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Abstract

In this paper, we propose two families of nonconforming finite elements on n-rectangle

meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property

and the approximation ability of the new finite element spaces are established. A new

mechanism, called the exchange of sub-rectangles, for investigating the weak continuities

of the proposed elements is discovered. With the help of some conforming relatives for the

H
3 problems, we establish the quasi-optimal error estimate for the triharmonic equation

in the broken H
3 norm of any dimension. The theoretical results are validated further by

the numerical tests in both 2D and 3D situations.

Mathematics subject classification: 65N30.
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1. Introduction

Sixth-order partial differential equations have been widely used to model various physical

laws and dynamics in material sciences and phase field problems [6, 11]. Owning such a sig-

nificance in these areas, however, methods for solving the sixth-order equations are insufficient

and less studied compared with the lower-order equations from both theoretical and numerical

aspects. From a practical point of view, nonconforming finite element method is one of the

frequently desired numerical methods for high order partial differential equations. In terms of

solving sixth-order equations, the usage of nonconforming spaces allows us to avoid the require-

ment of C2-continuity which causes high complexity for the implementation. Having a smaller

set of degrees of freedom (DoFs) and a shrunken space of shape functions, yet the noncon-

forming finite elements should conceivably possess some basic weak continuity properties [20]

to preserve the convergence of the numerical solutions. Therefore, the design of such exquisite

finite element spaces can be challenging for certain problems, especially in high dimensional

situations.

Starting from the solving of fourth-order equations, there are several well-known noncon-

forming finite elements like the Morley element and the Zienkiewicz element designed on two-

dimensional simplicial meshes. A similar idea was then applied to high dimensional case [21],

which generalizes the Zienkiewicz element to n-dimensional simplexes where n ≥ 2. Further,
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Wang and Xu [23] proposed a family of nonconforming finite elements on simplexes named by

the Morley-Wang-Xu element to solve 2m-th-order elliptic equations where m ≤ n. This result

has been extended to m = n + 1 in [25], and to arbitrary m,n with interior stabilization [24].

Restricted to the low-dimensional cases, the nonconforming finite element spaces for H2 can be

seen in [7], and for H3 or higher regularity can be found in [17, 18].

On the simplicial meshes, other types of discretization besides the nonconforming finite

element method for sixth-order partial differential equations may also be feasible. In two-

dimensional case, the H3 conforming finite element was constructed in [26] and can be gener-

alized to arbitrary Hm [3]. Recently, a construction of conforming finite element spaces with

arbitrary smoothness in any dimension was given in [14]. Others include mixed methods [10,19],

C0 interior penalty discontinuous Galerkin method [12], recovery-based method [13], and vir-

tual element methods [8].

As for rectangle meshes, successful constructions of finite element such as the Adini ele-

ment [1] of C0 smoothness and Bogner-Fox-Schmidt element (BFS, [2]) of C1 smoothness were

made on two-dimensional grids, whose DoFs are all defined on vertices of rectangles. After

an extension [22] to the n-rectangle meshes of any high dimensional spaces where n ≥ 2, the

Adini element and the BFS element possess only C0 smoothness, and yet their solvabilities to

the fourth-order equations have both been remained. Furthermore, an extended version of the

Morley element to the n-rectangle meshes was also reported in [22]. For the biharmonic equa-

tion, a new family of n-rectangle nonconforming finite element by enriching the second-order

serendipity element was constructed in [27]. For arbitrary smoothness, a family of minimal

n-rectangle macro-elements was established in [16].

Wang et al. [22] showed that the Morley, Adini and BFS elements are of the first-order

convergence in the energy norm for solving the biharmonic equation. A more delicate analysis

proposed in [15] reveals that the Adini element is capable of reaching a second-order convergence

in the energy norm and has an optimal second-order convergence in the L2-norm. It cannot

be overlooked that theories of nonconforming finite element methods are well-prepared for the

fourth-order equations on a variety of n-rectangle discretizations, yet very little is extended to

the solving of sixth-order problems.

In this paper, we develop two families of n-rectangle nonconforming finite elements for

sixth-order partial differential equations. Both the two families of elements are constructed by

enriching the DoFs of the n-rectangle Adini element [22] and the corresponding shape function

space. Following the well-developed projection-averaging strategy [22], we give the definition

of the interpolation operator in high dimensional cases for both two families of elements. It

can be shown that the shape function spaces are capable of approximating H3+s(Ω) for any

s ∈ [0, 1] in an arbitrarily high dimension, which are essential to the error estimate afterwards.

