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Abstract. In this paper, we propose a new way to construct the distribution function
through the second-order polynomial approximation in terms of particle mass, mo-
mentum and energy. The new construction holds three distinguished features. First,
the formulations are more concise as compared with the third-order truncated Hermite
polynomial expansion which yields Grad’s 13-moment distribution function; Second,
all moments of the present distribution function are determined from conservation
laws; Third, these moments are closely linked to the most desirable variables, such
as mass, momentum and energy. Then, this new distribution function is applied to
construct a new gas kinetic flux solver. Numerical validations show that the proposed
method recovers the Navier-Stokes solutions in the continuum regime. In addition,
it outperforms Grad’s 13-moment distribution function in the transition regime, espe-
cially in the prediction of temperature and heat flux.
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1 Introduction

The classical Navier-Stokes (NS) equations have been widely utilized for the research
of fluid mechanics. NS equations rely on the assumption of local thermodynamic equi-
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librium. However, this assumption is unjustifiable for systems beyond the continuum
flow regime. For example, in the micromachining and micro-electromechanical system
(MEMS), the micro-devices are usually in the scale of micrometers. Hence, the character-
istic length is usually comparable with the molecular mean free path. In such scenario,
the interactions between the molecules are insufficient and the assumption of thermo-
dynamic equilibrium fails, so do the Navier-Stokes (NS) equations established on this
assumption.

To describe the non-equilibrium processes, much attention has been put on more so-
phisticated models, such as kinetic theory and molecular dynamics, which are not con-
strained by the assumption of thermodynamic equilibrium. The Boltzmann equation is
derived from the kinetic theory and physically interprets the collision and transport pro-
cesses of gas molecules. Based on that, many numerical approaches have been proposed
to solve the Boltzmann equation for academic explorations and engineering applications,
among which one popular numerical method is the discrete velocity method (DVM).
Various versions of DVM include gas kinetic unified algorithm [1, 2], unified gas kinetic
scheme [3,4], discrete unified gas kinetic scheme [5,6] and so on. The essence of DVM is to
evolve the distribution function of gas molecules, based on which the macroscopic flow
variables can be calculated from the moments of the distribution function. However, the
evolution of the gas distribution function calls for additional discretization in the particle
velocity space, which consumes huge computational efforts and virtual memories.

To avoid the discretization in the velocity space, the explicit formulation of gas dis-
tribution function should be given. One common way to construct the gas distribution
function is the first-order Chapman-Enskog (CE) expansion [7–11]. Some well-known
solvers were proposed based on the CE expansion, such as lattice Boltzmann flux solver
(LBFS) [12, 13], gas kinetic scheme (GKS) [14, 15], circular function-based gas kinetic
scheme (C-GKS) [16,17], novel gas kinetic flux solver (N-GKFS) [18] and so on. However,
the first-order CE expansion can only recover the Navier-Stokes (NS) equations, which
constrains the applications of the aforementioned solvers to continuum flow regime at
the thermodynamic equilibrium state. To solve flow problems beyond the NS level, a
more general distribution function should be adopted. It is noteworthy that the second-
order and the third-order CE expansions respectively yield the Burnett and the Supper-
Burnett equations. To certain extent, the gas kinetic flux solvers based on these expan-
sions can simulate flows beyond the NS level. However, the gas distribution function
that satisfies the Burnett or the Supper-Burnett equations contains the second-order or
the third-order spatial derivatives. The treatments of these high-order spatial derivatives
complicate the solvers. To alleviate this issue, a variant of gas kinetic flux solver [19] was
proposed, which includes the correction terms to the linearized constitutive relations and
Fourier’s law. The validation results showed that the correction terms indeed take effect
in the non-equilibrium regime. However, the effectiveness of the correction terms will
reduce with the increasing of the Knudsen numbers.

Another way to construct the gas distribution function is the Hermite polynomial
expansion [20]. The regularized 13-moment method [21] and regularized 26-moment
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method [22] were proposed based on this way. The success of regularized moment
methods implies that the gas distribution function obtained through Hermite polyno-
mial expansion has a potential for resolving flows beyond the NS level. Then, a novel
solver [23,24] and a Grad’s distribution function-based gas kinetic scheme [25] were pro-
posed, which combines the advantages of the DVM and the moment method. On the one
hand, these methods adopt the Grad’s distribution function as the initial one and thus
circumvent the tedious evolution process of gas distribution function in DVM. On the
other hand, they calculate the high-order moments through the moment relationships
and thus avoid solving additional partial differential equations in the moment methods.
The validation results of the novel solver and the Grad’s distribution function-based gas
kinetic scheme show their effectiveness in simulating flows from the continuum regime
to the rarefied regime at moderate Knudsen numbers.

A common pitfall of both the novel solver and the Grad’s distribution function-based
gas kinetic scheme is that their solution accuracy depends on the formulation of the ini-
tially guessed distribution function. In practice, the initial gas distribution function ob-
tained from the Grad’s 26 (fourth-order truncated Hermite polynomial expansion) per-
forms better than Grad’s 13 distribution function (the third-order truncation). This is
within our expectations because with higher-order expansion terms involved, the ap-
proximated gas distribution function bears higher accuracy. However, a higher-order ex-
pansion is inevitably accompanied by more complicated formulations. At the same time,
it is noted that the better performance of Grad’s 26 distribution function is mainly pre-
sented in the prediction of velocity profiles rather than in the temperature profiles, which
stems from the fact that the higher-order additional moments involved in the Grad’s 26
distribution function are not closely related to the energy (or temperature). Observing
these puzzles, a natural question is whether a distribution function, which is closely re-
lated to the energy, can be constructed.

The answer towards this question motivates the present work. From the perspective
of gas kinetic theory, the most desirable macroscopic variables, such as density, momen-
tum and energy can be calculated by moments of f , ξ · f and 1

2 ·ξ2 · f , respectively. Here,
f is the distribution function, ξ is the molecular velocity (summation of mean velocity
U and peculiar velocity C). From the Hermite polynomial expansion, it can be seen that
the definitions of moments are all associated with the peculiar velocity C. Hence, a natu-
ral way to construct moments that are closely linked to density, momentum and energy
is to employ polynomial approximation in terms of 1, C, C2. In this paper, a second-
order polynomial approximation in terms of 1, C, C2 is used to derive the distribution
function. By utilizing the compatibility conditions and the moment relationships, all co-
efficients in the polynomial approximation can be determined and generally expressed
as 〈Cm f 〉. And this distribution function will be adopted as the initially guessed distribu-
tion function to establish a new gas kinetic flux solver. Numerical validations show that
this new gas kinetic flux solver is applicable to both the continuum flow regime and the
transition flow regime. Comparing with the Grad’s 13-based method, the present solver
has more compact formulations and performs better in the prediction of temperature and
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heat flux.
The organization of the rest of the paper is summarized as follows. In Section 2, the

Boltzmann equation and the gas kinetic flux solver will be briefly introduced. In Section
3, the gas distribution obtained by the second-order polynomial approximation in terms
of 1, C, C2 will be shown. Section 4 gives the details of the present gas kinetic flux solver.
In Section 5, numerical validations will be presented. Concluding remarks will be made
in Section 6.

