si
(

dTi x+ gi
)

− siαi

]

−
[

Li

(

dTi x+ gi
)

− αiLi

]
∣

∣

=
∣

∣si
[(

dTi x+ gi
)

− αi

]

− Li

[(

dTi x+ gi
)

− αi

]∣

∣

=
∣

∣

[(

dTi x+ gi
)

− αi

]

× [si − Li]
∣

∣

≤
∣

∣[βi − αi]× [Ui − Li]
∣

∣

= (βi − αi)∆si,

this implies that
∣

∣ψi(x, si)−H1
i (x, si)

∣

∣ → 0, as ∆si → 0. (4.1)
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Similarly, we also have
∣

∣ψi(x, si)−H2
i (x, si)

∣

∣ =
∣

∣si
(

dTi x+ gi
)

−
[

βisi + Ui

(

dTi x+ gi
)

− βiUi

]∣

∣

=
∣

∣

[

si
(

dTi x+ gi
)

− siβi
]

−
[

Ui

(

dTi x+ gi
)

− βiUi

]
∣

∣

=
∣

∣si
[(

dTi x+ gi
)

− βi
]

− Ui

[(

dTi x+ gi
)

− βi
]∣

∣

=
∣

∣

[(

dTi x+ gi
)

− βi
]

× [si − Ui]
∣

∣

≤
∣

∣[αi − βi]× [Li − Ui]
∣

∣

= (βi − αi)∆si,

this indicates that
∣

∣ψi(x, si)−H2
i (x, si)

∣

∣ → 0, as ∆si → 0. (4.2)

Hence, by (4.1) and (4.2), we can get that
∣

∣ψi(x, si)− ψ
i
(x, si)

∣

∣ → 0, as ∆si → 0.

By the definitions of the functionsH3
i (x, si), H

4
i (x, si), ψi(x, si) and ψi(x, si), for any (x, si)∈

RCi, we can get that
∣

∣H3
i (x, si)− ψi(x, si)

∣

∣ =
∣

∣αisi + Ui

(

dTi x+ gi
)

− αiUi − si
(

dTi x+ gi
)∣

∣

=
∣

∣αisi − αiUi + Ui

(

dTi x+ gi
)

− si
(

dTi x+ gi
)∣

∣

=
∣

∣αi(si − Ui) +
(

dTi x+ gi
)

(Ui − si)
∣

∣

=
∣

∣(Ui − si)
[(

dTi x+ gi
)

− αi

]∣

∣

≤
∣

∣[βi − αi]× [Ui − Li]
∣

∣

= (βi − αi)∆si,

this implies that
∣

∣H3
i (x, si)− ψi(x, si)

∣

∣ → 0, as ∆si → 0. (4.3)

Similarly, we also have
∣

∣H4
i (x, si)− ψi(x, si)

∣

∣ =
∣

∣βisi + Li

(

dTi x+ gi
)

− βiLi − si
(

dTi x+ gi
)∣

∣

=
∣

∣βisi − βiLi + Li

(

dTi x+ gi
)

− si
(

dTi x+ gi
)
∣

∣

=
∣

∣βi(si − Li)−
(

dTi x+ gi
)

(si − Li)
∣

∣

=
∣

∣(si − Li)
[

βi −
(

dTi x+ gi
)]
∣

∣

≤
∣

∣[βi − αi]× [Ui − Li]
∣

∣

= (βi − αi)∆si,

this indicates that
∣

∣H4
i (x, si)− ψi(x, si)

∣

∣ → 0, as ∆si → 0. (4.4)

Hence, by (4.3) and (4.4), we can get that
∣

∣ψi(x, si)− ψi(x, si)
∣

∣ → 0, as ∆si → 0.

The proof is complete. �

Therefore, by Theorem 4.1, the affine underestimating function ψ
i
(x, si) and the affine over-

estimating function ψi(x, si) will approximate infinitely the function ψi(x, si) as ‖U − L‖ → 0,

which ensures the global convergence of the proposed image space branch-and-bound algorithm.
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5. Algorithm and Its Computational Complexity

In this section, first of all, we present a basic branching method. Next, based on the

characteristics of objective function of the problem (2.4) and the currently known upper bound

of the image space branch-and-bound algorithm, an image space region reducing method is

constructed. By combining the branching method and the constructed affine relaxation problem

with the image space region reducing method, a new image space branch-reduction-bound

algorithm is proposed for globally solving the problem (1.1).

5.1. Branching method

In the algorithm, the partitioning process takes place in the image space Rp of ratios.

Without losing generality, suppose that Λ = {s ∈ Rp|Li ≤ si ≤ Ui, i = 1, 2, . . . , p} is Λ0 or

a sub-rectangle of Λ0, which will be partitioned, the selected branching method is described as

follows. Let

q = argmax{Ui − Li, i = 1, 2, . . . , p},

by using the maximum edge binding method of rectangles, subdivide the investigated image

space rectangle Λ into two new sub-rectangles

Λ̂1 =

{

s ∈ Rp
∣

∣Li ≤ si ≤
Li + Ui

2
, i = q; Li ≤ si ≤ Ui, i = 1, 2, . . . , p, i 6= q

}

,

Λ̂2 =

{

s ∈ Rp
∣

∣

Li + Ui

2
≤ si ≤ Ui, i = q; Li ≤ si ≤ Ui, i = 1, 2, . . . , p, i 6= q

}

.

From Horst and Tuy [6], we have that the branching process is exhaustive, so that there exists

a nested image space rectangular subsequence {Λk}, which be generated by the proposed image

space branch-and-bound algorithm, and which satisfies that limk→∞

⋂

k Λ
k = {s∗}.

5.2. Image space region reducing method

For improving the convergence speed of the algorithm, for any image space rectangle Λk =

[Lk, Uk] ⊆ Λ0 formed by the branching process, and which still needs to be examined, without

losing any global optimal solution of the problem (2.4), the image space region reducing method

aims at compressing the investigated image space rectangle Λk into a smaller rectangle Λ̄k or

deleting the whole rectangle Λk, so that we need to check whether Λk contains the global

optimal solution of the problem (2.4). Therefore, for this purpose, we let

ϕ̂k =

p
∑

i=1

Lk
i ,

the derived process of the smaller rectangle Λ̄k with Λ̄k ⊆ Λ0 can be given by the following

theorem.

