
Journal of Computational Mathematics

Vol.xx, No.x, 2023, 1–29.

http://www.global-sci.org/jcm

doi:10.4208/jcm.2309-m2021-0366

ADAPTIVE VIRTUAL ELEMENT METHOD FOR CONVECTION
DOMINATED DIFFUSION EQUATIONS*

Qiming Wang

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China

Email: wangqiming sdnu@126.com

Zhaojie Zhou1)

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China

Email: zhouzhaojie@sdnu.edu.cn

Abstract

In this paper, a robust residual-based a posteriori estimate is discussed for the Stream-

line Upwind/Petrov Galerkin (SUPG) virtual element method (VEM) discretization of

convection dominated diffusion equation. A global upper bound and a local lower bound

for the a posteriori error estimates are derived in the natural SUPG norm, where the global

upper estimate relies on some hypotheses about the interpolation errors and SUPG virtual

element discretization errors. Based on the Dörfler’s marking strategy, adaptive VEM al-

gorithm drived by the error estimators is used to solve the problem on general polygonal

meshes. Numerical experiments show the robustness of the a posteriori error estimates.

Mathematics subject classification: 65N15, 65N30, 65N50.
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1. Introduction

A posteriori error analysis of the SUPG virtual element method in the context of stationary

convection dominated diffusion equations is studied in this paper. This kind of equations

have many important applications, including river and air pollution, fluid flow and fluid heat

conduction. Since the weak solution of such problems exhibits different types of layers, the

standard numerical method often leads to oscillations in the solution, if these layers are not

efficiently resolved by the mesh. Various stabilized schemes for convection dominated diffusion

equations have been developed, for examples, SUPG methods [15,24,31], discontinuous Galerkin

methods [20, 22], edge stabilization methods [25, 27], and continuous interior penalty (CIP)

methods [16, 23].

Since the numerical solution obtained by the SUPGmethod is often accompanied by spurious

oscillations in a vicinity of layers, a posteriori error estimate for convection dominated diffu-

sion equation is necessary and meaningful. There were already a lot of works about this issue.

Verfürth [33] derives a posteriori error estimates for convection-diffusion equations with domi-

nant convection and the ratio of the upper and lower bounds depends on the local mesh-Péclet

number. In [34, 35], the robust a posteriori error estimates for stationary and nonstationary

convection-diffusion equations are studied. All estimators yield global upper and lower bounds

for the error measured in a norm that incorporates the standard energy norm and a dual norm
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of the convective derivative. Based on some hypotheses that relate interpolation errors in dif-

ferent norms and the error of the SUPG approximation a robust residual-based a posteriori

estimates in standard SUPG norm is proposed for the SUPG finite element method discretiza-

tion of stationary convection diffusion reaction equations in [28].

Recently, the virtual element method has become an attractive research topic as a method

to extend classical finite element method to general polygonal meshes. It has been used in a

variety of fields, such as discrete fracture network simulation, incompressible miscible displace-

ments in porous media, resistive magnetohydrodynamics and polycrystal composite materials.

Since the original introduction of [3], various problems have been solved by the virtual element

method so far, for example [1, 2, 5, 10, 18, 26, 37]. The VEM can handle very general polygo-

nal elements with geometrical hanging nodes, because we just treat the hanging nodes as new

nodes. Therefore, it is well suited to mesh refinement and adaptive problems, which can help

us save a lot of computational cost. For the development and application of the a posteriori

error estimate of VEM, a short representative list being [6, 8, 9, 12, 17, 21, 30, 36].

There are a few works on SUPG-VEM of convection dominated diffusion equations. Can-

giani et al. [29] first studied a non-consistent SUPG-VEM of convection dominated diffusion

problem. Subsequently, SUPG-stabilized conforming and non-conforming VEMs are presented

in [11,13]. The robustness of a priori error estimates for these methods is proved for high Péclet

numbers. This shows the efficiency of the SUPG stabilisation. Recently, Beirǎo da Veiga et

al. [7] discussed a robustness analysis of the SUPG-stabilized virtual elements for convection

diffusion problems. By slightly modifying the SUPG format of [13], they propose a new way to

discretize the convection term, which ultimately demonstrates the robustness of the parameters

involved in the convergence estimates without requiring sufficiently small mesh sizes.

The a posteriori error estimate of the virtual element method for convection dominated dif-

fusion equations was not reported up to now. Motivated by [28], in this paper we aims to derive

a robust residual-based a posteriori error bounds for the SUPG virtual element approximation of

convection dominated diffusion equation. Firstly the virtual element space with corresponding

degrees of freedom and SUPG-VEM formulation are introduced. Based the hypotheses between

the interpolation errors and SUPG virtual element discretization errors, a global upper bound

is deduced. Further, a local lower bound for the a posteriori error estimate is derived. Finally,

adaptive VEM algorithm drived by the error estimators is introduced and some numerical ex-

amples are carried out to verify our theoretical analysis.

The paper is organized as follows. In the next section, the model problem and the SUPG-

VEM formulation are introduced. In Section 3, a global upper bound and a local lower bound

for the a posteriori error estimate are derived in the convection dominated case. In the last

section we perform some numerical experiments to verify the theoretical results by using the

adaptive VEM algorithm.

Throughout the paper, for an open bounded domain E, we use the standard notation | · |s,E
and ‖ · ‖s,E to denote seminorm and norm, respectively, in the Sobolev space Hs(E), while

(·, ·)0,E denotes the L2(E) inner product. When E is the whole domain Ω, the subscript can

be omitted. For every integer n ≥ 0,Pn(E) denotes the space of polynomials of degree at most

on E. In particular, P−1(E) = {0}. C is a generic constant with different value at different

places.

2. The Model Problem and VEM Discretization

In this section, we first introduce the model problem and polynomial projections. Then we
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introduce the virtual element space with the corresponding degrees of freedom and the SUPG-

VEM formulation of problem is given. Finally, we give the relevant knowledge of the SUPG

stabilization parameter τE .

2.1. The model problem

In this section we consider the following problem:

{
−∇ · (ε∇y) + β(x) · ∇y + δy = f in Ω,

y = 0 on Γ,
(2.1)

where 0 < ε ≪ 1 represents constant diffusion coefficient, f ∈ L2(Ω) is the volume source

term and δ > 0 is a constant. We assume that β ∈ [W 1
∞(Ω)]2 with ∇ · β = 0 is the transport

advective field and Ω ⊂ R
2 is a polygonal domain with Γ = ∂Ω. Consider the bilinear form

A : H1
0 (Ω)×H1

0 (Ω) → R defined by

A(w, v) := (ε∇w,∇v) + (β · ∇w, v) + (δw, v), ∀w, v ∈ H1
0 (Ω),

and the linear functional F : H1
0 (Ω) → R defined by

F (v) := (f, v), ∀ v ∈ H1
0 (Ω).

The variational formulation of (2.1) reads as: Finding y ∈ H1
0 (Ω) such that

A(y, v) = F (v), ∀ v ∈ H1
0 (Ω). (2.2)

The bilinear form A is coercive and bounded, and the variational problem (2.2) has a unique

solution in view of the Lax-Milgram lemma.

2.2. Virtual element space

Let Th be a family of decompositions of the domain Ω into non-overlapping polygonal

elements whose boundaries are not self-intersecting. The maximum diameter of element E is

denoted by hE and h = supE∈Th
hE. We further assume that ∂E denotes the edges of E ∈Th.

∂E is made of a uniformly bounded number of line segments, which are either part of the

boundary of Ω or shared with another element in the decomposition. Sh is the set of edges s

of Th, which is subdivided into the set of boundary edges Sbdry
h := {s ∈ Sh : s ⊂ ∂Ω} and the

set of internal edges Sint
h := Sh\Sbdry

h . The unit outward normal vector to ∂E and the length

of edge s are denoted by nE and hs, respectively. We make the following assumption on the

mesh for the theoretical analysis.

Assumption 2.1 (Mesh Regularity, [17]). We assume the existence of a constant ρ > 0

such that

• Every element E of Th is star-shaped with respect to a disc of radius bigger or equal

to ρhE.

• For every element E of Th and every side s of E, hs ≥ ρhE.
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For m ∈ N, q = 1, . . . ,∞, and any E ∈ Th, we introduce the following space:

Wm
q (Th) :=

{
v ∈ L2(Ω) s.t. v |E∈ Wm

q (E), ∀E ∈ Th
}

equipped with the broken norm and seminorm

‖v‖qWm
q (Th)

:=
∑

E∈Th

‖v‖qWm
q (E), |v|qWm

q (Th)
:=

∑

E∈Th

|v|qWm
q (E), if 1 ≤ q < ∞,

‖v‖Wm
q (Th) := max

E∈Th

‖v‖Wm
q (E), |v|Wm

q (Th) := max
E∈Th

|v|Wm
q (E), if q = ∞.

We set Wm
2 (Th) = Hm(Th) and W 0

q (Th) = Lq(Th).
To define the virtual element space the following polynomial projections are defined [10]:

• The L2-projection Π0
n : L2(E) → Pn(E), defined by

(qn, v)0,E =
(
qn,Π

0
nv
)
0,E

, ∀ v ∈ L2(E), qn ∈ Pn(E)

with obvious extension for vector functions Π0
n : [L2(E)]2 → [Pn(E)]2.

• The H1-projection Π∇
n+1 : H1(E) → Pn+1(E), defined by

(∇qn+1,∇v)0,E =
(
∇qn+1,∇Π∇

n+1v
)
0,E

, ∀ v ∈ H1(E), qn ∈ Pn+1(E)

plus (to take care of the constant part of Π∇
n+1v)

1

|∂E|

∫

∂E

Π∇
n+1vds =

1

|∂E|

∫

∂E

vds.