2 Brief description on Boltzmann equation and gas kinetic flux
solver

2.1 Boltzmann equation

From the mesoscopic perspective, gas molecules exhibit transport and collision behaviors
constantly. The Boltzmann equation is such an equation that physically interprets these
processes by evolving the gas distribution function f . Its formulation with the Bhatna-
gar–Gross–Krook (BGK) collision model [26] can be given as,

∂ f
∂t

+ξ ·∇ f =
g− f

τ
, (2.1)

where t is the time and ξ = (ξ1,ξ2,ξ3) represents the particle velocity space. τ is the
relaxation time and defined as the ratio of the dynamic viscosity µ to the pressure p. g is
the equilibrium state of the gas distribution function and can be expressed as,

g=
ρ

(2πRT)
3
2
·exp

(
− C2

2RT

)
, (2.2)

in which, ρ is the macroscopic density, C=(C1,C2,C3) denotes the peculiar velocity and
T is the macroscopic temperature. R is the gas constant.

2.2 Gas kinetic flux solver

From the macroscopic perspective, the desired flow variables including density, velocity
and temperature correspond to different moments of the gas distribution function [27,28].
Hence, the Boltzmann equation shown in Eq. (2.1) can be projected to the macroscopic
level by taking the relevant moments of gas distribution function. In other words, we can
multiply Eq. (2.1) with the moment vector ϕ=(1,ξ,ξ2/2) and then integrate it over the
whole velocity space. Finally, the formulation is obtained as follows,

∂

∂t
〈ϕ f 〉+∇·〈ϕξ f 〉= 〈ϕ(g− f )〉

τ
, (2.3)
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where the operator 〈···〉 is the integration over the whole velocity space and can be ex-
pressed as

〈···〉=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(···)dξ1dξ2dξ3. (2.4)

The moment relationships reveal that the terms 〈ϕ f 〉 and 〈ϕξ f 〉 in Eq. (2.3) are equivalent
to the macroscopic variables W =

(
ρ, ρU, ρE

)
and the flux vector F, respectively. In

the meantime, the compatibility condition means that 〈ϕg〉 and 〈ϕ f 〉 should recover the
same macroscopic variables, which yields 〈ϕ(g− f )〉= 0. With these relationships, the
macroscopic conservative equations can be obtained as

∂W
∂t

+∇·F=0. (2.5)

Eq. (2.5) is a macroscopic equivalence of the mesoscopic governing equation (2.1). An
important part to solve Eq. (2.5) is the accurate construction of numerical fluxes F. The
conventional computational fluid dynamics (CFD) method usually constructs the invis-
cid flux and viscous flux separately. However, the gas kinetic flux solver [29] (GKFS)
can construct the numerical fluxes simultaneously. It constructs the numerical fluxes by
taking the moment of gas distribution function at cell interface as F= 〈ϕξ f 〉.

To retain the kinetic feature, the distribution function at the cell interface can be phys-
ically derived through Boltzmann equation with BGK collision term, which has been
shown in Eq. (2.1). By discretizing the Boltzmann equation within a time step δt and at
the cell interface xI+ 1

2
, we can obtain the formulation as follows,

f
(

xI+ 1
2
,ξ,t+δt

)
− f
(

xI+ 1
2
−ξδt,ξ,t

)
δt

=
g
(

xI+ 1
2
,ξ,t+δt

)
− f
(

xI+ 1
2
,ξ,t+δt

)
τ

. (2.6)

The left-hand side of Eq. (2.6) represents the discretization of substantial derivative of
distribution function ∂ f /∂t+ξ ·∇ f . The right-hand side of Eq. (2.6) is from the BGK
collision operator (g− f )/τ. Then, Eq. (2.6) can be reformulated as

f
(

xI+ 1
2
,ξ,t+δt

)
=

δt
τ+δt

g
(

xI+ 1
2
,ξ,t+δt

)
+

τ

τ+δt
f
(

xI+ 1
2
−ξδt,ξ,t

)
. (2.7)

Eq. (2.7) reveals that the distribution function at the cell interface can be exactly calculated
if g(xI+ 1

2
,ξ,t+δt) (which is the equilibrium distribution function at the cell interface) and

f (xI+ 1
2
−ξδt,ξ,t), (which is the initial distribution function at the surrounding points of

cell interface) are both known. The accurate construction of f at the cell interface is the
key issue for a successful calculation of numerical fluxes F. This is also the main con-
tribution of GKFS. In the following sections, we will focus on the way to construct the
distribution function at the cell interface.
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3 Initial distribution function approximated by the second-order
polynomial in terms of 1, C, C2

3.1 Motivations

As shown in Eq. (2.7), the construction of gas distribution function at the cell interface re-
lies on g(xI+ 1

2
,ξ,t+δt) and f (xI+ 1

2
−ξδt,ξ,t). The explicit formulation of equilibrium dis-

tribution function g is known, as shown in Eq. (2.2). Thus, the main issue is to construct
the explicit formulation of initial gas distribution function f (xI+ 1

2
−ξδt,ξ,t). In the con-

ventional GKFS, the initial distribution function of f is approximated by the first-order
Chapman Enskog (CE) expansion analysis. Conventional GKFS is suitable for the simu-
lation of flows at the thermodynamic equilibrium state, because the distribution function
obtained by the first-order CE expansion could exactly recover the Navier-Stokes equa-
tions. However, when it comes to flows in the rarefied regime, the distribution function
obtained from CE expansion is not sufficient to consider the strong non-equilibrium ef-
fect. To resolve the issue in the rarefied regime, a novel solver and a Grad’s distribution
function-based gas kinetic scheme have been proposed, in which the initial gas distribu-
tion function is approximated by the Grad’s distribution function. Comparing with the
conventional GKFS, these two solvers can be well applied for simulation of flows in the
rarefied regime at a moderate Knudsen number.