Theorem 5.1. Assume that UB is the best currently known upper bound of the global optimal

value of the problem (2.4), then for any rectangle Λk = [Lk, Uk] ⊆ Λ0, we have the following

conclusions:

(i) If ϕ̂k > UB, then the rectangle Λk contains no global optimal solution of the problem (2.4).
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(ii) If ϕ̂k ≤ UB and Lk
ρ ≤ τkρ ≤ Uk

ρ for some ρ ∈ {1, 2, . . . , p}, then the rectangle Λ̂k contains

no global optimal solution of the problem (2.4), where

Λ̂k =
{

s ∈ Rp | τkρ < sρ ≤ Uk
ρ , L

k
i ≤ si ≤ Uk

i , i = 1, 2, . . . , p, i 6= ρ
}

with

τkρ = UB − ϕ̂k + Lk
ρ.

Proof. For any rectangle Λk = [Lk, Uk] ⊆ Λ0, we consider the following two kinds of cases:

(i) and (ii).

(i) If ϕ̂k > UB, then for any feasible solution (x̌, š) of the problem (2.4) over Λk, its corre-

sponding objective function value F (x̌, š) satisfies that

F (x̌, š) =

p
∑

i=1

ši ≥

p
∑

i=1

Lk
i = ϕ̂k > UB.

Therefore, the rectangle Λk contains no global optimal solution of the problem (2.4).

(ii) If ϕ̂k ≤ UB and Lk
ρ ≤ τkρ ≤ Uk

ρ for some ρ ∈ {1, 2, . . . , p}, then for any feasible solution

(x̌, š) of the problem (2.4) over Λ̂k, it follows that

F (x̌, š) =

p
∑

i=1

ši >

p
∑

i=1,i6=ρ

Lk
i + τkρ

= ϕ̂k − Lk
ρ + τkρ = ϕ̂k − Lk

ρ + UB − ϕ̂k + Lk
ρ = UB.

Thus, the rectangle Λ̂k contains no global optimal solution of the problem (2.4). �

From Theorem 5.1, the presented image space region reducing method can provide a possibil-

ity for deleting the whole or a large part of the currently investigated image space rectangle Λk

in which there exists no any global optimal solution of the problem (2.4).

5.3. Image space branch-reduction-bound algorithm

In this algorithm, for any Λ ⊆ Λ0, let ω(Λ) be the optimal solution of the problem (3.1),

and let vΛ be the optimal value of the problem (2.4) over Λ. The steps of the image space

branch-reduction-bound algorithm are described as follows.

Algorithm 5.1: Image Space Branch-Reduction-Bound Algorithm.

Step 1. Let Λ1 = Λ0, solve the problem (LPΛ1). If the problem (LPΛ1) is not fea-

sible, then the problem (2.4) is also not feasible. Otherwise, let LB1 = LB(Λ1) be

the lower bound of vΛ1 , let (x̄1, s̄1) be the optimal solution of the problem (LPΛ1), let

ω(Λ1) = (x1, s1), where x1 = x̄1 and s1i = (cTi x
1 + fi)/(d

T
i x

1 + gi), i = 1, . . . , p, let

Z(Λ1) = {ω(Λ1)}, and let v1 =
∑p

i=1 s
1
i . Let Ω1 = {Λ1}, k = 1.

Step 2. Let Ξk = {Λ ∈ Ωk | LB(Λ) < vk}, and let Ωk+1 = {Λ ∈ Ωk | Λ ∈ Ξk}. If

vk −LBk ≤ ǫ, then the presented algorithm terminates, and (xk, sk) and xk are the global

optimal solutions to the problems (2.4) and (1.1), respectively.

Step 3. Let LBk = min{LB(Λ) | Λ ∈ Ξk}, and let Λk be a selected rectangle, which

satisfies that Λk ∈ argmin{LB(Λ) | Λ ∈ Ξk}, and which will be partitioned, subdivide Λk

into two new sub-rectangles Λ2k and Λ2k+1.
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Step 4. Let Ωk+1 = (Ωk+1 \ {Λk})
⋃

{Λ2k,Λ2k+1}. For each Λ ∈ {Λ2k, Λ2k+1}, use the

image space region reducing method to compress its range, and still denote the remaining

sub-rectangle as Λ, solve the problem (3.1).

If the problem (3.1) is not feasible, then the problem (2.4) over Λ is also not feasible, and

delete the sub-rectangle Λ from Ωk+1.

Otherwise, if LB(Λ) > vk, then delete the sub-rectangle Λ from Ωk+1, i.e. let Ωk+1 =

Ωk+1 \ {Λ}, else we can get a lower bound LB(Λ) of vΛ, and let Ξk = Ξk

⋃

Λ and Z(Λ) =

Z(Λ)
⋃

{ω(Λ)}, where ω(Λ) = (x(Λ), s(Λ)) is the obtained feasible point by solving the

problem (3.1), and let LBk = min{LB(Λ)|Λ ∈ Ξk}.

Step 5. Let k = k + 1, and let (xk, sk) be the best currently known feasible point of

the problem (2.4) among Z(Λ), where ski = (cTi x
k + fi)/(d

T
i x

k + gi), i = 1, . . . , p, and let

vk =
∑p

i=1 s
k
i , and return to Step 2.

5.4. Convergence analysis

In the subsection, without loss of generality, we assume that v∗ is the global optimal value

of the problem (1.1), the global convergence of the algorithm is analyzed as follows.

Definition 5.1. Let xk be the known feasible solution of the problem (1.1), and let v∗ be the

global minimum value of the problem (1.1). If G(xk) − v∗ ≤ ǫ, then xk is a global ǫ-optimum

solution of the problem (1.1).

Theorem 5.2. The presented algorithm either terminates finitely with getting a global optimum

solution of the problem (1.1), or generates an infinite sequence of feasible solutions {xk} such

that any of its accumulation points is a global optimum solution of the problem (1.1).

Proof. If the presented algorithm terminates finitely after k iterations, so with the termina-

tion of the algorithm, we can obtain a better feasible solution xk of the problem (FP), and we

also obtain a better feasible solution (xk, sk) of the problem (2.3) with that

ski =
cTi x

k + fi

dTi x
k + gi

, i = 1, 2, . . . , p.