Then following [1] the local virtual space of order k > 0 is defined as follows:

V E
h,k :=

{
vh ∈ Ṽ E

h,k : (vh, p)0,E =
(
Π∇

k vh, p
)
0,E

, ∀ p ∈ Pk(E)/Pk−2(E)
}
, ∀E ∈ Th,

where

Ṽ E
h,k =

{
vh ∈ H1(E) : vh|∂E ∈ Bk(∂E), ∆vh ∈ Pk(E)

}
,

Bk(∂E) =
{
vh ∈ C0(∂E) : vh|s ∈ Pk(s), ∀ s ⊂ ∂E

}
.

The global VEM space Vh,k is defined by

Vh,k :=
{
vh ∈ H1

0 (Ω) : vh|E ∈ V E
h,k, ∀E ∈ Th

}
.

For the selection of degrees of freedom and the more details about the practical aspects of the

implementation of the VEM, we can refer to reference [1, 4, 18].

2.3. SUPG-VEM formulation

Set

V :=
{
v ∈ H1

0 (Ω) : v ∈ H2(E), ∀E ∈ Th
}
.

We define the bilinear form Asupg : V ×H1
0 (Ω) → R

Asupg(w, v) := a(w, v) + b(w, v) + c(w, v) + d(w, v),
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where

a(w, v) :=
∑

E∈Th

(
(ε∇w,∇v)0,E + τE(β · ∇w,β · ∇v)0,E

)
,

b(w, v) :=
1

2
[(β · ∇w, v)− (w,β · ∇v)] =

1

2

∑

E∈Th

[(β · ∇w, v)0,E − (w,β · ∇v)0,E ] ,

c(w, v) :=
∑

E∈Th

(δw, v + τEβ · ∇v)0,E ,

d(w, v) :=
∑

E∈Th

−τEε(∆w,β · ∇v)0,E .

Remark 2.1. Here the form b(· , ·) is rewritten as the skew-symmetric part, which is a useful

step in order to preserve the coercivity of Asupg at the virtual discrete level, independently of

the mesh size (see [7, 18]).

Furthermore, let Fsupg : H1
0 (Ω) → R be the linear functional given by

Fsupg(v) := (f, v) +
∑

E∈Th

τE(f,β · ∇v)0,E .

Then the SUPG variational formulation of problem (2.1) reads as: Finding y ∈ V such that

Asupg(y, v) = Fsupg(v), ∀ v ∈ H1
0 (Ω). (2.3)

The SUPG-stabilized virtual element approximation of (2.1) is to find yh ∈ Vh,k such that

Asupg,h(yh, vh) = Fsupg,h(vh), vh ∈ Vh,k. (2.4)

Here Asupg,h and Fsupg,h are defined as follows:

Asupg,h(wh, vh) := ah(wh, vh) + bh(wh, vh) + ch(wh, vh) + dh(wh, vh), ∀wh, vh ∈ Vh,k,

where

ah(wh, vh) :=
∑

E∈Th

aEh (wh, vh)

=
∑

E∈Th

((
εΠ0

k−1∇wh,Π
0
k−1∇vh

)
0,E

+ τE
(
β ·Π0

k−1∇wh,β ·Π0
k−1∇vh

)
0,E

+
(
ε+ τEβ

2
E

)
SE
a

((
I −Π∇

k

)
wh,

(
I −Π∇

k

)
vh
))

,

bh(wh, vh) :=
∑

E∈Th

bEh (wh, vh)

=
∑

E∈Th

1

2

((
β · ∇Π0

kwh,Π
0
kvh
)
0,E

−
(
β · ∇Π0

kvh,Π
0
kwh

)
0,E

+

∫

∂E

(
β · nE

)(
I−Π0

k

)
whΠ

0
kvhds−

∫

∂E

(
β · nE

)(
I−Π0

k

)
vhΠ

0
kwhds

)
,

ch(wh, vh) :=
∑

E∈Th

cEh (wh, vh)

=
∑

E∈Th

((
δΠ0

kwh,Π
0
kvh + τEβ ·Π0

k−1∇vh
)
0,E

+ δSE
b

((
I −Π0

k

)
wh,

(
I −Π0

k

)
vh
))

,
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dh(wh, vh) :=
∑

E∈Th

dEh (wh, vh) =
∑

E∈Th

−τE
(
∇ ·
(
εΠ0

k−1∇wh

)
,β ·Π0

k−1∇vh
)
0,E

.

Here, for each element E ∈ Th,
βE := ‖β(x)‖[L∞(E)]2 .

Following [17, 18, 21] the local VEM stabilization term SE
a , SE

b : Vh,k × Vh,k → R in aEh (wh, vh)

and cEh (wh, vh), respectively, must satisfy the following properties:

c0‖∇vh‖20,E ≤ SE
a (vh, vh) ≤ c1‖∇vh‖20,E, ∀ vh ∈ kerΠ∇

k , (2.5)

c2‖vh‖20,E ≤ SE
b (vh, vh) ≤ c3‖vh‖20,E, ∀ vh ∈ kerΠ0

k, (2.6)

where c0, c1, c2 and c3 are positive constants independent of h. According to [17,18,21] a possible

choice for SE
a and SE

b is given by

SE
a (vh, wh) =

NE∑

r=1

χr(wh)χr(vh),

SE
b (vh, wh) = h2

E

NE∑

r=1

χr(wh)χr(vh),

where NE is the number of degrees of freedom on the element E and χr is the operator that

selects the r-th degree of freedom. The discrete right-hand side is defined as

Fsupg,h(vh) :=
∑

E∈Th

FE
supg,h(vh) =

∑

E∈Th

(
f,Π0

kvh
)
0,E

+
∑

E∈Th

τE
(
f,β ·Π0

k−1∇vh
)
0,E

.

Following [11, 13, 28], the local SUPG parameter τE is chosen as

τE := min

{
CE

k h2
E

8ε
,

hE

2δ0βE
,
Cτ

δ

}
=

hE

2δ0βE
(2.7)

in the convection dominated case. Here Cτ ∈ (0, 2) and δ0 = max{k, C2
bub} are user-chosen

constants, where Cbub is a constant defined below in Lemmas 3.5 and 3.6. CE
k is the biggest

constant number satisfying the following inverse inequality [11, 13]:

CE
k h2

E‖∆vh‖20,E ≤ ‖∇vh‖20,E, ∀ vh ∈ V E
h,k. (2.8)

According [13], the mesh Péclet number

PeE :=
CE

k βEhE

4ε
≫ 1

of element E is introduced and KaE
:= 2βECτ/(hEδ) is the local Karlovitz number, i.e. the

dimensionless parameter associated with each mesh element E. Then τE can be redefined as

τE =
hE

2δ0βE
min{PeEδ0, 1,KaE

δ0}. (2.9)

3. A Posteriori Error Analysis

In this section we first introduce some useful properties and assumptions. Then a global

upper bound and a local lower bound for the a posteriori error are derived.
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3.1. Some properties and assumptions

The usual local norm introduced in standard SUPG theory [24] is given by

‖vh‖2supg,E := ε‖∇vh‖20,E + τE‖β · ∇vh‖20,E +
∥∥δ 1

2 vh
∥∥2
0,E

for any vh ∈ H1(E) and the global standard SUPG norm

‖vh‖2supg :=
∑

E∈Th

‖vh‖2supg,E

for all vh ∈ H1(Ω). The following lemma gives the approximation properties of the projections

Π0
n,Π

0
n and Π∇

n .

Lemma 3.1 ([5, 10]). Given E ∈ Th, let ϕ and ϕ be sufficiently smooth scalar and vector

valued functions, respectively. Then, it holds, for all n ≥ 0,

∥∥ϕ−Π0
nϕ
∥∥
m,E

≤ Chr−m
E |ϕ|r,E , 0 ≤ m ≤ r ≤ n+ 1,

∥∥ϕ−Π0
nϕ
∥∥
m,E

≤ Chr−m
E |ϕ|r,E , 0 ≤ m ≤ r ≤ n+ 1,

∥∥ϕ−Π∇
n ϕ
∥∥
m,E

≤ Chr−m
E |ϕ|r,E , 0 ≤ m ≤ r ≤ n+ 1, r ≥ 1,

where C > 0 only depends on the shape-regularity parameter ρ in Assumption 2.1 and k.

Lemma 3.2 ([30]). Under Assumption 2.1, for every v ∈ H1+r(E) with 0 ≤ r ≤ k, there

exists vI ∈ Vh,k and a constant C > 0 such that

‖v − vI‖0,E + hE |v − vI |1,E ≤ Ch1+r
E |v|1+r,E .

Lemma 3.3 ([19]). Under Assumption 2.1, the following inverse inequality holds:

‖∇vh‖0,E ≤ Ch−1
E ‖vh‖0,E, ∀ v ∈ V E

h,k,

where C > 0 is a constant independent of h.

The coercive proofs of Asupg,h and Asupg are given below.

Lemma 3.4 ([7]). Under Assumption 2.1 and in the case of convection dominated regime, i.e.

τE satisfies (2.7), the bilinear form Asupg,h satisfies for all vh ∈ Vh,k the coerciveness inequality

Asupg,h(vh, vh) ≥ C‖vh‖2supg,

where C is a positive constant independent of h, τE , βE and ε.