Furthermore, analysis of the weak continuity properties usually plays an important role

in the investigation of a nonconforming finite element. Reasonably, difficulties brought by

the sixth-order differential operator (−∆)3 mainly occur when considering the weak conti-

nuities of the following second-order derivatives of the finite element function: the tangential-

tangential (∂ττ ), normal-normal (∂νν) and tangential-normal (∂τν) derivatives across the (n−1)-

dimensional faces of an element T . It is possible to make use of the interpolations of other

well-known n-rectangle finite elements to locally estimate the terms of ∂ττ and ∂νν . However,

the analysis of ∂τν is much more complicated than those terms above for both the two fami-

lies of elements, so that we only consider estimating this term in a more global manner. We

therefore propose a new technique called exchange of sub-rectangles to deal with this compli-
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cated term. Combining the results of weak continuities and the help of conforming relatives,

we complete estimating the consistency error, which gives the final error estimate by applying

the well-known Strang’s lemma.

Given a multi-index α = (α1, α2, · · · , αn), we set |α| =
∑n

i=1 αi and xα = xα1

1 xα
2 · · ·xαn

n for

x ∈ R
n. For a subset B ⊂ R

n and a nonnegative integer r, let Pr(B) and Qr(B) be the spaces

of polynomial on B defined by

Pr(B) := span{xα | |α| ≤ r}, Qr(B) := span{xα |αi ≤ r}.

Moreover, we denote by Qî
1(B) the subspace of Q1(B) with no dependence on xi, i.e.

Qî
1(B) := span{xα |αi = 0, αj ≤ 1}. (1.1)

For any finite dimensional sets of functions A and B, we denote by

A ·B := span{ab | a ∈ A, b ∈ B}.

In this paper, we will also use the notation x . y to represent x ≤ Cy for some constant C

independent of the crucial parameter such as the mesh size h.

The rest of the paper is organized as follows. In Section 2 we introduce some basic notations

and give definitions to the two families of n-rectangle nonconforming finite element. Unisolvent

properties and part of the weak continuities are also developed herein. The approximation

properties of the nonconforming spaces are discussed and proved in Section 3, where same

methods are used to verify the existence of some necessary conforming relatives. In Section 4

we present the main technique of analyzing the weak continuity of ∂τν derivatives and several

attached conclusions. Finally we give the full estimate of the numerical solutions of our new

finite elements in Section 5 and three numerical examples to verify our theories in Section 6.

Concluding remarks are given in Section 7.

2. H
3-Nonconforming n-Rectangle Elements

In this section, we construct two families of H3-nonconforming elements which are defined

on the n-rectangle meshes. Let Ω ⊂ R
n (n ≥ 2) denote a bounded polyhedral domain with

boundary ∂Ω, ν = (ν1, ν2, · · · , νn)⊤ be the unit outer normal vector to ∂Ω, and Th be a quasi-

uniform n-rectangle discretization on Ω with the mesh size h > 0.

Throughout this paper, we will use the standard notations of the Sobolev spaces. Let m ≥ 0

be an integer, we define the following mesh-dependent norm and semi-norm:

‖v‖m,h =

(
∑

T∈Th

‖v‖2m,T

) 1
2

, |v|m,h =

(
∑

T∈Th

|v|2m,T

) 1
2

for a function v with v|T ∈ Hm(T ) for any T ∈ Th.

2.1. Preliminaries

For a given point c = (c1, c2, · · · , cn)⊤ ∈ R
n and h1, h2, · · · , hn being n positive numbers,

an n-rectangle T is described in the barycentric coordinate ξ = (ξ1, ξ2, · · · , ξn)
⊤ as follows:

T =
{
x ∈ R

n|xi = ci + hiξi, −1 ≤ ξi ≤ 1, 1 ≤ i ≤ n
}

(2.1)
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with 2n vertices given by

ai := (c1 + ξi1h1, c2 + ξi2h2, · · · , cn + ξinhn)
⊤, 1 ≤ i ≤ 2n.