From the terminating conditions of the algorithm, the updating methods of the lower bound, the

updating methods of the upper bound, and the structure of the branch-and-bound algorithm,

we can get the following results:

LBk ≤ v∗, v∗ ≤ F (xk, sk), G(xk) = F (xk, sk) = vk, vk − ǫ ≤ LBk.

Combining the above formulas together, we get

G(xk)− ǫ = F (xk, sk)− ǫ ≤ LBk ≤ v∗ ≤ F (xk, sk) = G(xk).

Thus, xk is a global ǫ-optimum solution of the problem (FP).

If the presented algorithm generates an infinite sequence of feasible solutions {xk} of the

problem (1.1) and an infinite sequence of feasible solutions {(xk, sk)} of the problem (2.3) with

that

ski =
cTi x

k + fi
dTi x

k + gi
, i = 1, 2, . . . , p,
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respectively, and let x∗ be an accumulation point of {xk}, then, without loss of generality, we

have that

lim
k→∞

xk = x∗.

From the continuity of the function (cTi x+ fi)/(d
T
i x+ gi),

cTi x
k + fi

dTi x
k + gi

= ski ∈
[

Lk
i , U

k
i

]

, i = 1, 2, . . . , p,

and the exhaustiveness of the branching method, we have that

cTi x
∗ + fi

dTi x
∗ + gi

= lim
k→∞

cTi x
k + fi

dTi x
k + gi

= lim
k→∞

ski = lim
k→∞

[Lk
i , U

k
i ] = lim

k→∞

⋂

k

[

Lk
i , U

k
i

]

= s∗i .

Therefore, (x∗, s∗) is a feasible solution to the problem (2.3). And because {LBk} is an increas-

ing sequence of the lower bound such that LBk ≤ v∗, we can get that

F (x∗, s∗) ≥ v∗ ≥ lim
k→∞

LBk = lim
k→∞

F (xk, sk) = F (x∗, s∗). (5.1)

Thus, from the updating method of the upper bound and the continuity of the function G(x),

we can draw the following conclusions:

lim
k→∞

vk = lim
k→∞

p
∑

i=1

ski = lim
k→∞

F (xk, sk) = F (x∗, s∗) = G(x∗) = lim
k→∞

G(xk). (5.2)

By the above inequalities (5.1) and (5.2), we have that

lim
k→∞

vk = v∗ = G(x∗) = lim
k→∞

G(xk) = F (x∗, s∗) = lim
k→∞

LBk.

Thus, any of accumulation points x∗ for the infinite sequence of solutions {xk} is a global

optimum solution to the problem (1.1), and the proof is complete. �

5.5. Computational complexity of the algorithm

Definition 5.2. Assume that Λp = [L1, U1]× . . .× [Lp, Up] ⊂ Rp be a compact hyper-rectangle,

the diameter of the hyper-rectangle Λp ⊂ Rp is defined by

δ(Λp) = max
{

‖α− α′‖2 : α, α′ ∈ Λp

}

=
√

(U1 − L1)2 + · · ·+ (Up − Lp)2.

Theorem 5.3. For the proposed algorithm, for any given hyper-rectangle Λp, assume that there

exist some a fixed positive constant Cp and an accuracy error ǫ, and assume that the branch-

ing operation will eventually partition the hyper-rectangle Λp into ̺ = 2p smaller sub-hyper-

rectangles. Then, by subdividing the hyper-rectangle Λp, the number of iterations of the proposed

algorithm in the worst case can be expressed as follows:

rp
∑

t=0

2p.t, where rp =

⌈

log2
Cp · δ(Λp)

ǫ

⌉

, δ(Λp) = max
{

δ
(

Λl
p

)

: l ∈ {1, 2, . . . , ̺}
}

. (5.3)

We call O(p) =
∑rp

t=0 2
p.t be the convergence rate of the algorithm by subdividing space Rp.

Proof. The proof is similar to [23, Theorem 5], thus it is omitted here. �
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Similar as Theorem 5.3, if we subdivide the n-dimensional hyper-rectangle Λn by rectangular

dichotomy, the number of iteration of the algorithm in the worst case can be expressed as follows:

rn
∑

t=0

2n.t, where rn =

⌈

log2
Cn · δ(Λn)

ǫ

⌉

, δ(Λn) = max
{

δ
(

Λl
n

)

: l ∈ {1, 2, . . . , 2n}
}

, (5.4)

where n,Cn, rn and Λn are corresponding to p, Cp, rp and Λp in (5.3). We also call O(n) =
∑rn

t=0 2
n.t as the convergence rate of the algorithm by subdividing the n-dimensional hyper-

rectangle Λn.

By (5.3) and (5.4), when p≪ n, we have the following conclusions:

(i) If rp ≤ rn, then
∑rp

t=0 2
p.t ≤

∑rn
t=0 2

p.t ≪
∑rn

t=0 2
n.t.

(ii) If rp≥rn, then there must exist a positive numberN≥⌊rpp/rn+1⌋ such that p<rpp/rn<N ,

this means that when N ≪ n, we have p < rpp/rn < N ≪ n and prp ≪ nrn, so that

rn
∑

t=0

2n.t −

rp
∑

t=0

2p.t =
2n(rn+1) − 1

2n − 1
−

2p(rp+1) − 1

2p − 1

=
(2n(rn+1) − 1)(2p − 1)− (2p(rp+1) − 1)(2n − 1)

(2n − 1)(2p − 1)

=
2nrn2n+p − 2nrn2n − 2p + 1− 2prp2n+p + 2prp2p + 2n − 1

(2n − 1)(2p − 1)

=
2n+p(2nrn − 2prp)− 2nrn2n + 2prp2p + 2n − 2p

(2n − 1)(2p − 1)

=

(

2n+p(2nrn − 2prp)− 2nrn2n + 2prp2p + 2n − 2p
)

/(2n+p2nrn)

(2n − 1)(2p − 1)/(2n+p2nrn)

=
1− 2prp/2nrn − 1/2p + 2prp/2n2nrn + 1/2p2nrn − 1/2n2nrn

(2n − 1)(2p − 1)/(2n+p2nrn)
≫ 0.