Grad’s distribution function is constructed based on the Hermite polynomial expan-
sion. It is noteworthy that the accuracy of the novel solver and the Grad’s distribution
function-based gas kinetic scheme can be improved with higher order Hermite polyno-
mial expansion used in the initial distribution function. However, the formulation of
distribution function will be more complicated with higher order expansions. It is also
noted that the Grad-26 based GKS does not improve the prediction of temperature as
compared to the Grad-13 based GKS. This is because the additional higher-order terms
in the Hermite polynomial expansion are not closely related to energy and thus have lit-
tle contribution to the better prediction of temperature. To resolve this issue, a new way
of constructing initial distribution function will be proposed in the next section.

3.2 Relationship between moments and peculiar velocity space of 1, C, C2

From the perspective of gas kinetic theory, the most desirable macroscopic variables, such
as density, momentum and energy can be calculated by taking the moments of g, g(U+C)

and 1
2 ·g(U+C)2, respectively. Here, U is the mean velocity (reflecting the macroscopic

physical information) and C is the peculiar velocity (reflecting the mesoscopic physical
information). Thus, on the mesoscopic level, we can view 1, C, C2 as normalized particle
mass, momentum and energy (normalized by g). It is also noted that all of the moments
can be generally expressed as 〈Cm f 〉, where Cm represents a combination of peculiar
velocity. Therefore, a natural way to construct the initial distribution function f is to take
polynomial approximation in terms of 1, C, C2.
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3.3 New way to construct initial distribution function

From both the CE expansion and the Hermite polynomial expansion, the gas distribution
function f can be generally expressed as,

f = gφ, (3.1)

where, φ is a function. In the CE expansion, φ is related to the spatial derivatives of
conservative variables and peculiar velocities. In the Hermite polynomial expansion, φ is
connected with the high-order moments and peculiar velocities [30]. Considering that the
expressions of φ involved in the two methods mentioned above are both associated with
the peculiar velocities, we can approximate φ directly from the peculiar velocities. As
discussed in the above section, 1, C, C2 can be viewed as normalized particle mass, mo-
mentum and energy (normalized by g), which have inherent connection with the density,
momentum, energy. Thus, in this work, the function φ is approximated by the second-
order polynomial in terms of 1, C, C2. For the two dimensional case, we just need to
consider the peculiar velocities C1 and C2 in the x- and y- directions, and the peculiar ve-
locity C3 in the z-direction can be treated as the internal degree of freedom η. Therefore,
the expression of C and C2 can be given as,

C=
[
C1 C2

]
, (3.2a)

C2=C2
1+C2

2+η2. (3.2b)

With the second-order polynomial approximation in terms of 1, C, C2, the function φ can
be generally written as,

φ=a0 ·1+a1 ·C1+a2 ·C2+a3 ·C1C1+a4 ·C2C2+a5 ·C2

+a6 ·C1C2+a7 ·C1C2+a8 ·C2C2+a9 ·C4. (3.3)

By substituting Eq. (3.2b) into Eq. (3.3), the function φ can be further reformulated as,

φ=a0 ·1+a1 ·C1+a2 ·C2+(a3+a5)·C1C1+(a4+a5)·C2C2+a5 ·η2

+a6 ·C1C2+a7 ·C1C2+a8 ·C2C2+a9 ·C4. (3.4)

To make the formulation shown in Eq. (3.4) be more compact, the following relations can
be defined as

a0= ã0, a1= ã1, a2= ã2, a3+a5= ã3, a4+a5= ã4, (3.5a)
a5= ã5, a6= ã6, a7= ã7, a8= ã8, a9= ã9. (3.5b)

Substituting the relations in Eq. (3.5) into Eq. (3.4), the function φ can be rewritten as,

φ=ã0 ·1+ ã1 ·C1+ ã2 ·C2+ã3 ·C2
1+ã4 ·C2

2+ ã5 ·η2

+ã6 ·C1C2+ ã7 ·C1C2+ ã8 ·C2C2+ ã9 ·C4. (3.6)
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By Combining Eq. (3.6) with Eq. (3.1), the initial distribution function approximated by
the second-order polynomial in terms of 1, C, C2 can be written as,

f= g·
(

ã0 ·1+ ã1 ·C1+ ã2 ·C2+ã3 ·C2
1+ã4 ·C2

2+ ã5 ·η2

+ã6 ·C1C2+ ã7 ·C1C2+ ã8 ·C2C2+ ã9 ·C4

)
. (3.7)

The unknown coefficients ãi (i=0,.. .,9) in Eq. (3.7) can be determined by the compatibil-
ity conditions and moment relationships which are robust in all flow regimes. From the
compatibility condition, we have

〈 f 〉
〈 f ξ〉〈

f |ξ|2/2
〉
=


〈g〉
〈gξ〉〈

g|ξ|2/2
〉
=

 ρ

ρU
ρE

. (3.8)

By substituting Eq. (3.7) into 〈 f 〉= 〈g〉=ρ, we can obtain

ã0+(ã3+ ã4+ ã5)RT+15(RT)2 · ã9=1. (3.9)

Next, by substituting Eq. (3.7) into 〈 f ξ〉= 〈gξ〉=ρU, we have

ã1=−5RT · ã7, (3.10a)
ã2=−5RT · ã8. (3.10b)

Finally, by substituting Eq. (3.7) into

〈 f |ξ|2/2〉= 〈g|ξ|2/2〉=ρE,

we can obtain

ã3+ ã4+ ã5+30(RT)· ã9=0. (3.11)

The moment relationship derive the following relations

〈 f 〉= 〈g·φ〉, (3.12a)
〈 f ·C1〉= 〈g·φ·C1〉, 〈 f ·C2〉= 〈g·φ·C2〉, (3.12b)〈

f ·C2
1
〉
=
〈
g·φ·C2

1
〉

,
〈

f ·C2
2
〉
=
〈
g·φ·C2

2
〉

, (3.12c)〈
f ·η2〉=〈g·φ·η2〉, 〈 f ·C1C2〉= 〈g·φ·C1C2〉, (3.12d)〈
f ·C1C2〉=〈g·φ·C1C2〉,

〈
f ·C2C2〉=〈g·φ·C2C2〉, (3.12e)〈

f ·C4
〉
=
〈

g·φ·C4
〉

. (3.12f)
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By substituting the expression of φ shown in Eq. (3.6) into Eqs. (3.12a)-(3.12f), and with
the help of relations shown in Eqs. (3.9)-(3.11), all of the coefficients shown in Eq. (3.6)
can be exactly calculated and listed as follows,