Proof. We introduce a local SUPG VEM norm

‖vh‖2SUPG := ε‖∇v‖20,E + τE
∥∥β ·Π0

k−1∇vh
∥∥2
0,E

+ τEβ
2
E

∥∥∇
(
I −Π∇

k

)
vh
∥∥2
0,E

+
∥∥δ 1

2Π0
kvh
∥∥2
0,E

+
∥∥δ 1

2

(
I −Π0

k

)
vh
∥∥2
0,E

.

Then, following [7, Proposition 5.1], we can prove that Asupg,h(vh, vh) ≥ ‖vh‖SUPG and ‖·‖supg
can be controlled by ‖ · ‖SUPG. The coercivity can be obtained. �
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Theorem 3.1. Define z := y− yh, y ∈ V is the solution of (2.3) and yh ∈ Vh,k is SUPG VEM

approximation computed by solving (2.4). Then the bilinear form Asupg satisfies

Asupg(z, z) ≥ C

(
‖z‖2supg −

∑

E∈Th

τEε
2‖∆(y − yI)‖20,E −

∑

E∈Th

τEε
2h−2

E ‖∇(y − yI)‖20,E
)
,

where C is a positive constant independent of h, τE , βE and ε, and yI ∈ Vh,k is the interpolant

of y satisfying the bounds of Lemma 3.2.

Proof. By the definitions of a(· , ·), b(· , ·) and c(· , ·), we have

a(z, z) = ε‖∇z‖20,Ω +
∑

E∈Th

τE‖β · ∇z‖20,E,

b(z, z) = 0,

c(z, z) =
∥∥δ 1

2 z
∥∥2
0,Ω

+
∑

E∈Th

τE(δz,β · ∇z)0,E .

Using (2.7), the Cauchy-Schwarz and Young’s inequalities we find that
∣∣∣∣
∑

E∈Th

τE(δz,β · ∇z)0,E

∣∣∣∣ ≤
∑

E∈Th

τEδ
1

2

∥∥δ 1

2 z
∥∥
0,E

‖β · ∇z‖0,E

≤
∑

E∈Th

(
δτE
2

∥∥δ 1

2 z
∥∥2
0,E

+
τE
2
‖β · ∇z‖20,E

)

≤
∑

E∈Th

(
Cτ

2

∥∥δ 1

2 z
∥∥2
0,E

+
τE
2
‖β · ∇z‖20,E

)
,

which implies that

∑

E∈Th

τE(δz,β · ∇z)0,E ≥ −Cτ

2

∥∥δ 1

2 z
∥∥2
0,Ω

−
∑

E∈Th

τE
2
‖β · ∇z‖20,E.

For the last term d(v, v), using the Cauchy-Schwarz inequality and Young’s inequality, we obtain

∑

E∈Th

τEε(∆z,β · ∇z)0,E ≤
∑

E∈Th

τEε
2‖∆z‖20,E +

1

4

∑

E∈Th

τE‖β · ∇z‖20,E. (3.1)

For the first term on the right-hand side of (3.1), adding and subtracting yI yields
∑

E∈Th

τEε
2‖∆z‖20,E ≤ 2

∑

E∈Th

τEε
2
(
‖∆(y − yI)‖20,E + ‖∆(yI − yh)‖20,E

)
.

From the inverse estimate (2.8), adding and subtracting y, and (2.7), we infer
∑

E∈Th

2τEε
2‖∆(yI − yh)‖20,E

≤
∑

E∈Th

2τEε
2
(
CE

k

)−1
h−2
E ‖∇(yI − yh)‖20,E

≤ 4
∑

E∈Th

τEε
2
(
CE

k

)−1
h−2
E

(
‖∇z‖20,E + ‖∇(y − yI)‖20,E

)

≤ 1

2
ε‖∇z‖20,Ω + 4

∑

E∈Th

τEε
2
(
CE

k

)−1
h−2
E ‖∇(y − yI)‖20,E.
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We further get

−
∑

E∈Th

τEε(∆z,β · ∇z)0,E ≥ −2
∑

E∈Th

τEε
2‖∆(y − yI)‖20,E − 1

2
ε‖∇z‖20,Ω

− 4
∑

E∈Th

τEε
2
(
CE

k

)−1
h−2
E ‖∇(y − yI)‖20,E

− 1

4

∑

E∈Th

τE‖β · ∇z‖20,E.

Collecting the previous bounds, we obtain

Asupg(v, v) ≥
1

2
ε‖∇v‖20,Ω +

1

4

∑

E∈Th

τE‖β · ∇v‖20,E +
2− Cτ

2

∥∥δ 1

2 v
∥∥2
0,Ω

− 2
∑

E∈Th

τEε
2‖∆(y − yI)‖20,E − 4

∑

E∈Th

τEε
2
(
CE

k

)−1
h−2
E ‖∇(y − yI)‖20,E

≥ min

{
2− Cτ

2
,
1

4

}
‖v‖2supg − 2

∑

E∈Th

τEε
2‖∆(y − yI)‖20,E

− 4
∑

E∈Th

τEε
2
(
CE

k

)−1
h−2
E ‖∇(y − yI)‖20,E .

The theorem result can be obtained. �

For the additional terms in Theorem 3.1, we have the following analysis.

Theorem 3.2. We have the following approximation property for all y ∈ H1
0 (Ω) ∩ Hr+1(Ω),

0 < r ≤ k: ∑

E∈Th

ε2τE‖∆(y − yI)‖20,E ≤ C
∑

E∈Th

P−2
eE βEh

2r+1
E ‖y‖2r+1,E,

where C is a positive constant independent of h, τE , ε and βE .

Proof. The triangle inequality, Lemma 3.1, and the inverse inequality (2.8) yield

ετ
1

2

E ‖∆(y − yI)‖0,E = ετ
1

2

E

∥∥∆
(
y −Π0

ky
)∥∥

0,E
+ ετ

1

2

E

∥∥∆
(
Π0

ky − yI
)∥∥

0,E

≤ ετ
1

2

E

∥∥y −Π0
ky
∥∥
2,E

+ ετ
1

2

E

(
CE

k

)− 1

2 h−1
E

∥∥∇
(
Π0

ky − yI
)∥∥

0,E

≤ Cετ
1

2

Ehr−1
E ‖y‖r+1,E + ετ

1

2

E

(
CE

k

)− 1

2 h−1
E

∥∥Π0
ky − yI

∥∥
1,E

.

Using (2.7), we further have
∑

E∈Th

ε2τE‖∆(y − yI)‖20,E

≤ C
∑

E∈Th

ε2τEh
2r−2
E ‖y‖2r+1,E

+
∑

E∈Th

ε2τE
(
CE

k

)−1
h−2
E

∥∥Π0
ky − yI

∥∥2
1,E

≤ C
∑

E∈Th

βEh
2r+1
E P−2

eE ‖y‖2r+1,E

+
∑

E∈Th

ε2τE
(
CE

k

)−1
h−2
E

∥∥Π0
ky − yI

∥∥2
1,E

. (3.2)
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The last term can be estimated using the Lemmas 3.1, 3.2 and (2.7)

∑

E∈Th

ε2τE
(
CE

k

)−1
h−2
E

∥∥Π0
ky − yI

∥∥2
1,E

≤ 2
∑

E∈Th

ε2τE
(
CE

k

)−1
h−2
E

∥∥Π0
ky − y

∥∥2
1,E

+ 2
∑

E∈Th

ε2τE
(
CE

k

)−1
h−2
E ‖y − yI‖21,E

≤ C
∑

E∈Th

P−2
eE βEh

2r+1
E ‖y‖2r+1,E.

Substituting this estimate into (3.2) leads to the theorem result. �

To derive a robust posteriori error estimate we need to introduce the following assumption,

which is also used in the SUPG finite element framework in [28].

Assumption 3.1. Let y ∈ H1
0 (Ω) ∩ Hr+1(Th), f ∈ Hr(Th),β ∈ [W r

∞(Th)]2, 0 < r ≤ k, and

yI ∈ Vh,k be the interpolant of y satisfying the bounds of Lemma 3.2. The interpolation error

y − yI are assumed to be bounded by the error y − yh
∑

E∈Th

τ−1
E ‖y − yI‖20,E ≤ C‖y − yh‖2supg,

∑

E∈Th

τE‖β · ∇(y − yI)‖20,E ≤ C‖y − yh‖2supg,

∑

E∈Th

(
βωE

∑

s⊂∂E

‖y − yI‖20,s
)

≤ C‖y − yh‖2supg,

where ωE := {E′ ∈ Th : µ1(∂E
′ ∩ ∂E) 6= 0} is the patch made up of the element E and its

neighbours, and µ1 is the one-dimensional measure. βωE
= ‖β‖[L∞(ωE)]2 . C > 0 is a constant

independent of the mesh size h, τE and ε.

Remark 3.1 (Discussion of Assumption 3.1). Assumption 3.1 is only needed in the con-

vection dominated case. In [7], under the above data assumption a robustness analysis of the

SUPG-stabilized virtual elements for convection-diffusion problem is discussed and the optimal

order of convergence is obtained, i.e.

‖y − yh‖2supg = O(h2r+1). (3.3)

Through a similar analysis, this result is also true for the convection-diffusion-reaction problem

in our paper. Using the optimal choice τE = O(hE) of the stabilization parameter, as given

e.g. by (2.7), one gets from the interpolation estimate Lemma 3.2

∑

E∈Th

τ−1
E ‖y − yI‖20,E = O(h2r+1),

∑

E∈Th

τE‖β · ∇(y − yI)‖20,E ≤ ‖β‖2[L∞(Th)]2

∑

E∈Th

τE‖∇(y − yI)‖20,E = O(h2r+1).