The last inequality above holds, it is since

2prp

2nrn
→ 0,

1

2p
→ 0,

2prp

2n2nrn
→ 0,

1

2p2nrn
→ 0,

1

2n2nrn
→ 0,

as p≪ n and prp ≪ nrn, so that we have
(

1−
2prp

2nrn
−

1

2p
+

2prp

2n2nrn
+

1

2p2nrn
−

1

2n2nrn

)

→ 1,

as p≪ n and prp ≪ nrn. Similarly, we have

0 <
(2n − 1)(2p − 1)

2n+p2nrn
→ 0,

as p≪ n and prp ≪ nrn. To sum up, we have that the last inequality above holds.

Remark 5.1. From the above discussions, we know that O(n) and O(p) are both functions of

exponential growth, but when p ≪ n, the branch-and-bound search of the proposed algorithm

takes place in space Rp which typically has a much smaller dimension than space Rn of the

decision variable x for the problem (1.1), the characteristic of the algorithm is expected to

considerably shorten the length of the branch-and-bound search, i.e. O(p) ≪ O(n) .
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6. Numerical Experiment

In this section, we numerically compare our image space branch-reduction-bound algorithm

with the software BARON [15] and some known existing algorithms. All numerical tests are

implemented in MATLAB R2014a and run on a microcomputer with Intel(R) Core(TM) i5-

7200U CPU @2.50 GHz processor and 16 GB RAM. The maximum CPU time limit of all

algorithms is set at 4800 s. For all test problems, we presented statistics of the numerical results.

First of all, some small size certainty examples in Appendix A were tested with the proposed

algorithm for comparison with the known existing algorithms [1, 5, 8, 9, 27, 29, 30, 33], and the

corresponding numerical results are reported in Table 6.1 with the given convergence tolerance,

where some notations have been used for column headers: Opt. val.: global optimal value; Iter.:

number of iterations of the algorithm; Time: CPU execution time of the algorithm in seconds.

From the numerical results in Table 6.1, for all examples A.1-A.12, we can follow that

our algorithm can obtain better global optimal solutions and optimal values than the existing

algorithms in [1, 5, 8, 9, 27, 29, 30, 33] with higher computational efficiency, in terms of test

examples A.1-A.12, so that our algorithm highly outperforms the existing algorithms in [1,5,8,

9, 27, 29, 30, 33].

Next, we chose some large-scale stochastic test problems generated randomly to verify the

proposed algorithm further, see test Problems 1 and 2 for details.

For test Problem 1 with the large-size number of variables, with the given convergence

tolerance ǫ = 10−2, numerical comparisons among algorithms of Shen et al. [27], Jiao and

Liu [8], BARON, and our algorithm are reported in Table 6.2, respectively. In addition, for

test Problem 1 with ǫ = 10−6, numerical comparisons between our algorithm and BARON are

reported in Table 6.3. For each random test Problem 1, we solved ten independently generated

test instances and recorded the best results, the worst results, and the average results among

these ten tests, and we highlight in bold the winner of average results in numerical comparisons.

For test Problem 2 with the large-size number of ratios p, with the given convergence

tolerance ǫ = 10−3, numerical comparisons between our algorithm and BARON are reported in

Table 6.4, respectively. In addition, for test Problem 2 with ǫ = 10−6, numerical comparisons

between our algorithm and BARON are reported in Table 6.5. For each random test Problem 2,

we also solve ten independently generated test instances and record the best results, the worst

results, and the average results among these ten test instances, and we also highlight in bold

the winner of average results in numerical comparisons.

Some notations have been used for column headers in Tables 6.2-6.5 #iter stands for the

number of iterations of the algorithm, time (s) stand for the CPU time of the algorithm in

seconds, and “∗” stands for the situation that the algorithm failed to terminate in 4800 s.

From the numerical results in Table 6.2, for test Problem 1 with the large-size number of

variables n, with ǫ = 10−2, we firstly get the observation that the software BARON is more

time-consuming than our algorithm proposed in this paper, though the number of iterations for

the software BARON is smaller. Secondly, our algorithm obviously outperforms the algorithms

proposed in Shen et al. [27] and Jiao and Liu [8]. The number of iterations of our algorithm

is much less than that of the proposed algorithms in Shen et al. [27] and Jiao and Liu [8].

Especially, when p = 2 and n = 8000, 10000 or 20000, BARON and the algorithm of Shen et al.

[27] failed to terminate in 4800 s; and p = 3 and n = 8000, BARON and the algorithms of Shen

et al. [27] and Jiao and Liu [8] also failed to terminate in 4800 s, but our algorithm in this paper

can obtain the global optimal solution of test Problem 1 with higher computational efficiency.
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From the numerical results in Table 6.3, for test Problem 1 with ǫ = 10−6, we can observe

that, when p = 2 and n ≥ 4000, the software BARON is more time-consuming than our

algorithm; when p = 2 and n ≥ 5000, the software BARON failed to terminate in 4800 s, but

our algorithm can find the global optimal solution of test Problem 1.

From the numerical results in Table 6.4, for test Problem 2 with the large-size number of

sum p, with ǫ = 10−3, we can observe that, when p = 10 and n = 500, p = 15 and n = 500,

p = 20 and n = 400, BARON failed to terminate in 4800 s for any ten independently generated

instances, but our algorithm can successfully find the global optimal solution of test Problem 2.

Table 6.1: Numerical comparisons between some existing algorithms and our algorithm on test examples

A.1-A.12.