ã0=1+15(RT)2 ã9, ã1=−
〈

f C1C2〉
2ρ(RT)2 , ã2=−

〈
f C2C2〉

2ρ(RT)2 , (3.13a)

ã3=

〈
f C2

1

〉
2ρ(RT)2−

1
2RT
−10ã9RT, ã4=

〈
f C2

2
〉

2ρ(RT)2−
1

2RT
−10ã9RT, (3.13b)

ã5=

〈
f C2

3
〉

2ρ(RT)2−
1

2RT
−10ã9RT, ã6=

〈 f C1C2〉
ρ(RT)2 , ã7=

〈
f C1C2〉

10ρ(RT)3 , (3.13c)

ã8=

〈
f C2C2〉

10ρ(RT)3 , ã9=

〈
C4 f

〉
120ρ(RT)4−

1

8(RT)2 . (3.13d)

4 Gas kinetic flux solver based on new initial distribution
function

In Section 3.2, a new initial distribution function has been constructed. A natural question
is that weather we can replace the Grad’s distribution function with the newly derived
one and then construct a new gas kinetic flux solver. In this section, we will answer this
question.

4.1 Determination of equilibrium distribution function at the cell interface

As seen in Eq. (2.2), the equilibrium distribution function is the function of density, veloc-
ity and temperature. Hence, to calculate the equilibrium distribution function at the cell
interface, we just need to determine the vector of macroscopic flow variables WI+ 1

2
at the

cell interface. Based on the compatibility condition, g(xI+ 1
2
,ξ,t+δt) and f (xI+ 1

2
,ξ,t+δt)

satisfy the conservation constraint, which yields〈
ϕ
(

g
(

xI+ 1
2
,ξ,t+δt

)
− f
(

xI+ 1
2
,ξ,t+δt

))〉
=0. (4.1)

Substituting the expression of f (xI+ 1
2
,ξ,t+δt) given in Eq. (2.7) into Eq. (4.1), the equation

above can be reformulated as〈
ϕg
(

xI+ 1
2
,ξ,t+δt

)〉
=
〈

ϕ f
(

xI+ 1
2
−ξδt,ξ,t

)〉
, (4.2)

which means that the macroscopic variables WI+ 1
2

at the cell interface can be calculated
by moments of initial distribution function at surrounding points. Hence, the key issue
to construct the distribution function at the cell interface also relies on the distribution
function f (xI+ 1

2
−ξδt,ξ,t). The methodology to construct the initial distribution function



10 Z. Yuan, Z. Chen, C. Shu, Y. Liu and Z. Zhang / Adv. Appl. Math. Mech., xx (2024), pp. 1-33

at the surrounding points should be the main contribution of present paper and will be
discussed in detail in the following section.

4.2 Construction of initial distribution function at surrounding points of cell
interface

As shown in Eq. (3.7), the new derived distribution function depends on the coefficients
ãi (i=0,.. .,9). Hence, to construct the initial gas distribution function at the surrounding
points, we just need to focus on the coefficients at xI+ 1

2
−ξδt. Here, we adopt A(xI+ 1

2
−

ξδt,t) to represent the vector of these coefficients located at xI+ 1
2
−ξδt. The coefficients

can be calculated by,

A
(

xI+ 1
2
−ξδt,t

)
=

 AL

(
xI+ 1

2
,t
)
−∇AL

(
xI+ 1

2
,t
)
·ξδt, ξn >0,

AR

(
xI+ 1

2
,t
)
−∇AR

(
xI+ 1

2
,t
)
·ξδt, ξn <0,

(4.3)

where the subscripts L and R are the values of vector A at the left and the right sides
of the interface, respectively. ∇A stands for the gradient of A. To ensure second-order
accuracy, the values of∇AL(xI+ 1

2
,t) and∇AR(xI+ 1

2
,t) can be approximated by∇A(xI ,t)

and ∇A(xI+1,t), respectively. Here, xI represents the location of center of cell I, which
is at the left side of cell interface xI+ 1

2
. xI+1 means the location of center of cell I+1,

which is on the right side of cell interface xI+ 1
2
.Their first-order derivatives can be easily

calculated by the central difference scheme.
After that, the values of vector A on the left and the right sides of the interface could

be obtained by interpolation from the values at cell centers as,

AL

(
xI+ 1

2
,t
)
=A(xI ,t)+

∂A(xI ,t)
∂x

·
(

xI+ 1
2
−xI

)
, (4.4a)

AR

(
xI+ 1

2
,t
)
=A(xI+1,t)+

∂A(xI+1,t)
∂x

·
(

xI+ 1
2
−xI+1

)
. (4.4b)

Once the values of vector A at the surrounding points of cell interface are all known, the
gas distribution function around the cell interface can be determined subsequently.

With the reconstruction of f (xI+ 1
2
−ξδt,ξ,t), the conservative variables at the cell inter-

face can be calculated by Eq. (4.2). Then, the equilibrium distribution function g(xI+ 1
2
,ξ,t+

δt) at the cell interface could be determined by Eq. (2.2). With f (xI+ 1
2
−ξδt,ξ,t) and

g(xI+ 1
2
,ξ,t+δt) both known, the distribution function at the cell interface can be calcu-

lated according to Eq. (2.7).

4.3 The method to update the coefficients at cell centers

At the first time step, we suppose that the system is at the equilibrium state. Hence, all
coefficients in Eqs. (3.13a)-(3.13d) can be initialized at the equilibrium state with ã0 = 1
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and ãi = 0 (i= 1,.. .,9). Then, in the following time steps, all of the coefficients at the cell
centre should be updated. The methodology to update the coefficients will be clarified
into two steps, as follows
Step 1. Calculate the coefficients at the cell interface through moment relationship di-
rectly. According to the expressions of the coefficients shown in Eqs. (3.13a)-(3.13d), it
is noted that all of the coefficients are related to the moments of gas distribution func-
tion, macroscopic density and macroscopic temperature. As shown in Eq. (2.7), the gas
distribution function at the cell interface could be accurately constructed. Then, the co-
efficients at the cell interface could be calculated by the moment relationship directly.
Taking the coefficient ã9 as an example, its value at the cell interface can be calculated by
ã9,I+ 1

2
=〈C4 · f (xI+ 1

2
,ξ,t+δt)〉. By using the expression of gas distributions f L, f R, f U and

f B at four cell interfaces that enclose the control cell, its value at the left, right, upper and
bottom interfaces could be calculated as follows

ãL
9 =
〈

C4 f L
〉

, (4.5a)

ãR
9 =

〈
C4 f R

〉
, (4.5b)

ãU
9 =

〈
C4 f U

〉
, (4.5c)

ãB
9 =

〈
C4 f B

〉
. (4.5d)

Other moments at the cell interface, including
〈
C2

1 f
〉
,
〈
C2

2 f
〉
,
〈
η2 f
〉
, 〈C1C2 f 〉,

〈
C1C2 f

〉
and

〈
C2C2 f

〉
could be calculated in the same way.