By the trace inequality [14], we have

‖w‖20,s ≤ C
(
h−1
E ‖w‖20,E + hE‖∇w‖20,E

)
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for w ∈ H1(E), and Lemma 3.2, we have

∑

E∈Th

(
βωE

∑

s⊂∂E

‖y − yI‖20,s
)

≤ C‖β‖[L∞(Th)]2

∑

E∈Th

(
h−1
E ‖y − yI‖20,E + hE‖∇(y − yI)‖20,E

)
= O(h2r+1).

Hence, all terms in Assumption 3.1 are of the same order with respect to h, i.e. O(h2r+1).

When there exist sharp boundary or inner layers in the solution, the numerical results obtained

with the SUPG method are generally not perfect because there are often spurious oscillations in

a vicinity of layers. In contrast, the interpolation yI of y is exact at the mesh nodes, which can

ensures that Assumption 3.1 holds since the there is no spurious oscillations in the interpolant

justifies.

The following results which establish standard estimates for bubble functions will be useful

in what follows.

Lemma 3.5 (Interior Bubble Functions, [17]). Let E ∈ Th and ΨE be the corresponding

bubble function. There exists a constant Cbub, independent of hE such that for all q ∈ Pk(E),

C−1
bub‖q‖20,E ≤

∫

E

ΨEq
2dx ≤ Cbub‖q‖20,E,

C−1
bub‖q‖0,E ≤ ‖ΨEq‖0,E + hE‖∇(ΨEq)‖0,E ≤ Cbub‖q‖0,E.

Lemma 3.6 (Edge Bubble Functions, [17]). For E ∈ Th, let s ⊂ ∂E be a mesh interface

and Ψs be the corresponding interface bubble function. There exists a constant Cbub, independent

of hE such that for all q ∈ Pk(s),

C−1
bub‖q‖20,s ≤

∫

s

Ψsq
2ds ≤ Cbub‖q‖20,s,

h
− 1

2

E ‖Ψsq‖0,E + h
1

2

E‖∇(Ψsq)‖0,E ≤ Cbub‖q‖0,s.

3.2. Upper bound

To illustrate the impacts of data oscillation, piecewise constant approximation of β is intro-

duced: βh ≈ β. For quantities which may be discontinuous across the mesh skeleton, the jump

operator [[·]] across a mesh edge s ∈ Sh is defined as follows. If s ∈ Sint
h , then there exist E+

and E− such that s ⊂ ∂E+ ∩ ∂E−. Denote by v± the trace of the vector-valued function v|E±

on s from within E± and by n±
s the unit outward normal on s from E±. Then,

[[v]] := v+ · n+
s + v− · n−

s .

If s ∈ Sbdry
h , then [[v]] := v · ns, with v representing the trace of v from within the element E

having s as an edge and ns is the unit outward normal on s from E.

Recalling that z = y − yh. Then, we have the residual equation

Asupg(z, v) = (f, v) +
∑

E∈Th

(f, τEβ · ∇v)0,E −Asupg(yh, λ)−Asupg(yh, v − λ)

=
∑

E∈Th

(f, v + τEβ · ∇v)0,E −
∑

E∈Th

(
f,Π0

kλ+ τEβ ·Π0
k−1∇λ

)
0,E
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+Asupg,h(yh, λ)−Asupg(yh, λ)−Asupg(yh, v − λ)

=
∑

E∈Th

(
f −Π0

kf, λ
)
0,E

+ (f, v − λ) +
∑

E∈Th

τE
(
fβ −Π0

k−1(fβ),∇λ
)
0,E

+
∑

E∈Th

τE(fβ,∇v −∇λ)0,E +Asupg,h(yh, λ)

−Asupg(yh, λ)−Asupg(yh, v − λ) (3.4)

for any λ ∈ Vh,k, v ∈ H1
0 (Ω).

In order to obtain a computable error bound, we estimate each term on the right-hand

side of the above residual equation separately. By applying integration by parts to last term,

we have

Asupg(yh, v − λ) =
∑

E∈Th

(
−∇ · εΠ0

k−1∇yh + β ·Π0
k−1∇yh + δΠ0

kyh, v − λ
)
0,E

+
∑

s∈Sh

∫

s

ε
[[
Π0

k−1∇yh
]]
(v − λ)ds+

∑

E∈Th

(
ε(I −Π0

k−1)∇yh,∇(v − λ)
)
0,E

+
∑

E∈Th

(
β · (I −Π0

k−1)∇yh + δ(I −Π0
k)yh, v − λ

)
0,E

+
∑

E∈Th

(
−∇ · εΠ0

k−1∇yh + β ·Π0
k−1∇yh + δΠ0

kyh, τEβ · ∇(v − λ)
)
0,E

+
∑

E∈Th

(
∇ · ε(Π0

k−1 − I)∇yh + β · (I −Π0
k−1)∇yh

+ δ(I −Π0
k)yh, τEβ · ∇(v − λ)

)
0,E

. (3.5)

Using (3.5), (3.4) can be rewritten as

Asupg(z, v) =
∑

E∈Th

((
RE , v − λ+ τEβ · ∇(v − λ)

)
0,E

+
(
θE , v − λ+ τEβ · ∇(v − λ)

)
0,E

+BE
1 (yh, λ− v) +BE

2 (yh, λ− v)
)

+
∑

s∈Sh

(Js, λ− v)0,s +
∑

E∈Th

((
f −Π0

kf, λ
)
0,E

+ τE
(
fβ −Π0

k−1(fβ),∇λ
)
0,E

)

+Asupg,h(yh, λ)−Asupg(yh, λ) (3.6)

for any λ ∈ Vh,k, v ∈ H1
0 (Ω), where

RE :=
(
Π0

kf +∇ · εΠ0
k−1∇yh − βh ·Π0

k−1∇yh − δΠ0
kyh
)
|E ,

Js := ε
[[
Π0

k−1∇yh
]]
|s,

θE :=
(
f −Π0

kf − (β − βh) ·Π0
k−1∇yh

)
|E ,

are the element and edge residuals, and the element data oscillation terms, respectively.

BE
1 (yh, λ− v) :=

(
ε
(
I−Π0

k−1

)
∇yh,∇(λ − v)

)
0,E

+
(
β ·
(
I−Π0

k−1

)
∇yh+δ

(
I−Π0

k

)
yh, λ− v

)
0,E

,

BE
2 (yh, λ− v) :=

(
∇ · ε

(
Π0

k−1 − I
)
∇yh + β ·

(
I−Π0

k−1

)
∇yh

+ δ
(
I−Π0

k

)
yh, τEβ · ∇(λ − v)

)
0,E

are the virtual residuals.
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Theorem 3.3 (Upper Bound). Let yh ∈ Vh,k and y ∈ V be the solutions to problems (2.4)

and (2.3), respectively. Then under Assumptions 2.1 and 3.1, there exists a constant C, inde-

pendent of the mesh size h, the SUPG parameter τE and the diffusive coefficient ε such that

‖y − yh‖2supg ≤ C
∑

E∈Th

(
ηE +ΘE + ΞE +ΨE + τEε

2‖∆(y − yI)‖20,E

+ τEε
2h−2

E ‖∇(y − yI)‖20,E
)
, (3.7)

where

ηE := τE‖RE‖20,E + β−1
ωE

∑

s⊂∂E

‖Js‖20,s,

ΘE := τE‖θE‖20,E +
(
δ−1 + τE

)∥∥f −Π0
kf
∥∥2
0,E

+ β−2
E

(
τE + δ−1

)∥∥fβ −Π0
k−1(fβ)

∥∥2
0,E

,

ΞE := δ−1β2
ES

E
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)
+ δSE

b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
)
,

and ΨE encompasses the virtual inconsistency terms, defined as the sum of

β−2
E

(
τE + δ−1

)∥∥(I −Π0
k−1

)
ββTΠ0

k−1∇yh
∥∥2
0,E

,

(
τE + δ−1

)∥∥(I −Π0
k

)
β · ∇Π0

kyh
∥∥2
0,E

,

β−2
E

(
τEδ

2 + δ
)∥∥(I −Π0

k−1

)
Π0

kyhβ
∥∥2
0,E

,

τ2Eε
∥∥(I −Π0

k−1

)(
∇ ·Π0

k−1∇yh
)
β
∥∥2
0,E

.

Proof. Let zI ∈ Vh,k be the interpolant of z that satisfies Lemma 3.2. We have

z − zI = y − yh − (yI − yh) = y − yI .

Setting v = z and λ = zI in (3.6), from Theorem 3.1 we have

C‖z‖2supg ≤ Asupg(z, z) +
∑

E∈Th

τEε
2‖∆(y − yI)‖20,E +

∑

E∈Th

τEε
2h−2

E ‖∇(y − yI)‖20,E ,

=
∑

E∈Th

((
RE , z − zI + τEβ · ∇(z − zI)

)
0,E

+
(
θE , z − zI + τEβ · ∇(z − zI)

)
0,E

+BE
1 (yh, zI − z) +BE

2 (yh, zI − z) +
(
AE

supg,h(yh, zI)−AE
supg(yh, zI)

))

+
∑

s∈Sh

(Js, zI − z)0,s +
∑

E∈Th

((
f −Π0

kf, zI
)
0,E

+ τE
(
fβ −Π0

k−1(fβ),∇zI
)
0,E

)

+
∑

E∈Th

τEε
2‖∆(y − yI)‖20,E +

∑

E∈Th

τEε
2h−2

E ‖∇(y − yI)‖20,E ,

=:

8∑

i=1

Mi +
∑

E∈Th

τEε
2‖∆(y − yI)‖20,E +

∑

E∈Th

τEε
2h−2

E ‖∇(y − yI)‖20,E.