No. Algorithms Opt. val. Optimal solution Iter. Time ǫ

1 Our algorithm −4.84151 (0.1000, 2.3750) 2 0.012 10−2

Jiao & Liu [8] −4.84151 (0.1000, 2.3750) 200 4.257 10−2

Benson [1] −4.84151 (0.1000, 2.3750) 4 0.190 10−2

2 Our algorithm −2.47143 (1.0000, 0.0000, 0.0000) 1 0.013 10−2

Jiao & Liu [8] −2.47124 (1.0001, 0.0000, 0.0001) 54 1.135 10−2

Shen et al. [27] −2.47143 (1.0000, 0.0000, 0.0000) 2 0.015 10−2

3 Our algorithm −1.90000 (0.0000, 3.3333, 0.0000) 1 0.011 10−6

Shen & Wang [30] −1.90000 (0.0000, 3.3333, 0.0000) 8 0.926 10−6

4 Our algorithm 1.62319 (0.0000, 0.2861) 47 1.294 10−2

Jiao & Liu [8] 1.62319 (0.0000, 0.2861) 93 2.485 10−2

5 Our algorithm 2.86190 (5.0000, 0.0000, 0.0000) 4 0.064 10−3

Shen & Lu [29] 2.86191 (5.0000, 0.0000, 0.0000) 16 0.125 10−3

Gao & Jin [5] 2.86190 (5.0000, 0.0000, 0.0000) 12 28.29 10−3

Jiao & Liu [8] 2.86241 (4.8302, 0.0000, 0.0666) 4008 128.0 10−3

6 Our algorithm −4.09070 (1.1111, 0.0000, 0.0000) 1 0.044 10−2

Jiao & Liu [8] −4.09062 (1.1106, 0.0000, 0.0015) 619 16.62 10−2

Shen & Lu [29] −4.08741 (1.0715, 0.0000, 0.0000) 17 3.251 10−2

7 Our algorithm 3.71092 (0.0000, 1.6667, 0.0000) 1 0.009 10−4

Jiao & Liu [8] 3.71093 (0.0000, 1.6667, 0.0000) 2747 94.64 10−4

Gao & Jin [5] 3.7087 (0.0000, 1.6667, 0.0000) 5 4.190 10−4

8 Our algorithm −3.00292 (0.0000, 3.3333, 0.0000) 23 0.798 10−6

Jiao & Liu [8] −3.00292 (0.0000, 3.3333, 0.0000) 1072 31.746 10−2

9 Our algorithm 4.91259 (1.5000, 1.5000) 16 0.237 10−3

Shen & Lu [29] 4.91259 (1.5000, 1.5000) 56 1.087 10−3

10 Our algorithm −4.09070 (1.1111, 0.0000, 0.0000) 2 0.071 10−6

Jiao & Liu [8] −4.09065 (1.1109, 0.0000, 0.0005) 977 32.41 10−6

Jiao et al. [9] −4.09070 (1.1111, 0.0000, 0.0000) 2 0.008 10−6

11 Our algorithm 3.29167 (3.0000, 4.0000) 7 0.114 10−6

Shen & Wang [30] 3.29167 (3.0000, 4.0000) 9 0.489 10−6

12 Our algorithm 4.42857 (5.0000, 0.0000, 0.0000) 1 0.056 10−4

Jiao & Liu [8] 4.42794 (4.9930, 0.0000, 0.0000) 128 4.213 10−4

Shi [33] 4.42857 (5.0000, 0.0000, 0.0000) 58 2.968 10−4



16 H.W. JIAO AND Y.L. SHANG

Table 6.2: Numerical comparisons among our algorithm, BARON, and the algorithms of Jiao & Liu [8]

and Shen et al. [27] for Problem 1 with the given convergence tolerance ǫ = 10−2.

(p,m,n) Algorithms
#iter time(s)

min average max min average max

(2,100,2000) Jiao & Liu [8] 28 108.7 222 51.92 205.71 441.71

Shen et al. [27] 1 207.3 317 0.91 281.57 793.46

BARON 1 1.2 3 77.42 279.01 478.45

Our algorithm 24 30.1 40 68.60 96.96 140.93

(2,100,3000) Jiao & Liu [8] 46 82.7 153 136.07 239.74 459.27

Shen et al. [27] 1 249.1 510 3.20 688.35 1900.8

BARON 1 1.4 5 214.25 587.91 1198.08

Our algorithm 23 27.1 31 120.76 144.33 187.26

(2,100,5000) Jiao & Liu [8] 40 104.8 244 186.21 530.14 1244.53

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON 1 1.2 3 920.05 1083.93 1408.27

Our algorithm 6 19.4 28 38.52 118.06 176.30

(2,100,7000) Jiao & Liu [8] 31 81.7 184 217.49 615.68 1290.42

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON 1 1 1 2253.22 2778.35 3727.55

Our algorithm 20 27.5 34 301.85 415.01 541.82

(2,100,8000) Jiao & Liu [8] 32 84.9 139 276.25 802.90 1323.32

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 23 27.4 35 415.32 525.70 650.89

(2,100,10000) Jiao & Liu [8] 35 76.6 112 405.80 933.54 1414.22

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 22 25.5 29 560.4 704.2 864.4

(2,100,20000) Jiao & Liu [8] 41 69.4 105 1239.04 2216.69 3495.84

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 21 25.5 34 1389.3 1763.6 2495.1

(3,100,5000) Jiao & Liu [8] ∗ ∗ ∗ ∗ ∗ ∗

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON 3 9.8 31 1320.47 2310.83 3113.8

Our algorithm 90 182.4 330 780.5 1851.1 3134.0

(3,100,8000) Jiao & Liu [8] ∗ ∗ ∗ ∗ ∗ ∗

Shen et al. [27] ∗ ∗ ∗ ∗ ∗ ∗

BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 88 134.1 183 1580.3 2384.0 3660.5

In addition, for Problem 2, when p is larger, the algorithms of Shen et al. [27] and Jiao and Liu [8]

failed to solve each of ten tests in 4800 s, so that we only report the numerical comparisons

between BARON and our algorithm in Table 6.4, this implies the robustness and stability of

our algorithm in this paper.
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Table 6.3: Numerical comparisons between our algorithm and BARON for Problem 1 with the given

convergence tolerance ǫ = 10−6.

(p,m,n) Algorithms
#iter time(s)

min average max min average max

(2,100,1000) BARON 3 25.4 79 39.11 69.11 112.23

Our algorithm 70 168.1 343 55.02 219.72 503.13

(2,100,2000) BARON 5 28.6 61 259.97 362.59 656.88

Our algorithm 96 203.1 455 107.93 421.01 737.92

(2,100,3000) BARON 5 21.2 37 463.86 806.30 1263.56

Our algorithm 129 261.5 532 454.40 1273.07 3794.77

(2,100,4000) BARON 7 25.8 49 1283.69 1753.03 2700.50

Our algorithm 55 154.3 318 539.63 1311.99 3052.07

(2,100,5000) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 58 230.2 435 510.12 2620.04 4568.96

(2,100,6000) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 104 241.2 348 1101.25 3185.66 4771.08

From the numerical results in Table 6.5, for test Problem 2 with ǫ = 10−6, we can observe

that, when p = 6, n = 400 and 500; p = 7 and n = 500, p = 8, n = 400 and 500, BARON failed

to terminate in 4800 s for any ten independently generated instances, but our algorithm can

successfully find the global optimal solution of test Problem 2. In addition, for test Problem 2,

when n ≥ 400, our algorithm is obviously better than BARON in computational efficiency.