Similarly, the conservative variables W = (ρ,ρU,ρV,ρE) at the cell interface can be
calculated by

〈
ϕ f L〉, 〈ϕ f R〉, 〈ϕ f U〉 and

〈
ϕ f B〉. Then, the density and temperature at the

cell interface can be calculated by,

ρ=W1, (4.6a)

T=

[
2W4W1−

(
W2

2 +W2
3
)]
(γ−1)

2W2
1 R

, (4.6b)

where γ is the specific heat ratio and equals to 5/3 for monatomic gas.
Step 2. Update the coefficients at the cell center. On the uniform mesh, the moment
ãC

9 at the cell center could be evaluated by averaging the values at surrounding four cell
interfaces as

ãC
9 =

1
4

(
ãL

9 + ãR
9 + ãU

9 + ãB
9

)
. (4.7)

The other moments at the cell center can be updated in the same way. By substituting
the updated values into Eqs. (3.13a)-(3.13d), the values of the coefficients at the cell in-
terface can be updated and the distribution function at the cell centre can be updated,
subsequently.
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4.3.1 Numerical approximation of integrals

In the present GKFS, the computation of macroscopic variables, flux vector and the co-
efficients relies on the moment integrals of distribution function in the particle velocity
space. Theoretically, analytical forms of integrals for the new derived gas distribution
function can be given out. For simplicity, numerical quadrature is applied for approxima-
tion of integrals in this work. Analytical forms of integrals for the solver can be explored
in the future to reduce computational efforts.

For low speed flows with small temperature variation, the high-order Gauss-Hermite
quadrature rule [31, 32] is a proper choice to approximate integrals. To compute the con-
servative variables, numerical fluxes and the coefficients, we need to discretize the parti-
cle velocity space into a set of discrete velocities ξα. By applying the integral quadrature,
the vector of conservative variables W at the cell interface can be approximately calcu-
lated by,

W≈∑
α

wαϕα f
(

xI+ 1
2
−ξαδt,ξα,t

)
. (4.8)

Here, wα is the quadrature weight and ϕα is equal to (1,ξα,ξ2
α/2). Similarly, numerical

fluxes at the cell interface can be approximately computed by

F≈∑
α

wαξαϕα

(
δt

τ+δt
g
(

xI+ 1
2
,ξα,t+δt

)
+

τ

τ+δt
f
(

xI+ 1
2
−ξαδt,ξα,t

))
. (4.9)

The coefficients shown in Eqs. (3.13a)-(3.13d) can also be rewritten in the form of numer-
ical quadrature. Taking the coefficient ã9 as an example, we have

ã9≈∑
α

wαC4
α

(
δt

τ+δt
g
(

xI+ 1
2
,ξα,t+δt

)
+

τ

τ+δt
f
(

xI+ 1
2
−ξαδt,ξα,t

))
, (4.10)

where Cα is equivalent to U−ξα.
Here, we also need to elaborate the methodology to calculate τ and δt. As indicated

in Eq. (2.1), τ is the ratio of dynamic viscosity µ to pressure p. To determine µ and p at the
cell interface, the density ρ and temperature T at the cell interface should be calculated.
As seen in Eq. (4.8), the vector of conservative variables W at the cell interface has been
approximated by numerical approximation, thus ρ and T can be obtained by Eq. (4.6a)
and Eq. (4.6b), subsequently.

The main constraint for δt is to restrict the local streaming points within the neigh-
boring cells. To satisfy this condition, δt can be computed by

δt≤ min{∆x}
2max{|ξα|}

, (4.11)

where ∆x=(∆x,∆y) is grid spacing in x- and y-direction. max{|ξα|} represents the max-
imum value of discrete velocities.
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4.4 Implementation of kinetic boundary conditions

To evaluate numerical fluxes at the boundary, the distribution function at the boundary
point should be determined. In this work, the Maxwell’s kinetic boundary condition
with perfect thermalizing wall [33] is considered, in which, the gas molecules will be
diffusively reflected with a Maxwellian distribution at the wall temperature. Thus, the
distribution function reflected from the wall can be given as

f (xW ,ξα,t)=
ρW

(2πRTW)
3
2
·exp

[
− (ξα−UW)2

2RTW

]
, (4.12)

where xW , TW and UW are the position, temperature and velocity of the wall, respectively.
ρW is the density on the wall, which can be determined from the no-penetration condition
as follows

ξα·nW≥0

∑
α

wα ·ξα ·nW · f (xW ,ξα,t)+
ξα·nW<0

∑
α

wα ·ξα ·nW · f (xW−ξαδt,ξα,t)=0, (4.13)

where nW stands for the normal vector of the wall pointing towards the flow field.
f (xW−ξαδt,ξα,t) means the incident distribution function in the flow domain, which is
reconstructed by the new derived gas distribution function. By substituting the expres-
sion of f (xW ,ξα,t) and f (xW−ξαδt,ξα,t) into Eq. (4.13), the density at the wall surface can
be calculated as [34]

ρW =−

ξα·nW<0
∑
α

wα ·ξα ·nW · f (xW−ξαδt,ξα,t)

1

(2πRTW)
3
2

ξα·nW≥0
∑
α

wα ·ξα ·nW ·exp
[
− (ξα−UW)2

2RTW

] . (4.14)

With the gas distribution function at the boundary, the numerical fluxes can be calculated
accordingly.

4.5 Computational procedure

The computational sequence of the present GKFS can be summarized as follows:

(1) Calculate the first order derivatives of coefficients at each cell center and determine
their values at the surrounding points of cell interface by the interpolation as shown
in Eq. (4.3).

(2) Reconstruct the initial gas distribution function at the surrounding points of each
cell interface by the new derived gas distribution function using Eq. (3.7).

(3) Compute the conservative variables WI+ 1
2

at cell interface using Eq. (4.2). Then,
calculate the distribution function g(xI+ 1

2
,ξ,t+δt) at equilibrium state by Eq. (2.2).
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(4) Reconstruct the distribution function f (xI+ 1
2
,ξ,t+δt) at cell interface using Eq. (2.7)

and update the coefficients by the method shown in Section 4.3.