By the Cauchy-Schwarz inequality and Assumption 3.1 we have

M1 ≤
∑

E∈Th

‖RE‖0,E
(
‖y − yI‖0,E + τE‖β · ∇(y − yI)‖0,E

)
,

≤ C

( ∑

E∈Th

τE‖RE‖20,E
) 1

2

( ∑

E∈Th

(
τ−1
E ‖y − yI‖20,E + τE‖β · ∇(y − yI)‖20,E

)) 1

2
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≤ C

( ∑

E∈Th

τE‖RE‖20,E
) 1

2

‖z‖supg.

Similarly, we have the estimate

M2 ≤ C

( ∑

E∈Th

τE‖θE‖20,E
) 1

2

‖z‖supg.

Note that

∥∥∇vh −Π0
k−1∇vh

∥∥
0,E

=
∥∥(I −Π0

k−1

)
∇
(
I −Π∇

k

)
vh
∥∥
0,E

≤
∥∥∇
(
I −Π∇

k

)
vh
∥∥
0,E

,
∥∥(I −Π0

k

)
vh
∥∥
0,E

=
∥∥(I −Π0

k

)(
I −Π∇

k

)
vh
∥∥
0,E

≤
∥∥(I −Π∇

k

)
vh
∥∥
0,E

. (3.8)

By Assumption 3.1, (2.5), (2.7), (3.8) and Lemma 3.2, we can bound M3 as follows:

M3 ≤
∑

E∈Th

(
ε
∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

‖∇(zI − z)‖0,E + βE

∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

‖yI − y‖0,E

+ δ
∥∥(I −Π0

k

)
yh
∥∥
0,E

‖yI − y‖0,E
)

≤
( ∑

E∈Th

ε2
∥∥∇
(
I −Π∇

k

)
yh
∥∥2
0,E

) 1

2

‖∇z‖0,Ω +

( ∑

E∈Th

β2
EτE

∥∥∇
(
I − Π∇

k

)
yh
∥∥2
0,E

) 1

2

×
( ∑

E∈Th

τ−1
E ‖yI − y‖20,E

) 1

2

+

( ∑

E∈Th

δ2τE
∥∥(I −Π0

k

)
yh
∥∥2
0,E

) 1

2

( ∑

E∈Th

τ−1
E ‖yI − y‖20,E

) 1

2

≤ C‖z‖supg
(( ∑

E∈Th

(
ε+ β2

EτE
)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)) 1

2

+

( ∑

E∈Th

δ2τES
E
b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh)

) 1

2

)

≤ C‖z‖supg
( ∑

E∈Th

((
ε+β2

EτE
)
SE
a

((
I−Π∇

k

)
yh,
(
I−Π∇

k

)
yh
)

+ δ2τES
E
b

((
I−Π0

k

)
yh,
(
I −Π0

k

)
yh
))) 1

2

.

Using the same computations and inverse inequality (2.8), we can also infer

M4 ≤ C‖z‖supg
( ∑

E∈Th

((
ε+ β2

EτE
)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)

+ δ2τES
E
b

((
I − Π0

k

)
yh,
(
I −Π0

k

)
yh
))) 1

2

.

Since the estimation of M5 is cumbersome, we do this work at the end. Applying the Cauchy-

Schwarz inequality and Assumption 3.1 one obtains for M6 that

M6 ≤
∑

s∈Sh

‖Js‖0,s‖zI − z‖0,s ≤
∑

E∈Th

( ∑

s⊂∂E

‖Js‖0,s‖zI − z‖0,s
)
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≤
∑

E∈Th

(( ∑

s⊂∂E

‖Js‖20,s
) 1

2

( ∑

s⊂∂E

‖yI − y‖20,s
) 1

2

)

≤
( ∑

E∈Th

(β−1
ωE

∑

s⊂∂E

‖Js‖20,s)
) 1

2

( ∑

E∈Th

(
βωE

∑

s⊂∂E

‖yI − y‖20,s
)) 1

2

≤ C

( ∑

E∈Th

(
β−1
ωE

∑

s⊂∂E

‖Js‖20,s
)) 1

2

‖z‖supg.

We use Lemma 3.1, Assumption 3.1 and (2.7) to find that

M7 ≤ C
∑

E∈Th

∥∥f −Π0
kf
∥∥
0,E

‖zI‖0,E

≤ C

( ∑

E∈Th

τ
1

2

E

∥∥f −Π0
kf
∥∥
0,E

τ
− 1

2

E ‖yI − y‖0,E +
∑

E∈Th

∥∥f −Π0
kf
∥∥
0,E

‖y − yh‖0,E
)

≤ C‖z‖supg
(( ∑

E∈Th

τE
∥∥f −Π0

kf
∥∥2
0,E

) 1

2

+

( ∑

E∈Th

δ−1
∥∥f −Π0

kf
∥∥2
0,E

) 1

2

)

≤ C‖z‖supg
( ∑

E∈Th

(
τE + δ−1

)∥∥f −Π0
kf
∥∥2
0,E

) 1

2

.

Employing Lemma 3.3 and Assumption 3.1, we obtain

M8 ≤
∑

E∈Th

τE
∥∥fβ −Π0

k−1(fβ)
∥∥
0,E

‖∇zI‖0,E

≤ C
∑

E∈Th

τE
∥∥fβ −Π0

k−1(fβ)
∥∥
0,E

h−1
E

(
‖yI − y‖0,E + ‖y − yh‖0,E

)

≤ C

(( ∑

E∈Th

τEβ
−2
E

∥∥fβ −Π0
k−1(fβ)

∥∥2
0,E

) 1

2

‖y − yh‖supg

+

( ∑

E∈Th

β−2
E δ−1

∥∥fβ −Π0
k−1(fβ)

∥∥2
0,E

) 1

2

‖y − yh‖supg
)

≤ C‖z‖supg
( ∑

E∈Th

β−2
E

(
τE + δ−1

)∥∥fβ −Π0
k−1(fβ)

∥∥2
0,E

) 1

2

.

Finally, we turn to the estimate of M5, i.e. Asupg,h(yh, zI)−Asupg(yh, zI). From the properties

of the L2-projection, (2.5), (3.8) and Lemmas 3.1-3.3, we arrive at

ah(yh, zI)− a(yh, zI)

=
∑

E∈Th

(
ε
((
Π0

k−1 − I
)
∇yh,∇zI

)
0,E

+
(
ε+ τEβ

2
E

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
zI
)

+ τE
(
β ·Π0

k−1∇yh,β ·
(
Π0

k−1 − I
)
∇zI

)
0,E

+ τE
(
β ·
(
Π0

k−1 − I
)
∇yh,β · ∇zI

)
0,E

)

≤ C
∑

E∈Th

(
ε
∥∥(Π0

k−1 − I
)
∇yh

∥∥
0,E

‖∇zI‖0,E + τE
(
β ·
(
Π0

k−1 − I
)
∇yh,β · ∇zI

)
0,E

+
(
ε+ τEβ

2
E

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh)

1

2

∥∥∇
(
I − Π∇

k

)
zI
∥∥
0,E
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+ τE
((
I −Π0

k−1

)
ββTΠ0

k−1∇yh,
(
Π0

k−1 − I
)
∇zI

)
0,E

)

≤ C

(( ∑

E∈Th

ε2SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)) 1

2

‖∇z‖0,Ω

+
∑

E∈Th

τEβ
2
ES

E
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
) 1

2h−1
E

(
‖yI − y‖0,E + ‖y − yh‖0,E

)

+
∑

E∈Th

τE
∥∥(I −Π0

k−1

)
ββTΠ0

k−1∇yh
∥∥
0,E

h−1
E

(
‖yI − y‖0,E + ‖y − yh‖0,E

)
)

≤ C

(( ∑

E∈Th

εSE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)) 1

2

‖z‖supg

+

( ∑

E∈Th

(
hEβE + δ−1β2

E

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)) 1

2

‖y − yh‖supg

+

( ∑

E∈Th

β−2
E

(
τE + δ−1

)∥∥(I −Π0
k−1

)
ββTΠ0

k−1∇yh
∥∥2
0,E

) 1

2

‖y − yh‖supg
)

≤ C‖z‖supg
( ∑

E∈Th

((
ε+ hEβE + δ−1β2

E

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)

+ β−2
E

(
τE + δ−1

)∥∥(I −Π0
k−1

)
ββTΠ0

k−1∇yh
∥∥2
0,E

)) 1

2

.

From the definitions of bh(yh, zI) and b(yh, zI), we have

bh(yh, zI)− b(yh, zI) =
1

2

( ∑

E∈Th

((
β · ∇Π0

kyh,Π
0
kzI
)
0,E

−
(
β · ∇yh, zI

)
0,E

)

+
∑

s∈Sh

∫

s

[[β(I −Π0
k)yhΠ

0
kzI ]]ds

)

+
1

2

( ∑

E∈Th

((
yh,β · ∇zI

)
0,E

−
(
Π0

kyh,β · ∇Π0
kzI
)
0,E

)

−
∑

s∈Sh

∫

s

[[
βΠ0

kyh
(
I −Π0

k

)
zI
]]
ds

)

=:
1

2
b1 +

1

2
b2.