Test Problem 1.

min

p
∑

i=1

cTi x+ fi

dTi x+ gi

s.t. Ax ≤ b,

x ≥ 0,

where ci ∈ Rn, di ∈ Rn, A ∈ Rm×n, b ∈ Rm, fi ∈ R, gi ∈ R, i = 1, 2, . . . , p; each element

of ci, di, and A is randomly generated from the interval [0, 10]; each element of b is equal to 10,

fi and gi, i = 1, 2, . . . , p, are all randomly generated from the interval [0, 1].

Test Problem 2.

min

p
∑

i=1

γTi x+ ξi
δTi x+ ηi

s.t. Ax ≤ b,

x ≥ 0,

where γi ∈ Rn, δi ∈ Rn, A ∈ Rm×n, b ∈ Rm, ξi ∈ R, ηi ∈ R, i = 1, 2, . . . , p; each element

of γi and δi is randomly generated from the interval [−0.1, 0.1]; each element of A is randomly

generated from the interval [0.01, 1]; each element of b is equal to 10, ξi and ηi satisfy γ
T
i x+ξi > 0

and δTi x+ ηi > 0, i = 1, 2, . . . , p.
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Table 6.4: Numerical comparisons between BARON software and our algorithm for Problem 2 with

the given convergence tolerance ǫ = 10−3.

(p,m, n) Algorithms
#iter time(s)

min average max min average max

(10,100,300) BARON 3 9.2 13 8.28 12.66 17.64

Our algorithm 12 17.5 25 9.87 15.33 22.73

(10,100,400) BARON 9 35.8 93 22.28 30.86 42.33

Our algorithm 14 20.4 30 14.24 22.24 33.04

(10,100,500) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 16 22.3 29 19.27 28.03 37.71

(15,100,300) BARON 5 10.4 17 15.66 24.24 38.45

Our algorithm 42 87.3 155 42.81 106.7 201.77

(15,100,400) BARON 11 34 157 36.14 47.92 79.81

Our algorithm 44 81.4 128 63.37 125.56 200.27

(15,100,500) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 36 91.5 162 67.15 170.12 297.63

(20,100,200) BARON 15 17 19 17.84 20.50 26.39

Our algorithm 80 241.5 559 86.25 267.01 651.5

(20,100,300) BARON 5 14 17 22.53 36.14 51.11

Our algorithm 172 344.9 834 233.06 461.53 1135.6

(20,100,400) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 135 450.6 1302 225.7 765.52 2246.21

Table 6.5: Numerical comparisons between BARON software and our algorithm for Problem 2 with

the given convergence tolerance ǫ = 10−6.

(p,m,n) Algorithms
#iter time(s)

min average max min average max

(6,100,300) BARON 13 23.2 35 29.55 43.54 63.08

Our algorithm 151 335.3 605 14.58 33.13 57.80

(6,100,400) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 195 799.4 2556 27.49 115.20 360.45

(6,100,500) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 280 740.4 1674 55.73 147.70 332.51

(7,100,300) BARON 11 28.8 57 37.75 61.62 97.45

Our algorithm 141 1379.4 6020 14.44 166.98 700.08

(7,100,400) BARON 11 754.8 2947 45.03 229.69 593.89

Our algorithm 359 1111.3 1809 56.80 173.11 272.82

(7,100,500) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 385 1236.2 2189 152.08 300.82 471.26

(8,100,300) BARON 15 26.2 43 40.05 54.91 66.81

Our algorithm 811 4428.1 17507 83.01 530.48 2234.82

(8,100,400) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 456 2960.7 10441 86.69 519.21 1982.62

(8,100,500) BARON ∗ ∗ ∗ ∗ ∗ ∗

Our algorithm 596 1873.8 3573 133.07 434.52 847.17
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From the numerical results of Tables 6.1-6.5, it is seen that the presented algorithm in this

paper can be used to globally solve the large scale general sum of affine ratios problems with

the extreme robustness and effectiveness.

7. Comparing with Some Existing Relaxation Algorithms

To present a clear distinction of our work from some existing relaxation algorithms, and

demonstrate the innovative contribution of our algorithm, we give some detailed comparisons

with several existing relaxation algorithms (Ji et al. [7], Jiao and Liu [8] and Jiao et al. [9]).

Firstly, from the perspective of model, Ji et al. [7] present a rectangle branch and bound

algorithm for the problem (1.1) with that each denominator is greater than 0; Jiao and Liu [8]

also present a branch and bound algorithm for solving the problem (1.1) with the assumption

that each numerator must be nonnegative and each denominator must be positive over feasible

region; Jiao et al. [9] propose a branch and bound algorithm for solving the problem (1.1)

with the assumption that all numerators must be nonnegative and all denominators must be

positive over feasible region. However, in this paper, we investigate the problem (1.1) with

only assumption that all denominators are not equal to 0. Therefore, the investigated mathe-

matical modeling in this paper is more general than that of Ji et al. [7], Jiao and Liu [8] and

Jiao et al. [9].

Secondly, from the perspective of linear relaxation structure, by using the upper and lower

bounds of the denominator to directly replace the denominator of ratio, a linearizing technique

is proposed in the algorithm of Ji et al. [7], and by utilizing this technique, the linear relax-

ation problems of the problem (1.1) and its subproblem are constructed; the algorithm of Jiao

and Liu [8] works by globally solving an equivalent bilinear programming problem, by directly

using convex hull and concave hull of bilinear function over a rectangle, the authors construct

linear relaxation of objective function, and by directly relaxing constrained functions, so that

a linear relaxation programming problem of the equivalent problem is constructed; the algo-

rithm of Jiao et al. [9] also works by globally solving an equivalent problem, by replacing each

denominator with its upper bound or lower bound, the authors construct linear relaxation of

objective function of the equivalent problem, and by directly relaxing constrained functions,

so that a linear relaxation programming problem is constructed. It should be noted that, the

relaxation methods of Jiao and Liu [8] and Jiao et al. [9] not only relax the objective function

but also relax the feasible region of the problem. However, in this paper, first of all, we trans-

form the problem (1.1) into the equivalent problem (2.4). Next, by utilizing the characteristics

of bilinear function, we only construct linear relaxation of constrained function of the problem

(2.4), a linear relaxation problem of the problem (2.4) is constructed.