(5) Calculate the density at the wall using Eq. (4.14) and then implement the kinetic
boundary conditions as discussed in Section 4.5.

(6) Solve the ordinary differential equation shown in Eq. (2.5) by the third-order TVD
Runge-Kutta method.

(7) Repeat steps (1)-(6) until the computation converges with the residual less than
10−6.

5 Numerical examples

In this section, the present solver is utilized to simulate some classical cases to validate
its accuracy from the continuum regime to the transition regime. The benchmark data
for the numerical validation is given by the results of DVM [35] due to its high accuracy
in the whole flow regimes. We need to clarify that the DVM results in present paper are
all obtained by using 28×28 quadrature points in the particle velocity space.

Case 1: Planar Couette flow.

The simulation of planar Couette flow is conducted as the first case to test the per-
formance of present solver. In the rarefied regime, this classical case contains Knudsen
layer effect, which results in the nonlinear velocity profile near the moving boundary.
This case has also been tested by Gu and Emerson [22] for the validation of regularized
moment equations and Liu et al. [23] for the validation of a novel solver. As shown in
Fig. 1, the upper and lower walls are set at the location of y=±H/2 and moving with
the velocity of Uw =±50m/s. The temperatures for the two moving walls are both fixed
at Tw = 273K. The left and right boundaries are periodic. The computational domain
is divided uniformly into 60×60 cells and the numerical integration is approximated by
Gauss-Hermite quadrature with 8×8 mesh points.

Three cases with different Knudsen numbers of 0.1, 0.25 and 0.5 are considered.
Herein, the Knudsen number is defined as the ratio of molecular mean free path (λ) to
the characteristic length (H) [36],

Kn=λ/H, (5.1)

in which, λ can be further expressed by the reference viscosity (µ0) and reference temper-
ature (T0=273K) as,

λ=
µ0

p

√
πRT0

2
. (5.2)
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Figure 1: Schematic of planar Couette flow.

By substituting Eq. (5.1) into Eq. (5.2), the reference viscosity µ0 can be determined by,

µ0=Kn·H ·p

√
2

πRT0
. (5.3)

Then, the viscosity in the flow pattern can be calculated by Sutherland’s law [37] as

µ=µ0

(
T
T0

)15 T0+Ts

T+Ts
, (5.4)

where Ts =104K for argon gas.
As shown in Fig. 2, the velocity profile obtained by present solver is compared with

those from regularized 13 moment (R-13) equations and novel solver. It is found that the
velocity near the upper and lower moving walls is about±41m/s, which differs from the
velocity of moving wall. This indicates that the wall slip phenomenon indeed occurs at
Kn=0.1, which belongs to the slip regime. In the zoom-in view of Fig. 2, the shape of ve-
locity profiles inside the Knudsen layer can be seen more clearly. Both the NS equations
and the R-13 equations fail to capture the nonlinear effect, whereas the present solver
as well as the novel solver can predict the nonlinear velocity profile. Fig. 3 shows the
comparison of velocity profiles in early transition regime at Kn= 0.25. In this state, the
velocity near the boundary is about±34m/s. This means that by increasing the Knudsen
number, the slip at wall will be enlarged. From the zoom-in view in Fig. 3, we can find
that the present solver and the novel solver can predict the power-law behavior of veloc-
ity profile. As seen in Fig. 4, when the Knudsen number reaches the transition regime
at Kn= 0.5, the Knudsen layer effect will become extremely strong. The velocity pro-
files predicted by the present solver and the novel solver still follow the nonlinear effect
within the Knudsen layer. The deficiencies of NS and R-13 equations are more obvious in
this scenario, which can be seen in the zoom-in view in Fig. 4. This case validates that the
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Figure 2: Comparison of velocity profiles (left) and zoom-in view (right) for Kn=0.1.
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Figure 3: Comparison of velocity profiles (left) and zoom-in ones (right) for Kn=0.25.

present distribution function can capture the rarefication effect for the non-equilibrium
flows till the transition flow regime, and the accuracy of obtained velocity profiles is com-
parable to the novel solver.

Case 2: Lid-driven cavity flow.

The second case is a two-dimensional lid-driven cavity flow. The schematic diagram
is shown in Fig. 5, which is a square enclosure with length L. The top wall is moving with
the velocity of Uw = 50m/s and the other walls are stationary. All walls are considered
isothermal with a fixed temperature of Tw=273K. This case can reflect most features of the
rarefaction effect, and thus has been simulated by Rana et al. [38] using R-13 equations
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Figure 4: Comparison of velocity profiles (left) and zoom-in ones (right) for Kn=0.5.
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Figure 5: Schematic of lid-driven cavity flow.

and Liu et al. [23] using the novel solver. For this case, the computational region is also
divided uniformly into 60×60 cells and the particle velocity space is discretized by 8×8
quadrature points.

In this case, the characteristic length is chosen as L. Thus, the Knudsen number is
computed by

Kn=λ/L, (5.5)

in which, the molecular mean free path (λ) is the function of reference viscosity (µ0),
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Figure 6: Comparison of U-velocity profiles along vertical centerline (left) and V-velocity profiles along horizontal
centerline (right) for Kn=0.0798.

reference temperature (T0) and reference density (ρ0). It can be calculated by

λ=
µ0

ρ0
√

RT0
. (5.6)

By substituting Eq. (5.6) into Eq. (5.5), the reference viscosity can be reformulated as,

µ0=Kn·L·ρ0
√

RT0. (5.7)

To make a comparison with the results shown in [23] and [38], the Knudsen numbers
of Kn= 0.0798 and 0.3989 are selected. After the reference viscosity is determined, the
viscosity (µ) in the flow field can be calculated [39] by,

µ=µ0

(
T
T0

)ω

, (5.8)

where the viscosity exponent ω is equal to 1.
Fig. 6 illustrates the comparison of the velocity profiles along the centerline for

Kn= 0.0798. As seen in the left plot, the U-velocity profiles obtained by different meth-
ods match well with each other. However, there exists some difference for the V-velocity
profile as shown in the right plot of Fig. 6. Comparing with the result of DVM, R-13
equations slightly over-predict the V-velocity near the boundary, while, the result which
is predicted by novel gas kinetic flux solver [18], under-predicts the peak value of V-
velocity. In contrast, V-velocity predicted by present solver can be in good agreement
with the results of the novel solver and DVM. Figs. 7(a), (b) and (c) show the compari-
son of temperature contour and heat flux streamlines obtained by the present solver, the
novel solver and the DVM, respectively. We can see that all of the three methods can well
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Figure 7: Temperature contours overlaid with heat flux streamlines and profiles for Kn= 0.0798: (a) present
solver, (b) novel solver, (c) DVM, (d) temperature profiles along vertical central line.