Next we estimate b1 and b2, respectively. From [14], we have the following inequality:

∥∥∇Π0
kξ
∥∥
0,E

≤ C‖∇ξ‖0,E (3.9)

for all ξ ∈ H1(E). Therefore, using (3.9) and the triangular inequality, we further infer

∥∥∇
(
I −Π0

k

)
yh
∥∥
0,E

=
∥∥∇
(
I −Π0

k

)(
I −Π∇

k

)
yh
∥∥
0,E

≤
∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

+
∥∥∇Π0

k

(
I −Π∇

k

)
yh
∥∥
0,E

≤ 2
∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

. (3.10)
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Then, by applying integration by parts, the properties of the L2-projection, (3.8)-(3.10), Lem-

mas 3.1, 3.3 and a scaled Poincaré inequality we deduce

b1 =
∑

E∈Th

((
β · ∇Π0

kyh,Π
0
kzI
)
0,E

− (β · ∇yh, zI)0,E +
(
β · ∇

(
I −Π0

k

)
yh,Π

0
kzI
)
0,E

+
((
I −Π0

k

)
yh,β · ∇Π0

kzI
)
0,E

)

=
∑

E∈Th

(((
I −Π0

k

)
β · ∇Π0

kyh,
(
Π0

k − I
)
zI
)
0,E

+
(
β · ∇

(
I −Π0

k

)
yh,
(
Π0

k − I
)
zI
)
0,E

+
((
I −Π0

k

)
yh,β · ∇Π0

kzI
)
0,E

)

≤ C
∑

E∈Th

(∥∥(I − Π0
k

)
β · ∇Π0

kyh
∥∥
0,E

‖zI‖0,E + hEβE

∥∥∇
(
I −Π0

k

)
yh
∥∥
0,E

‖∇zI‖0,E

+ βE

∥∥(I −Π∇
k

)
yh
∥∥
0,E

∥∥∇Π0
kzI
∥∥
0,E

)

≤ C
∑

E∈Th

(∥∥(I − Π0
k

)
β · ∇Π0

kyh
∥∥
0,E

(
‖yI − y‖0,E + ‖y − yh‖0,E

)

+ βE

∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

(
‖yI − y‖0,E + ‖y − yh‖0,E

))

≤ C‖z‖supg
(( ∑

E∈Th

(
τE + δ−1

)∥∥(I −Π0
k

)
β · ∇Π0

kyh
∥∥2
0,E

) 1

2

+

( ∑

E∈Th

β2
E

(
τE + δ−1

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)) 1

2

)

≤ C‖z‖supg
( ∑

E∈Th

((
τE + δ−1

)∥∥(I −Π0
k

)
β · ∇Π0

kyh
∥∥2
0,E

+ β2
E

(
τE + δ−1

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
))) 1

2

.

Using the same computations yields

b2 ≤ C‖z‖supg
( ∑

E∈Th

(
β2
E

(
τE + δ−1

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)

+
(
δ−1 + τE

)∥∥(I −Π0
k

)
β · ∇Π0

kyh
∥∥2
0,E

)) 1

2

.

We may bound the term bh(yh, zI)− b(yh, zI) by combining with the above two estimates.

From the properties of the L2-projection, Assumption 3.1, (2.5), (2.7) and the definition of

norm ‖ · ‖supg we deduce

ch(yh, zI)− c(yh, zI)

=
∑

E∈Th

((
δ
(
I −Π0

k

)
yh,
(
Π0

k − I
)
zI
)
0,E

+ τE
(
δΠ0

kyh,β ·
(
Π0

k−1 − I
)
∇zI

)
0,E

+ τE
(
δ
(
Π0

k − I
)
yh,β · ∇zI

)
0,E

+ δSE
b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
zI
))

≤ C
∑

E∈Th

(
δ
∥∥(I −Π0

k

)
yh
∥∥
0,E

‖zI‖0,E + τEδ
∥∥(I −Π0

k−1

)
Π0

kyhβ
∥∥
0,E

∥∥(Π0
k−1 − I

)
∇zI

∥∥
0,E

+τEδ
∥∥(I−Π0

k

)
yh
∥∥
0,E

‖β · ∇zI‖0,E + δSE
b

((
I−Π0

k

)
yh,
(
I−Π0

k

)
yh
) 1

2

∥∥(I−Π0
k

)
zI
∥∥
0,E

)
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≤ C

(( ∑

E∈Th

(
τEδ

2 + δ
)∥∥(I −Π0

k

)
yh
∥∥2
0,E

) 1

2

‖y − yh‖supg

+

( ∑

E∈Th

β−2
E

(
τEδ

2 + δ
)∥∥(I −Π0

k−1

)
Π0

kyhβ
∥∥2
0,E

) 1

2

‖y − yh‖supg

+

( ∑

E∈Th

(
τEδ

2 + δ
)
SE
b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
)) 1

2

‖y − yh‖supg
)

≤ C‖z‖supg
( ∑

E∈Th

((
τEδ

2 + δ
)
SE
b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
)

+ β−2
E

(
τEδ

2 + δ
)∥∥(I −Π0

k−1

)
Π0

kyhβ
∥∥2
0,E

)) 1

2

.

For the last term, using the properties of the L2-projection, (2.5)-(2.8) and (3.8), we derive

dh(yh, zI)− d(yh, zI)

=
∑

E∈Th

(
τEε
(
∇ ·
(
I −Π0

k−1

)
∇yh,β · ∇zI

)
0,E

+ τEε
(
∇ ·Π0

k−1∇yh,β ·
(
I −Π0

k−1

)
∇zI

)
0,E

)

≤ C
∑

E∈Th

(
τEεβEh

−1
E

(
CE

k

)− 1

2

∥∥(I −Π0
k−1

)
∇yh

∥∥
0,E

‖∇z‖0,E

+ τEε
∥∥(I −Π0

k−1

)(
∇ ·Π0

k−1∇yh
)
β
∥∥
0,E

∥∥(I −Π0
k−1

)
∇zI

∥∥
0,E

)

≤ C

(( ∑

E∈Th

τ2Eε
2β2

Eh
−2
E

(
CE

k

)−1∥∥∇
(
I −Π∇

k

)
yh
∥∥2
0,E

) 1

2

‖∇z‖0,Ω

+

( ∑

E∈Th

τ2Eε
2
∥∥(I −Π0

k−1

)(
∇ ·Π0

k−1∇yh
)
β
∥∥2
0,E

) 1

2

‖∇z‖0,Ω
)

≤ C‖z‖supg
(∑

E∈Th

τEβ
2
ES

E
a

((
I−Π∇

k

)
yh,
(
I−Π∇

k

)
yh
)
+τ2Eε

∥∥(I−Π0
k−1

)(
∇ ·Π0

k−1∇yh
)
β
∥∥2
0,E

) 1

2

.

Then the result is obtained by combining the individual bounds above and using (2.7) again.

Remark 3.2. We can find that there are two extra terms on the right-hand side of (3.7)

produced from the coercivity of Asupg in Theorem 3.1. It will be discussed here that these

terms are in the convection dominated regime negligible compared with the error of the SUPG

approximation. This point justifies the use of the quantity (
∑

E∈Th
(ηE +ΘE + ΞE + ΨE))1/2

as an upper error estimate.

The convergence rate of the SUPG approximation is (r+1/2), 0 < r ≤ k, see (3.3). For the

first term, one can apply Theorem 3.2 to get

∑

E∈Th

τEε
2‖∆(y − yI)‖20,E ≤ C

∑

E∈Th

P−2
eE βEh

2r+1
E ‖y‖2r+1,E. (3.11)

For the second extra term on the right-hand side of (3.7), using (2.7) and Lemma 3.2, we also

have ∑

E∈Th

τEε
2h−2

E ‖∇(y − yI)‖20,E ≤ C
∑

E∈Th

P−2
eE βEh

2r+1
E ‖y‖2r+1,E. (3.12)
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These bounds have a very small factor for PeE ≫ 1 and possess the same asymptotic with respect

to h like the left-hand side of (3.7). Then, the left-hand side of (3.11) and (3.12) become small

compared with the left-hand side of (3.7), which shows the rationality of (
∑

E∈Th
(ηE + ΘE +

ΞE +ΨE))1/2 as an upper bound error estimate.

3.3. Lower bound

We now prove a local lower bound of the a posteriori error estimate. To this end, we make use

of element and edge bubble functions satisfying the bounds of Lemmas 3.5 and 3.6 respectively.

Theorem 3.4 (Local Lower Bound). Let ηE ,ΘE and ΞE be given in Theorem 3.3, then

there exist a positive constant C independent of h, τE , βE and ε such that

ηE ≤ C
∑

E′
∈ωE

(
‖y − yh‖2supg,E′ +ΘE

′

+ ΞE
′

+ τE′ ε2‖∆(y − yI)‖20,E′

+ τE′ ε2h−2
E′ ‖∇(y − yI)‖20,E′

)
. (3.13)

Here ωE := {E′ ∈ Th : µ1(∂E
′ ∩ ∂E) 6= 0} is the patch made up of the element E and its

neighbours, and µ1 is the one-dimensional measure.

Proof. Let v = ΨERE , λ = 0 in (3.6) and note that ΨE|∂E = 0, we infer

Asupg(z,ΨERE) = (RE ,ΨERE)0,E +
(
RE , τEβ · ∇(ΨERE)

)
0,E

+
(
θE ,ΨERE + τEβ · ∇(ΨERE)

)
0,E

+BE
1 (yh,−ΨERE) +BE

2 (yh,−ΨERE).