Thirdly, from the perspective of searching space, the branch and bound search in Ji et al. [7]

takes place in space Rn rather than Rp, where n is the number of decision variable x and p is

the number of ratios; the algorithm of Jiao and Liu [8] economizes the required computations

by conducting the branch-and-bound search in the outer space Rp of the reciprocals of denom-

inators of ratios; the algorithm of Jiao et al. [9] also economizes the required computations by

conducting the branch-and-bound search in the outer space Rp of the denominators of ratios.

However, in this paper, the branch and bound search takes place in the image space Rp of ratio

functions. Therefore, the algorithms of Jiao and Liu [8], Jiao et al. [9], and our algorithm all

economize the required computational efforts, and which are all convergent to the global opti-

mal solution through the successive refinement partition of the outer space region and solving
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a sequence of linear relaxation problems. As everyone knows, in many practical applications of

the problem (1.1), p is significantly smaller than n, so that the characteristic of the algorithm

is expected to considerably shorten the length of the branch-and-bound search. Moreover, from

the conclusions of computational complexity in Section 5.5, we can follow that, when p is far

less than n, the complexity of the algorithm proposed in this paper is far less than that of

Ji et al. [7]. Therefore, when p is much less than n, the proposed algorithm in this paper has

higher computational efficiency than the algorithm of Ji et al. [7].

Finally, from the perspective of computational efficiency, in order to compare the efficiency

of these algorithms, using our algorithm and the algorithm of Jiao and Liu [8] to solve the

random test Problem 1 with the same fixed parameter (p,m, n). From the numerical results

in Table 6.2, it is also seen that our algorithm has higher computational efficiency than that

of Jiao and Liu [8]. In terms of computational performance, when the scale of the variable

is larger, since the algorithms of Ji et al. [7] and Jiao et al. [9] failed to terminate in 4800 s

for any ten independently generated large scale test Problem 1, so that we only list numerical

comparisons between our algorithm and the algorithm of Jiao and Liu [8] in Table 6.2.

8. Discussions on Further Improvement

An efficient global optimization algorithm for solving the problem (1.1) with p = 2 is pro-

posed in [37]. Following the presentation there, using Charnes-Cooper transformation [3], it

is sufficient to partition in a reduced image space Rp−1, which can be regarded as a further

improvement of this paper, and which is given as follows.

By introducing new variables t̂ = 1/(dTp x+ gp) and ẑ = t̂x, the problem (1.1) can be

rewritten into the following equivalent form:

min Φ(ẑ, t̂) =

p−1
∑

i=1

cTi ẑ + fit̂

dTi ẑ + git̂
+ cTp ẑ + fpt̂,

s.t. dTp ẑ + gpt̂ = 1,

Aẑ − bt̂ ≤ 0,

ẑ ≥ 0, t̂ > 0.

(8.1)

Let

W =
{

(ẑ, t̂) ∈ Rn+1 | dTp ẑ + gpt̂ = 1, Aẑ − bt̂ ≤ 0, ẑ ≥ 0, t̂ > 0
}

,

and it is obvious that W is a nonempty compact convex set, and that W 6= ∅ if and only if

D 6= ∅. Without losing generality, for each i = 1, 2, . . . , p− 1, let

α̂i = min
(ẑ,t̂)∈W

dTi ẑ + gi t̂, β̂i = max
(ẑ,t̂)∈W

dTi ẑ + git̂,

L̂0
i = min

(ẑ,t̂)∈W

cTi ẑ + fit̂

dTi ẑ + git̂
, Û0

i = max
(ẑ,t̂)∈W

cTi ẑ + fit̂

dTi ẑ + git̂
,

since dTi ẑ + gi t̂, i = 1, . . . , p− 1, are all bounded affine functions over W , the values of α̂i and

β̂i can be easily computed by solving the corresponding linear programming problems. By

Charnes-Cooper transformation [3], L̂0
i and Û0

i , i = 1, 2, . . . , p − 1, can also be computed by

solving the corresponding linear programming problems, see Section 2 for details.
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By introducing new variables

ŝi =
cTi ẑ + fi t̂

dTi ẑ + git̂
, i = 1, 2, . . . , p− 1,

let the rectangle Λ̂0 = {ŝ ∈ Rp−1 | L̂0
i ≤ ŝi ≤ Û0

i , i = 1, 2, . . . , p − 1}, we can establish the

equivalent problem (8.2) of the problem (8.1) as follows:

min λ(ŝ, ẑ, t̂) =

p−1
∑

i=1

ŝi + cTp ẑ + fpt̂,

s.t. ŝi
(

dTi ẑ + gi t̂
)

= cTi ẑ + fi t̂, i = 1, 2, . . . , p− 1,

(ẑ, t̂) ∈ W, ŝ ∈ Λ̂0.

(8.2)

Next, for any (ẑ, t̂) ∈W , and for any

ŝ ∈ Λ =
{

ŝ ∈ Rp−1 | L̂i ≤ ŝi ≤ Ûi, i = 1, 2, . . . , p− 1
}

⊆ Λ̂0,

it follows that α̂i ≤ dTi ẑ + git̂ ≤ β̂i, L̂i ≤ ŝi ≤ Ûi, i = 1, 2, . . . , p − 1, and using the previous

relaxation method presented in Section 3, we can obtain that

max
{

α̂iŝi + L̂i

(

dTi ẑ + git̂
)

− α̂iL̂i, β̂iŝi + Ûi

(

dTi ẑ + git̂
)

− β̂iÛi} ≤ ŝi
(

dTi ẑ + git̂
)

,

ŝi
(

dTi ẑ + git̂
)

≤ min
{

α̂iŝi + Ûi

(

dTi ẑ + git̂
)

− α̂iÛi, β̂iŝi + L̂i

(

dTi ẑ + git̂
)

− β̂iL̂i

}

.