predict the anti-Fourier heat transfer phenomenon, which means that the streamlines of
heat flux go from the left upper corner (low temperature region) to the right upper cor-
ner (high temperature region). In Fig. 7(d), the comparison of temperature profiles along
the vertical centerline is shown in detail. The thermal behavior predicted by the present
solver agrees well with that from DVM. Both R-13 equations and the novel solver un-
derestimate the temperature in the bottom region and over-predict the temperature near
the wall boundary. From this aspect, the gas distribution function approximated by the
second-order polynomial in terms of 1, C, C2 performs better than the Grad’s 13-moment
distribution for the prediction of temperature profiles. Additionally, the effect of quadra-
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Figure 8: Comparison of U-velocity (left) and V-velocity (right) profiles with different quadrature points at
Kn=0.0798.
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Figure 9: Comparison of U-velocity profiles along vertical centerline (left) and V-velocity profiles along horizontal
centerline (right) for Kn=0.3989.

ture point number on the present solver is investigated. As depicted in Fig. 8, the veloc-
ity profiles predicted by the present solver with 4×4, 8×8 and 16×16 quadrature points
keep the same. But from the enlarged plots, we can find that the results obtained by
4×4 quadrature points slightly deviate from those calculated by 8×8 and 16×16 quadra-
ture points. Therefore, we can conclude that the case with 8×8 quadrature points is fine
enough to ensure accurate simulation of flows.

The comparisons of velocity profiles along the horizontal and vertical central lines for
Kn= 0.3989 are demonstrated in Fig. 9. It is within our expectation that the U-velocity
profiles obtained by different methods all deviate from the DVM result because of the
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Figure 10: Temperature contours overlaid with heat flux streamlines and profiles for Kn=0.3989: (a) present
solver, (b) novel solver, (c) DVM, (d) temperature profiles along vertical central line.

increasing of non-equilibrium effect at Kn=0.3989. But the result of present solver is still
in good agreement with the novel solver and is closer to the DVM data than the R-13
equations. The comparison of V-velocity profiles is shown in the right plot of Fig. 9. It is
obvious to find that R-13 equations totally over-predict the slip velocity at the wall, while
the gas kinetic flux solver under-predicts the slip velocity at the wall. In contrast, the peak
value of velocity profile and the slip velocity on the wall predicted by the present solver
are in good agreement with the DVM data. In Figs. 10(a), (b) and (c), we compare the
temperature contours and the streamlines of heat flux. The heat flux lines predicted by
present solver, novel solver and DVM all show the migration from the low-temperature
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Figure 11: Convergence history for cases of Kn=0.0798 (left) and Kn=0.3989 (right).

region to the high-temperature region. The comparison of temperature profiles along the
vertical centerline is presented in Fig. 10(d). In the bottom region of the square cavity, the
present solver shows improved results as compared to the novel solver. However, over-
prediction of temperature is observed near the moving wall where the non-equilibrium
effects are strong [19], which is the limitation of the present solver.

The comparison of convergence histories among the present solver, novel solver, and
DVM for Kn=0.0798 and 0.3989 is shown in Fig. 11. The residual is calculated by

Residual(ρ)=

√√√√ Ny

∑
j=1

Nx

∑
i=1

[
Fρ (i, j)

]2/
(

Nx ·Ny
)
, (5.9)

where Fρ(i, j) is the numerical flux for density, Nx and Ny are the number of cells in the x-
and y-direction, respectively.

The present solver performs much better than the DVM in this aspect, and shows
minor improvements as compared to the novel solver.

To validate the accuracy of present solver in the continuum regime, the cases of
Reynolds number of Re=100, 400 and 1000 are considered. With the increase of Reynolds
number, the computational domain is divided uniformly into 60×60, 80×80 and 100×100
cells, respectively. The reference viscosity µ0 is related to the Reynolds number and cal-
culated by µ0 = ρ0UwL/Re. The results from Ghia et al. [40] and N-GKFS [18] are both
utilized as the primary benchmark data. Here, we adopt N-GKFS because it can give
accurate results in the continuum regime. As shown in Fig. 12, Fig. 13 and Fig. 14, the ve-
locity profiles predicted by the present solver match well with those of Ghia et al. [40] and
the N-GKFS. These test cases prove that the present solver can give the accurate results in
the continuum regime. It is thus demonstrated that the present gas distribution function
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Figure 12: Comparison of U-velocity profiles along vertical centerline (left) and V-velocity profiles along hori-
zontal centerline (right) for Re=100.

Y

U
/U

w

0 0.2 0.4 0.6 0.8 1
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ghia et al

Present solver

N­GKFS

X

V
/U

w

0 0.2 0.4 0.6 0.8 1

­0.4

­0.2

0

0.2

0.4

Ghia et al

Present solver

N­GKFS

Figure 13: Comparison of U-velocity profiles along vertical centerline (left) and V-velocity profiles along hori-
zontal centerline (right) for Re=400.

approximated by the second-order polynomial in terms of 1, C and C2 can automati-
cally recover to the first-order CE expansion gas distribution function in the continuum
regime.

Table 1 compares the locations of the primary vortex center with different Reynolds
numbers obtained by different methods. The maximum relative error between the
present solver and those of Ghia et al. [34] is less than 5.86‰, which further validates
its accuracy in the continuum regime.
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Case 3: Thermal cavity flow induced by temperature gradients at wall.
The third test case is the thermal cavity flow induced by temperature gradients at

wall. This test case was once studied by Yang et al. [41] using moment methods. We
also adopt the in-house DVM solver to calculate this case as a benchmark to validate the
accuracy of present solver. The configuration is shown in Fig. 15. The length of the wall
is L. The left and the right walls are maintained at constant temperature of TC=263K. On
the top wall and the bottom wall, the temperature is linearly increased from TC=263K to
TH =283K in the left half, and then linearly decreased to TC =263K in the right half.