By the Lemma 3.5 we deduce

‖RE‖20,E ≤ Cbub(RE ,ΨERE)0,E

= Cbub

(
AE

supg(z,ΨERE)−
(
RE , τEβ · ∇(ΨERE)

)
0,E

−
(
θE ,ΨERE+τEβ · ∇(ΨERE)

)
0,E

+BE
1 (yh,ΨERE)+BE

2 (yh,ΨERE)
)

=: Cbub

(
5∑

i=1

Ti

)
. (3.14)

Using definition of AE
supg , (2.7), (2.8), Lemmas 3.1 and 3.5, we have

T1 =
(
ε∇z,∇(ΨERE)

)
0,E

+
(
β · ∇z, τEβ · ∇(ΨERE)

)
0,E

+ (β · ∇z,ΨERE)0,E

+
(
δz,ΨERE + τEβ · ∇(ΨERE)

)
0,E

− ε
(
∆z, τEβ · ∇(ΨERE)

)
0,E

≤ ε‖∇z‖0,E‖∇(ΨERE)‖0,E + τEβE‖β · ∇z‖0,E‖∇(ΨERE)‖0,E
+ ‖β · ∇z‖0,E‖ΨERE‖0,E + δ

1

2

∥∥δ 1

2 z
∥∥
0,E

‖ΨERE‖0,E
+ δ

1

2 τEβE

∥∥δ 1

2 z
∥∥
0,E

‖∇(ΨERE)‖0,E + ετEβE‖∆z‖0,E‖∇(ΨERE)‖0,E

≤ C
(
ε

1

2h
− 1

2

E β
1

2

E‖∇z‖0,E‖RE‖0,E+‖β · ∇z‖0,E‖RE‖0,E + β
1

2

Eh
− 1

2

E

∥∥δ 1

2 z
∥∥
0,E

‖RE‖0,E

+ ετEβEh
−1
E ‖RE‖0,E

(
‖∆(y − yI)‖0,E + ‖∆(yI − yh)‖0,E

))
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≤ C
(
ε

1

2h
− 1

2

E β
1

2

E‖∇z‖0,E‖RE‖0,E+‖β · ∇z‖0,E‖RE‖0,E + β
1

2

Eh
− 1

2

E ‖δ 1

2 z‖0,E‖RE‖0,E

+ ε‖RE‖0,E‖∆(y − yI)‖0,E + ε‖RE‖0,Eh−1
E

(
‖∇(yI − y)‖0,E + ‖∇z‖0,E

))

≤ Cτ
− 1

2

E ‖RE‖0,E
(
‖z‖supg,E + ετ

1

2

E‖∆(y − yI)‖0,E + εh−1
E τ

1

2

E ‖∇(yI − y)‖0,E
)
. (3.15)

Applying (2.7) and Lemma 3.5, we have the following estimates for T2 and T3:

T2 = −
(
RE , τEβ · ∇(ΨERE)

)
0,E

≤ τEβE‖RE‖0,E‖∇(ΨERE)‖0,E

≤ CbubτEβEh
−1
E ‖RE‖20,E ≤ 1

2Cbub
‖RE‖20,E,

T3 ≤ ‖θE‖0,E‖ΨERE‖0,E + τEβE‖θE‖0,E‖∇(ΨERE)‖0,E ≤ C‖θE‖0,E‖RE‖0,E.

(3.16)

From the definitions of BE
1 , (2.5), (2.7) and Lemma 3.5, we arrive at

BE
1 (yh,ΨERE)

≤ ε
∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

‖∇(ΨERE)‖0,E + βE

∥∥∇
(
I −Π∇

k

)
yh
∥∥
0,E

‖ΨERE‖0,E
+ δ
∥∥(I −Π0

k

)
yh
∥∥
0,E

‖ΨERE‖0,E

≤ C‖RE‖0,E
((

εh−1
E + βE

)
SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
) 1

2 + δSE
b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
) 1

2

)

≤ C‖RE‖0,E
(
β2
ES

E
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)
+ δ2SE

b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
)) 1

2

≤ C‖RE‖0,E
(
δ
(
β2
Eδ

−1SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)
+ δSE

b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
))) 1

2

≤ C‖RE‖0,E
(
βEh

−1
E

(
β2
Eδ

−1SE
a

((
I −Π∇

k

)
yh,
(
I −Π∇

k

)
yh
)
+δSE

b

((
I −Π0

k

)
yh,
(
I −Π0

k

)
yh
))) 1

2

≤ C‖RE‖0,Eτ−
1

2

E Ξ
1

2

E . (3.17)

Using similar computations of (3.17) and inverse inequality (2.8), we can also deduce

BE
2 (yh,ΨERE) ≤ C‖RE‖0,Eτ−

1

2

E Ξ
1

2

E . (3.18)

Combining the above estimates, we get the bound for the element residual as follows:

1

2
‖RE‖20,E ≤ C‖RE‖0,Eτ−

1

2

E

(
‖z‖supg,E + τ

1

2

E ‖θE‖0,E + Ξ
1

2

E + ετ
1

2

E‖∆(y − yI)‖0,E

+ εh−1
E τ

1

2

E ‖∇(yI − y)‖0,E
)
.

Further, we have

τE‖RE‖20,E ≤ C
(
‖z‖2supg,E + τE‖θE‖20,E + ΞE + ε2τE‖∆(y − yI)‖20,E
+ ε2h−2

E τE‖∇(yI − y)‖20,E
)
.

ωs := E+ ∪ E− with E+ and E− the elements meeting at the edge s. We extend Js into ωs

through a constant prolongation in the normal direction of the edge s for the edge residual. Let

v = ΨsJs in (3.6) we deduce

Asupg(z,ΨsJs) =
∑

E′
∈ωs

((
RE′ ,ΨsJs + τE′β · ∇(ΨsJs)

)
0,E′ +

(
θE′ ,ΨsJs + τE′β · ∇(ΨsJs)

)
0,E′

+BE
′

1 (yh,−ΨsJs) +BE
′

2 (yh,−ΨsJs)
)
+ (Js,−ΨsJs)0,s.
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By Lemma 3.6, we have

‖Js‖20,s ≤ Cbub(Js,ΨsJs)0,s

= Cbub

∑

E′
∈ωs

((
RE′ ,ΨsJs + τE′β · ∇(ΨsJs)

)
0,E′ +

(
θE′ ,ΨsJs + τE′β · ∇(ΨsJs)

)
0,E′

+BE
′

1 (yh,−ΨsJs) +BE
′

2 (yh,−ΨsJs)
)
− CbubA

ωs

supg(z,ΨsJs).

Arguing as (3.15)-(3.18) and using Lemma 3.6, we find that

‖Js‖20,s ≤ C
∑

E′
∈ωs

(
β

1

2

E′ ‖z‖supg,E′‖Js‖0,s + h
1

2

E′ ‖RE′‖0,E′‖Js‖0,s + h
1

2

E′ ‖θE′‖0,E′‖Js‖0,s

+ β
1

2

E′Ξ
1

2

E′ ‖Js‖0,s + h
1

2

E′ ε‖∆(y − yI)‖0,E′‖Js‖0,s

+ εh
− 1

2

E′ ‖∇(yI − y)‖0,E′‖Js‖0,s
)
.

Using the estimate of element residual, we arrive at

‖Js‖20,s ≤ C
∑

E′
∈ωs

(
βE′‖z‖2

supg,E′ + βE′ τE′ ‖θE′‖2
0,E′ + βE′ΞE′

+ βE′ τE′ ε2‖∆(y − yI)‖20,E′ + βE′ τE′ ε2h−2
E′ ‖∇(yI − y)‖2

0,E′

)

≤ Cβωs

∑

E′
∈ωs

(
‖z‖2

supg,E′ + τE′ ‖θE′‖2
0,E′ + ΞE′

+ τE′ ε2‖∆(y − yI)‖20,E′ + τE′ ε2h−2
E′ ‖∇(yI − y)‖2

0,E′

)
.

Therefore, we have

β−1
ωE

∑

s⊂∂E

‖Js‖20,s ≤ C
∑

E′
∈ωE

(
‖z‖2

supg,E′ + τE′ ‖θE′‖2
0,E′ + ΞE′

+ τE′ ε2‖∆(y − yI)‖20,E′ + τE′ ε2h−2
E′ ‖∇(yI − y)‖2

0,E′

)
.

By putting the above bounds together the theorem is complete. �

Remark 3.3. Reasoning in the same way in Remark 3.2, one finds that the additional items

are negligible compared with ‖y − yh‖supg,E′ in (3.13).

For each element E ∈ Th, we define the local error estimator ηh(yh, E) by

ηh(yh, E) :=
(
ηE +ΘE + ΞE +ΨE

) 1

2 .

Then on a subset ω ⊆ Ω, we define the error estimator ηh(yh, ω) by

ηh(yh, ω) :=

( ∑

E∈Th,E⊂ω

η2h(yh, E)

) 1

2

.

Thus, the error indicator on Ω with respect to Th can be expressed as ηh(yh,Ω).

4. Numerical Results

In this section, we firstly introduce an adaptive VEM algorithm based on a posteriori error

estimate to solve the problem (2.4). Then we carry out some numerical tests to verify our

theoretical analysis.
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4.1. Algorithm

Here we consider the adaptive VEM with k = 1. In the first step, we solve the problem (2.4)

on a given initial mesh Th0
with mesh size h0. Then we calculate the indicator ηh(yh,Ω). In

the third step, we using Dörfler’s marking strategy to construct and mark the set of elements

that need to be refined. Finally, we refine them. For the refinement strategy, we adopt the idea

in [17], which connects the barycentre with the midpoint of each edge in every marked element,

as shown in Fig. 4.1.