Based on the above discussions, we can construct the affine relaxation problem (8.3) of the

problem (8.2) over Λ̂ as follows:

min

p−1
∑

i=1

ŝi + cTp ẑ + fpt̂,

s.t. α̂iŝi + L̂i

(

dTi ẑ + git̂
)

− α̂iL̂i ≤ cTi ẑ + fi t̂, i = 1, 2, . . . , p− 1,

β̂iŝi + Ûi

(

dTi ẑ + git̂
)

− β̂iÛi ≤ cTi ẑ + fi t̂, i = 1, 2, . . . , p− 1,

α̂iŝi + Ûi

(

dTi ẑ + gi t̂
)

− α̂iÛi ≥ cTi ẑ + fit̂, i = 1, 2, . . . , p− 1,

β̂iŝi + L̂i

(

dTi ẑ + git̂
)

− β̂iL̂i ≥ cTi ẑ + fit̂, i = 1, 2, . . . , p− 1,

dTp ẑ + gpt̂ = 1, Aẑ − bt̂ ≤ 0, ẑ ≥ 0, t̂ > 0, ŝ ∈ Λ.

(8.3)

Based on the partition search of the image space Rp−1 of the fractional function in the

objective function of the problem (8.1), and based on the affine relaxation problem (8.3) to

determine the lower bound of the optimal value of the problem (8.1), we can construct a new

branch-and-bound algorithm, which is similar to that in Section 5.3. Through the improvement,

the branching process of the algorithm only occurs in (p− 1)-dimensional image space Rp−1,

instead of acting on p, 2p or n-dimensional space, which will greatly mitigates the required

computational efforts of the algorithm. Due to the length limitation of the article, we will not

give the numerical experiment of the improved algorithm here. In the future research, we will

give the details of the improved algorithm.
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9. Concluding Remarks

We study the problem (1.1). By exploiting equivalent transformation and convex and con-

cave envelope approximation of bilinear function, the initial problem (1.1) can be transformed

into a series of affine relaxation problems. Using the image space search, the affine relaxation

problem, and the image space region reduction technique, we propose an image space branch-

reduction-bound algorithm to solve the problem (1.1). In contrast to the existing branch-and-

bound algorithms, the computational superiorities of the algorithm are as follows:

(i) The branch-and-bound search takes place in the image space Rp, which will shorten the

time required to find a global optimum solution of the problem (1.1).

(ii) By utilizing the characteristics of objective function of equivalent problem and the cur-

rently known upper bound of the algorithm, we construct an image space region reducing

method, which provides a possibility for deleting the whole or a large part of the currently in-

vestigated image space region where there exists no any global optimal solution of the problem

(2.4).

(iii) Our algorithm can find an ǫ-approximate global optimal solution in at most
∑rp

t=0 2
p.t

iterations, where

rp =

⌈

log2
Cp · δ(Λp)

ǫ

⌉

,

δ(Λp) = max
{

δ
(

Λl
p

)

: l ∈ {1, 2, . . . , ̺}
}

.

Numerical results indicate that the presented algorithm has higher computational efficiency.

The future work is to give a further improvement of the algorithm and extend our new algorithm

to solve the min-max affine fractional programming problem.

Appendix A

A.1 (cf. Benson [1]).

min f(x) =
−3.333x1 − 3x2 − 1

1.666x1 + x2 + 1
+

−4x1 − 3x2 − 1

x1 + x2 + 1

s.t. 5x1 + 4x2 ≤ 10,

− x1 ≤ −0.1,

− x2 ≤ −0.1,

− 2x1 − x2 ≤ −2,

x1, x2 ≥ 0.

Example A.1 has a local minimum point at x = (1.92, 0.1) with f(x) = −4.7642 and

a global minimum point at x∗ = (0.1, 2.3750) with f(x∗) = −4.8415.

A.2 (cf. Phuong and Tuy [24] and Shen et al. [27]).

max
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
+

4x1 − 2x2 + x3
7x1 + 3x2 − x3
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s.t. x1 + x2 − x3 ≤ 1,

− x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

− 6x1 + x2 + x3 ≤ −4.1.

A.3 (cf. Shen et al. [27] and Shen and Wang [30]).

max
3x1 + 4x2 + 50

3x1 + 5x2 + 4x3 + 50
−

3x1 + 5x2 + 3x3 + 50

5x1 + 5x2 + 4x3 + 50

−
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50
−

4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50

s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

A.4 (cf. Shen et al. [27]).

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3

s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

A.5 (cf. Shen and Lu [29] and Gao and Jin [5]).

min
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

A.6 (cf. Ji et al. [7] and Shen and Lu [29]).

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.
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A.7 (cf. Shen and Lu [29] and Gao and Jin [5]).

min
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 4x3 + 50

x1 + 5x2 + 5x3 + 50
+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.

A.8 (cf. Ji et al. [7]) and Shen and Lu [29].

max
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50
+

4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50

s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,

x1, x2, x3 ≥ 0.

A.9 (cf. Shen and Lu [29] and Gao and Jin [5]).

min
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

13x1 + 26x2 + 13

s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

A.10 (cf. Jiao and Liu [8], Shen and Wang [30] and Jiao et al. [9]).

max
4x1 + 3x2 + 3x3 + 50

3x2 + 2x3 + 50
+

3x1 + 4x2 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 3x3 ≤ 10,

5x1 + 9x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≤ 10,

x1, x2, x3 ≥ 0.

A.11 (cf. Shen and Wang [30] and Shi [33]).

max
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

63x1 − 18x2 + 39

−13x1 − 26x2 − 13

+
13x1 + 13x2 + 13

63x1 − 18x2 + 39
+

13x1 + 26x2 + 13

−37x2 − 73x3 − 13

s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.
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A.12 (cf. Shi [33]).

max
4x1 + 3x2 + 3x3 + 50

3x2 + 3x3 + 50
+

3x1 + 4x3 + 50

4x1 + 4x2 + 5x3 + 50

+
x1 + 2x2 + 5x3 + 50

x1 + 5x2 + 5x3 + 50
+
x1 + 2x2 + 4x3 + 50

5x2 + 4x3 + 50

s.t. 2x1 + x2 + 5x3 ≤ 10,

x1 + 6x2 + 2x3 ≤ 10,

9x1 + 7x2 + 3x3 ≥ 10,

x1, x2, x3 ≥ 0.
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