Here, the values (ξi1, ξi2, · · · ξin)⊤ = (±1,±1, · · · ,±1)⊤ for 1 ≤ i ≤ 2n. The (n−1)-dimensional

faces of the element T are denoted by

F±
i := {x ∈ ∂T | ξi = ±1, −1 ≤ ξj ≤ 1, 1 ≤ j ≤ n, j 6= i}, 1 ≤ i ≤ n,

whose barycenters are written as b±i := (c1, · · · , ci−1, ci ± hi, ci+1, · · · , cn)⊤.

Following the standard description in [5], a finite element can be represented by a triple

(T,PT ,NT ), where T , taken as an n-rectangle (2.1), describes the geometric shape, PT the

shape function space and NT the vector of degrees of freedom. We first review several n-

rectangle finite elements that will be helpful for further analysis.

1. n-rectangle Q1 element: PT := Q1(T ) and the DoFs are defined as

NT (v) =
(
v(a1), v(a2), · · · , v(a2n)

)⊤
.

Further, it is well-known that the polynomials

p0i =
1

2n

n∏

j=1

(1 + ξijξj), 1 ≤ i ≤ 2n (2.2)

form a set of basis functions of the space Q1(T ). Accordingly, the canonical interpolation

operator Π0

T : C0(T ) → Q1(T ) is defined as

NT (Π
0

T v) = NT (v) or Π0

T v :=
2n∑

i=1

p0iv(ai), ∀ v ∈ C0(T ).

2. n-rectangle Adini element [22]: PT := Q1(T ) · span{1, x2
i | 1 ≤ i ≤ n} and the DoFs are

defined as

NT (v) =
(
v(a1),∇v(a1)

⊤, v(a2),∇v(a2)
⊤, · · · , v(a2n),∇v(a2n)

⊤
)⊤

.

The canonical interpolation operator is denoted by Π1

T .

3. n-rectangle partial Adini element: PT :=Q1(T ) · span{1, x2
i }, and the DoFs are defined as

NT (v) =

(

v(a1),
∂v

∂xi
(a1), v(a2),

∂v

∂xi
(a2), · · · , v(a2n),

∂v

∂xi
(a2n)

)⊤

.

The canonical interpolation operator is denoted by Πei

T .

For any v in the finite element spaces by the above elements, on any (n−1)-dimensional face

F of T ∈ Th, the restriction of v|F is a polynomial of (n−1) variables in the shape function space

P(F ). Then v|F is uniquely determined by the DoFs on F (which also proves the unisolvent

properties of the above elements by induction on the dimension). Therefore, v is continuous

through F . Next, for any piecewise smooth function v with the same inter-element degrees of

freedom, the interpolation operator can be given element by element, i.e.

Πβ
h |T v := Πβ

T v, ∀T ∈ Th, β = 0, ei, or 1. (2.3)

Here, we unify the notations by denoting βi as the highest order of derivative along xi.
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2.2. n-rectangle Morley-type element

Define

PM (T ) := Q1(T ) · span
{
1, x2

i | 1 ≤ i ≤ n
}
+ span

{
x4
i , x

5
i | 1 ≤ i ≤ n

}
. (2.4)

It can be verified that P3(T ) ⊂ PM (T ). For the n-rectangle Morley-type element, PT and NT

are given by (see Fig. 2.1):

• PT = PM (T ).

• For v ∈ C2(T ), the vector NT (v) of degree of freedom is

NT (v) =

(

v(a1),∇v(a1)
⊤, · · · , v(a2n),∇v(a2n)

⊤,
∂2v

∂ν2
(
b±1
)
, · · · ,

∂2v

∂ν2
(
b±n
)
)⊤

.

The basis functions of the n-rectangle Morley element is denoted by p0i (i.e. corresponding

to the nodal values), pji (i.e. corresponding to ∂v(ai)/∂xj), and r±k (i.e. corresponding to the

second normal derivative on the face center b±k ), which are given by







p0i =
1

2n+1

(

2 +

n∑

k=1

(
ξikξk − ξ2k

)

)
n∏

k=1

(1 + ξikξk)

+
3

2n+3

∑n
k=1 ξikξk

(
ξ2k − 1

)2
, 1 ≤ i ≤ 2n,

pji =
hjξij
2n+1

(
ξ2j − 1

)∏n
k=1(1 + ξikξk)

−
hj

2n+3
(ξij + 3ξj)

(
ξ2j − 1

)2
, 1 ≤ i ≤ 2n, 1 ≤ j ≤ n,

r±k = ±
h2
k

16
(ξk + 1)2(ξk − 1)2(ξk ± 1), 1 ≤ k ≤ n.