Fig. 4.1. In each refinement, the barycentre of the every marked element, i.e. O, and the midpoint of

each edge are introduced as new nodes, for example P.

The concrete adaptive VEM algorithm is given below:

Algorithm 4.1: Adaptive VEM Algorithm.

Require: The tolerance error κ of the indicator and a coarse mesh Th0
with mesh

size h0.

Ensure :

1 Set error = 2κ and t = 0.

2 while error > κ do

3 Start with the mesh Tht
with mesh size ht and corresponding virtual element

spaces Vht,1.

4 Solve the problem (2.4) on the actual mesh Tht
for yh.

5 Calculate the local error indicator ηht
(yh, E) for each element E ∈ Tht

.

6 Set error = ηht
(yh,Ω) and t = t+ 1.

7 Evaluate stopping criterion, that is, if error ≤ κ, then stop adaptive iteration else

go to next step.

8 Construct a minimal subset Mht−1
⊂ Tht−1

such that

∑

E∈Mht

η2ht−1
(yh, E) ≥ µη2ht−1

(yh,Ω), 0 < µ < 1.

9 Mark all the elements in Mht−1
.

10 Refine Mht−1
to get a new mesh Tht

with mesh size ht and go to Step 3.

11 end
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In addition, we shall test the performance of the indicator by computing the following

effective index:

effectivity :=
ηh(yh,Ω)

‖y − yh‖supg
.

4.2. Numerical experiments

Example 4.1 (Solution with Interior Layer). Problem (2.1) is considered in Ω = (0, 1)2

with β = (1, 0)T , δ = 1, and with f being chosen such that

y(x1, x2) =
25

3
x1(1− x1)x2(1− x2)

(
1− tanh

γ − x1

ζ

)

is the solution of (2.1).

The parameters γ and ζ control the location and thickness of the interior layer. Here we

choose γ = 0.5, ζ = 0.01 and the diffusion coefficient ε = 10−6 and 10−10, respectively. The

solution has a sharp decrease along x1 = 0.5. It is well known that the numerical solution

shows oscillations on uniform refinements. The adaptive VEM algorithm is applied to improve

numerical performance in the computing. We set marking parameter µ = 0.3 and µ = 0.4,

respectively. Fig. 4.2 shows the adapted Voronoi mesh [32] after 25 iterations with ε = 10−10,

where we find that mesh refinement is almost concentrated in the interior layer. We also

display the exact solution and the numerical solution of based on the adapted Voronoi mesh

with ε = 10−10, which shows a very good agreement with the exact solution.

For each adaptive mesh we report the values of the minimum mesh Péclet and Karlovitz

numbers in Fig. 4.3 with ε = 10−6 and 10−10, respectively. We can observe that they are

always much bigger than 1. From (2.9), we can know the whole adaptive process is completed

in convection dominated regime. Results of the SUPG error ‖y − yh‖supg, error indicator

ηh(yh,Ω) and the effectivity of the indicator are also shown in Fig. 4.3 with ε = 10−6 and

10−10. Therein, we observe that the convergence rates of both errors with respect to Ndof are

optimal at O(Ndof−3/4) when k = 1. Furthermore, we see from the Fig. 4.3 that the efficiency

index tends to be a constant through the mesh sequence.

(a) (b) (c)

Fig. 4.2. Example 4.1: (a) The adapted Voronoi mesh after 25 iterations with ε = 10−10 and µ = 0.4,

(b) The profile of the numerical solution yh on the finally refined Voronoi mesh with ε = 10−10,

(c) Exact solution.
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Fig. 4.3. Example 4.1: The convergence history of the error, error indicator and effectivity on adaptively

refined Voronoi meshes with ε = 10−6, µ = 0.3 (left) and ε = 10−10, µ = 0.4 (right) generated by

Algorithm 4.1.

Example 4.2 (Solution with Circular Interior Layer). This example is defined by

Ω = (0, 1)2, ε = 10−6,β = (2, 3)T , δ = 1 and f such that

y(x1, x2) = 16x1(1 − x1)x2(1− x2)

(
1

2
+

1

π
arctan

[
2
(
0.252 − (x1 − 0.5)2 − (x2 − 0.5)2

)
√
ε

])
.

In this example, the exact solution y has interior layer along the circle (x1−0.5)2−(x2−0.5)2

= 0.252. We test the reliability and effectivity of the indicator ηh(yh,Ω) on the square mesh.

In Fig. 4.4, the profiles of the numerically computed solution for ε = 10−6 and exact solution

are shown, respectively. We can find that the oscillations in the solution are eliminated. The

finally adapted mesh with ε = 10−6, µ = 0.6 is given in Fig. 4.5. We can see that the mesh

is concentrated on the internal sharpening layer. The reliability of adaptive VEM algorithm is

well verified.

We present the convergence of the error ‖y−yh‖supg, error indicator ηh(yh,Ω) and effectivity

of the indicator on the square mesh with ε = 10−6, µ = 0.6 in Fig. 4.5. We can observe that the

convergence order of error ‖y − yh‖supg is approximately parallel to the line with slope −3/4.

With the continuous adaptive refinement of the grid, the effectivity of the indicator gradually

tends to a constant. The data results are in agreement with the theoretical prediction.

Fig. 4.4. Example 4.2: The profiles of the numerically computed solution for ε = 10−6 (left) and exact

solution (right).
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Fig. 4.5. Example 4.2: The finally adaptive square mesh after 40 iterations with ε = 10−6, µ = 0.6

(left) and the convergence history of the error, error indicator and effectivity on adaptively refined

square meshes (right).

Example 4.3 (Solution with Boundary Layer). In this example, we take Ω = (0, 1)2,

ε = 10−4,β = (2, 2)T , δ = 1. The right-hand side f is chosen so that

y(x1, x2) =

(
x1 −

e(x1−1)/ε − e−1/ε

1− e−1/ε

)(
x2 −

e(x2−1)/ε − e−1/ε

1− e−1/ε

)
.

In this example, the exact y has boundary layers at x1 = 1 and x2 = 1. We employ

the posteriori error indicator ηh(yh,Ω) to construct adaptive mesh for y. The finally adaptive

meshes with µ = 0.3 are shown in Fig. 4.6. We can see that the meshes are strongly refined along

the boundary x1 = 1 and x2 = 1, which indicates that the posteriori error estimator indicator

ηh(yh,Ω) can effectively capture the boundary layers. The profiles of numerical solution yh on

the distorted square mesh and exact solution are presented in Fig. 4.7, which represent and

process the boundary layers well by comparison.

Fig. 4.8 shows the convergence behaviours of the error ‖y−yh‖supg, error indicator ηh(yh,Ω)
and effectivity of the indicator on the distorted square and Voronoi meshes. We can see that

in the case of convection dominated regime convergence order of error ‖y− yh‖supg is approxi-

mately parallel to the line with slope −3/4 which is the optimal convergence rate and with the

continuous refinement of the mesh, effectivity asymptotically tends a constant.

Fig. 4.6. Example 4.3: The finally adaptively distorted square mesh after 41 iterations (left) and

Voronoi mesh after 42 iterations (right) with ε = 10−4 and µ = 0.3.
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Fig. 4.7. Example 4.3: The profiles of the numerical solution yh on adaptively distorted square mesh

(left) with ε = 10−4 and exact solution (right).

Fig. 4.8. Example 4.3: The convergence history of the error, error indicator and effectivity on adaptively

distorted square mesh (left) and Voronoi mesh (right) with ε = 10−4 generated by Algorithm 4.1.

Example 4.4 (Solution with Interior and Boundary Layers). The last test is a classic

problem from [24]. In [11] and [13], the SUPG stabilization for the conforming and noncon-

forming virtual element method are used to investigate this problem. Whether conforming

VEM or nonconforming VEM, the solution obtained by SUPG method presents oscillations.

Here adaptive VEM is used to study this problem. The geometry of the problem is depicted in

Fig. 4.9. The velocity forms an angle σ with the x-axis, and propagates the non-homogeneous

boundary condition y = 1 inside Ω, thus generating an internal discontinuity, which is numeri-

cally approximated by an internal layer, a sharp transition between the constant solution states

y = 0 and 1. The homogeneous boundary condition at the top of the computational domain

produces a boundary layer. Data for the problem is: ε = 10−5, µ = 0.5, β = (cos(σ), sin(σ))

with σ = arctan(1).

We chose the distorted hexagonal mesh and the square mesh as the initial mesh. Fig. 4.10

shows the initial solutions and the solutions after adaptive refinement with ε = 10−5. We can

find that the initial results Figs. 4.10(a) and 4.10(d) are polluted with spurious oscillations

in a vicinity of layers. From Figs. 4.10(c) and 4.10(f), it is clear that mesh refinement is

all concentrated in the boundary and interior layers, which is consistent with our expected

refinement behavior. With the refinement of the mesh, Figs. 4.10(b) and 4.10(e) show that the

huge oscillations of the unstable solution are gradually reduced.
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Fig. 4.9. Example 4.4: Domain and boundary conditions.

(a) (b) (c)

(d) (e) (f)

Fig. 4.10. Example 4.4: (a) The initial solution on distorted hexagonal mesh with ε = 10−5, (b) The

profile of final solution on distorted hexagonal mesh with ε = 10−5, (c) The finally adaptively distorted

hexagonal mesh with ε = 10−5, (d) The initial solution on square mesh with ε = 10−5, (e) The profile

of final solution on square mesh with ε = 10−5, (f) The finally adaptive square mesh with ε = 10−5.
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