The computational domain for this case is divided uniformly into 60×60 cells. The
particle velocity space is discretized by 16×16 quadrature points used by Gauss–Hermite
rule for present solver. In this test case, the characteristic length is also chosen as L. Thus,
the Knudsen number can also be computed by Eq. (5.5). The mean free path λ is related
to the reference viscosity µ0 and given by

λ=
4α0(5−2w0)(7−2w0)

5(α0+1)(α0+2)
√

2πRT0

µ0

ρ0
, (5.10)

where ρ0 is the reference density. α0 and w0 are parameters of the inter-molecular inter-

Table 1: Locations of primary vortex centers obtained by different methods.

Re Ghia et al. [40] N-GKFS Present GKFS
100 (0.6172,0.7344) (0.6181,0.7382) (0.6171,0.7387)
400 (0.5547,0.6055) (0.5563,0.6056) (0.5563,0.6061)

1000 (0.5313,0.5625) (0.5320,0.5653) (0.5322,0.5658)
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Figure 15: The schematic of thermal cavity flow.
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Figure 16: Comparison of density profiles along horizontal line (left) and vertical line (right) with different mesh
scales.

action models at the reference state. In this work, the hard sphere model is utilized as
reference state, such that α0 = 1 and w0 = 0.5. The viscosity (µ) in the flow field is given
by Eq. (5.8) with the viscosity exponent ω equal to 0.81.

A validation of the grid independence for the present solver is conducted by using
three sets of mesh scale, including 40×40, 60×60 and 80×80. As illustrated in Fig. 16, the
results at the location of y=0.25, y=0.5, x=0.25 and x=0.5 obtained by the mesh scale
of 60×60 could converge to the results by 80×80. Thus, 60×60 is fine enough to ensure
the accurate simulation.
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Figure 17: Density contours for Kn=0.1: (a) present solver, (b) novel solver, (c) DVM.
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Figure 18: Density profiles along vertical lines (left) and horizontal lines (right).

As shown in Fig. 16, the density contours calculated by the present solver, the novel
solver and the DVM are quite similar. For quantitative comparisons, the density profiles
along vertical lines and horizontal lines are investigated. As illustrated in Fig. 17, the
results predicted by the present solver can match better with the DVM than the novel
solver.

As clarified in the Section 3.2, the term C2 in the new distribution function has inher-
ent connections with the energy. And comparing with the distribution function of Grad’s
13 moment, the new derived distribution function has the additional moment 〈C4 f 〉.
Thus, it is expected that the present solver will perform better than the novel solver in
the prediction of heat fluxes. The comparison of heat flux pattern in the x-direction is
shown in Fig. 18. Specifically, Fig. 18(d) gives the quantitative comparison of heat flux at
the location of y=0.25 and y=0.5. It is noted that the heat flux in the x-direction calcu-
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Figure 19: Heat flux contours in the x-direction and profiles for Kn=0.1: (a) present solver, (b) novel solver,
(c) DVM, (d) profiles along vertical lines.

lated by present solver is closer to that of DVM than the novel solver. The comparison of
heat flux in the y-direction is shown in Fig. 19. In comparison with the reference results
given by the DVM, the present solver also performs slightly better than the novel solver.
We need to clarify that the heat fluxes (including Qx and Qy) in the present solver are
obtained by their relationship with coefficients ã7 and ã8 as follow,

Qx =5· ã7ρ(RT)3, Qy =5· ã8ρ(RT)3. (5.11)

Case 4: Pressure-driven Poiseuille flow.
The last case to test the performance of the present solver is the pressure-driven
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Figure 20: Heat flux contours in the y-direction and profiles for Kn=0.1: (a) present solver, (b) novel solver,
(c) DVM, (d) profiles along horizontal lines.

Poiseuille flow [42]. As shown in Fig. 20, the aspect ratio is given by Lx/Ly=3 and the dis-
tance between the upper and the lower walls is Ly=10λ0, where λ0 is the molecular mean
free path and will be given later. The reference pressure for this case is p0 = 6.05×10−4.
The inlet pressure and outlet pressure are set as pin=3/2p0 and pout=1/2p0, respectively.

The gas molecule inside the flow field possesses the diameter of d= 1 and the mass
of m= 1. The reference density is set as ρ0 = 1.21×10−3, with which the mean free path

can be calculated by λ0=m(
√

2πρ0d2)
−1

=186. Then, Knudsen number is determined by
Kn= λ0/Ly = 0.1. In this case, the reference viscosity is computed by µ0 = ρ0λ0U0/

√
π

and the real viscosity is determined by Eq. (5.8) with the viscosity exponent equal to 0.5.
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Figure 21: Schematic of pressure-driven Poiseuille flow.
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Figure 22: Comparison of U-velocity (left) and Temperature (right) profiles along the horizontal centerline.

The comparison of velocity profiles is shown in the left plot of Fig. 21. Both the present
solver and novel solver match well with the DVM data. The right plot of Fig. 21 com-
pares the temperature profiles along the horizontal centerline. The results obtained by
the present solver still agree well with that of DVM, whereas the results of the novel
solver show clear deviations. The comparison of U-velocity and temperature profiles
along the vertical centerline is shown in Fig. 22. We can draw the same conclusion that
the present solver can predict the velocity as well as the novel solver, but gives more
accurate temperature profile than the novel solver. This may be due to the fact that the
moments (especially the term 〈C4 f 〉) involved in the new distribution function can be
closely linked to the energy, thus preforms better than the third-order truncated Hermite
polynomial expansion. To analyze the contribution arising from 〈C4 f 〉, we visualize the
coefficient ã9 in the flow pattern, which is demonstrated in Fig. 23. Its values along the
horizontal and vertical centerline are shown in Fig. 24, which indicate that ã9 mainly takes
effect in the central region and outlet region. This also interprets the better performance
of present solver than novel solver in the prediction of temperature profiles.
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Figure 24: Contour of coefficient ã9 in the flow pattern.
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Figure 25: Profiles of coefficient ã9 along the horizontal (left) and vertical (right) centerline.
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6 Concluding remarks

In this paper, a new gas distribution function is derived based on the second-order poly-
nomial approximation in terms of 1, C and C2. Then, a new gas kinetic flux solver based
on this distribution function is presented for simulation of flows from continuum regime
to transition regime. This solver is established within the framework of FVM and the
numerical fluxes at the cell interface are evaluated by the gas distribution function. In
addition, an iterative process is employed to calculate the coefficients involved in the
distribution function through moment relationships straightforwardly. The numerical
validations show that the present scheme can recover the solutions of the NS solver in
the continuum regime. In the transition regime, the present solver bears comparable ac-
curacy as the novel solver in resolving the velocity field, but outperforms the latter in the
prediction of temperature and heat fluxes.
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