(2.5)

For the n-rectangle Morley-type element, we can define the corresponding H3-noncon-

forming finite element spaces Vh and Vh0 as follows: Vh consists of all functions vh such that

for any T ∈ Th:

(a) Rectangle element (b) Cubic element

Fig. 2.1. Degrees of freedom of the H
3-nonconforming Morley-type element.
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(1) vh|T ∈ PM (T ),

(2) vh is C1-continuous at all vertices of T ,

(3) the second normal derivatives of vh is continuous at the barycenters of all (n − 1)-

dimensional faces of T .

Vh0 consists of all functions vh ∈ Vh such that for any T ∈ Th, vh and ∇vh vanish at the vertices

of T belonging to ∂Ω and the second normal derivative of vh vanishes at the barycenter of all

(n− 1)-dimensional faces of T on ∂Ω.

It can be seen that the DoFs for Morley-type finite element consists of that for Adini finite

element space and the second-order normal derivative on faces. Moreover, PM (T ) contains the

shape function space of the Adini element. Therefore,
(
vh −Π1

hvh
)
|T ∈ span

{
r±k | 1 ≤ k ≤ n

}
, ∀ vh ∈ Vh. (2.6)

Here, we recall that Π1

h stands for the interpolation to Adini finite element space (2.3).

Lemma 2.1 (Tangential-Tangential Weak Continuity for Morley). Let Vh and Vh0 be

the finite element spaces of the n-rectangle Morley-type element. Then,
∫

F

∂2

∂τ1∂τ2
(v|T ) =

∫

F

∂2

∂τ1∂τ2
(v|T ′), ∀ v ∈ Vh, (2.7)

where T, T ′ ∈ Th share a common (n − 1)-dimensional interior face F, τ1 and τ2 are the unit

tangential vectors on F . Moreover, if an (n− 1)-dimensional face F of T ∈ Th is on ∂Ω, then
∫

F

∂2

∂τ1∂τ2
(v|T ) = 0, ∀ v ∈ Vh0. (2.8)

Proof. We first observe that the basis function r±k depends only on ξk and vanishes on F±
k .

On any face F±
j (j 6= k), we have

∫

F±

j

∂2r±k
∂x2

k

= h−2
k

∫

F±

j

∂2r±k
∂ξ2k

= 2n−2h−2
k

∣
∣F±

j

∣
∣
∂r±k
∂ξk

∣
∣
∣
∣

ξk=1

ξk=−1

= 0.

Using (2.6) and the fact that the Adini finite element space is continuous [22], we have
∫

F

∂2

∂τ1∂τ2
(v|T )−

∫

F

∂2

∂τ1∂τ2
(v|T ′)

=

∫

F

∂2

∂τ1∂τ2

(
v −Π1

hv|T
)
−

∫

F

∂2

∂τ1∂τ2

(
v −Π1

hv|T ′

)
= 0.

This proves (2.7). For v ∈ Vh0, we have Π1

hv|∂Ω = 0, which leads to (2.8). �

Lemma 2.2 (Normal-Normal Weak Continuity for Morley). Let Vh and Vh0 be the fi-

nite element spaces of the n-rectangle Morley-type element. Then,
∫

F

∂2

∂ν2
(v|T ) =

∫

F

∂2

∂ν2
(v|T ′), ∀ v ∈ Vh, (2.9)

where T, T ′ ∈ Th share a common (n− 1)-dimensional interior face F . Moreover, if an (n− 1)-

dimensional face F of T ∈ Th is on ∂Ω, then
∫

F

∂2

∂ν2
(v|T ) = 0, ∀ v ∈ Vh0. (2.10)
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Proof. On any face F±
k , a straightforward calculation leads to

h2
k

∂2p0i
∂ν2

∣
∣
∣
∣
F±

k

= h2
k

∂2p0i
∂x2

k

∣
∣
∣
∣
ξk=±1

= ∓
3

2n
ξik
∏

j 6=k

(1 + ξijξj)±
3

2n
ξik, (2.11)

and for pji with 1 ≤ j ≤ n, we have ∂2pji/∂x
2
k = 0 if k 6= j, and for k = j,

hj
∂2pji
∂ν2

∣
∣
∣
∣
F±

j

= hj
∂2pji
∂x2

j

∣
∣
∣
∣
ξj=±1

=
1

2n
(ξij ± 3)

∏

k 6=j

(1 + ξikξk)−
1

2n
(ξij ± 3). (2.12)

A straightforward computation gives

∫

F±

k

∂2pji
∂ν2

= 0, 0 ≤ j ≤ n. (2.13)

Moreover, we also have
∫

F+

k

∂2r+j
∂x2

j

=

{∣
∣F+

k

∣
∣, j = k,

0, otherwise,

∫

F−

k

∂2r−j
∂x2

j

=

{∣
∣F−

k

∣
∣, j = k,

0, otherwise,

(2.14)

and
∫

F+

k

∂2r−j
∂x2

j

=

∫

F−

k

∂2r+j
∂x2

j

= 0 (2.15)

for all 1 ≤ j ≤ n. This gives the desired result. �

2.3. The n-rectangle Adini-type element

Define

PA(T ) = Q1(T ) · span
{
1, x2

i , x
4
i | 1 ≤ i ≤ n

}
. (2.16)

It is straightforward that P3(T ) ⊂ PA(T ). The Adini-type element (see Fig. 2.2) is then given

by the triple (T,PT ,NT ), where

(a) Rectangle element (b) Cubic element

Fig. 2.2. H
3-nonconforming Adini-type element.
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• PT = PA(T ).

• For v ∈ C2(T ), the vector NT (v) of degree of freedom is

NT (v) =
(
v(a1),∇v(a1)

⊤, D2
pv(a1)

⊤, · · · , v(a2n),∇v(a2n)
⊤, D2

pv(a2n)
⊤
)⊤

, (2.17)

in which

D2
p =

(
∂2

∂x2
1

,
∂2

∂x2
2

, · · · ,
∂2

∂x2
n

)⊤

denotes the vector of all pure second-order differential operators.

Instead of writing the explicit formulation of basis functions, below we show the unisolvent

property of the Adini-type element using an inductive argument.

Lemma 2.3 (Unisolvent Property of the Adini-Type Element). For the n-dimensional

Adini-type element, NT is PT -unisolvent.

Proof. Since the dimensions of both PA(T ) and the number of DoFs are 2n(2n + 1), it

suffices to show that if v ∈ PA(T ) vanishes on NT then v = 0.

The case in which n = 1 is standard. Assume that the conclusion is true for n = k (k ≥ 1).

Now let n = k + 1. We write v = v(ξ1, ξ2, · · · , ξn). On the k-dimensional face F±
i on which

ξi = ±1, v is a polynomial of ξ1, · · · , ξi−1, ξi+1, · · · , ξn in k-dimensional shape function space

PA(F
±
i ). Clearly, NF±

i
(v), which consists of the point-values, gradients, and pure second-order

derivatives at vertices of F±
i , will vanish from the definition of NT . Hence, v|F±

i
= 0 by the

inductive assumption. This leads to a factor Πn
i=1(ξ

2
i − 1) of v. Consequently, v = 0. �

We define the finite element space Vh and Vh0 as follows:

Vh =

{

vh ∈ L2(Ω) : vh|T ∈ PA(T ), vh,
∂vh
∂xj

,
∂2vh
∂x2

j

are continuous

at all vertices of elements in Th, 1 ≤ j ≤ n

}

,

Vh0 =

{

vh ∈ Vh : vh,
∂vh
∂xj

,
∂2vh
∂x2

j

vanish at vertices along ∂Ω

}

.

From the proof of unisolvent property, we directly see that Vh ⊂ H1(Ω) and Vh0 ⊂ H1
0 (Ω).

In fact, when restricting v ∈ Vh on an (n− 1)-dimensional face F , v|F is uniquely defined NF ,

which yields the continuity of v. Further, if v ∈ Vh0 and F ⊂ ∂Ω, then v|F = 0.

Lemma 2.4 (Normal-Normal Strong Continuity for Adini). Let Vh and Vh0 be the fi-

nite element spaces of the n-rectangle Adini-type element. Then,

∂2

∂ν2
(v|T )

∣
∣
∣
∣
F

=
∂2

∂ν2
(v|T ′ )

∣
∣
∣
∣
F

, ∀ v ∈ Vh, (2.18)

where T, T ′ ∈ Th share a common (n−1)-dimensional interior face F . Moreover, if an (n−1)-

dimensional face F of T ∈ Th is on ∂Ω, then

∂2

∂ν2
(v|T )

∣
∣
∣
∣
F

= 0, ∀ v ∈ Vh0. (2.19)
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Proof. We prove the case for F±
T,i in which ∂2/∂ν2 = ∂2/∂x2

i . Recall that Π0

h is the global

n-linear interpolation operator to Q1-FEM space, the pure second-order derivatives at vertices

belong to the DoFs of the Adini-type element, then Π0

h∂
2v/∂x2

i ∈ H1(Ω).

Since v|T∈Q1(T ) ·span{1, x2
j , x

4
j | 1 ≤ j ≤ n}, then we have ∂2(v|T )/∂x2

i∈Q1(T ) ·span{1, ξ2i }

and whence (
∂2v

∂x2
i

−Π0

h

∂2v

∂x2
i

) ∣
∣
∣
∣
F±

T,i

∈ Q1(F
±
T,i).

Notice that the left-hand side vanishes at all vertices of F±
T,i, which leads to

∂2v

∂x2
i

∣
∣
∣
∣
F±

T,i

= Π0

h

∂2v

∂x2
i

∣
∣
∣
∣
F±

T,i

. (2.20)

For v ∈ Vh0, we have Π0

h∂
2v/∂x2

i ∈ H1
0 (Ω), which leads to (2.19). �

3. Approximation Property

In this section, we consider the approximation property of the Adini-type element and the

Morely-type element. The interpolation error analysis of these finite element spaces in any

dimension is established by using the projection-averaging technique. In Section 3.2 we extend

our investigation to some conforming relatives. Following similar ideas, we sketch the proofs of

the error estimate and the stability of the conforming interpolation operator.

3.1. Interpolation error of the H3 nonconforming element

In this section, we will analyze the approximation property of the finite element spaces Vh

and Vh0. To start with, we have the following result for low-dimensional cases.

Theorem 3.1. Let ΠT be the interpolation operator of the n-rectangle Morley-type element or

the n-rectangle Adini-type finite element. If n ≤ 3 then for any T ∈ Th,

|v −ΠT v|m,T . h4−m|v|4,T , 0 ≤ m ≤ 4, ∀ v ∈ H4(T ). (3.1)

Theorem 3.1 can be obtained from the standard interpolation theory (c.f. [9]) and the result

is already enough for practical cases. However, we are interested in attaining similar results for

a more generic case in which n ≥ 2.

Theorem 3.2 (Approximation Property). Let Vh and Vh0 be the finite element spaces

of the n-rectangle Morley-type element or the n-rectangle Adini-type element. Then, for any

s ∈ [0, 1],

inf
vh∈Vh

3∑

m=0

hm|v − vh|m,h . h3+s|v|3+s,Ω, ∀ v ∈ H3+s(Ω), (3.2)

inf
vh∈Vh0

3∑

m=0

hm|v − vh|m,h . h3+s|v|3+s,Ω, ∀ v ∈ H3+s(Ω) ∩H3
0 (Ω). (3.3)

Proof. The proof is based on the well-established projection-averaging technique (c.f. [22]).

For conciseness and completeness, we present the proof of (3.3) for the n-rectangle Adini-type
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element. For a function v ∈ H3+s(Ω) ∩H3
0 (Ω), we define wh ∈ L2(Ω) as the L2-projection of v

onto PA(T ) for each T ∈ Th, namely,

wh|T ∈ PA(T ),

∫

T

whq dx =

∫

T

vq dx, ∀ q ∈ PA(T ), T ∈ Th.

Since P3(T ) ⊂ PA(T ), then the standard interpolation theory of L2-projection [5] gives the

following bound:

|v − wh|m,T . h3+s−m|v|3+s,T , 0 ≤ m ≤ 3, T ∈ Th. (3.4)

Given a set B ⊂ R
n, define Th(B) = {T ∈ Th : T ∩B 6= ∅} and let Nh(B) be the number

of elements in Th(B). In what follows, we will use the notation wT
h = wh|T for simplicity. Now

we define the interpolation vh ∈ Vh0 by taking the average of the DoFs. For ai being an interior

vertex of Ω, let

vh(ai) :=
1

Nh(ai)

∑

T ′∈Th(ai)

wT ′

h (ai), i = 1, 2, . . . , 2n, (3.5)

∂vh(ai)

∂xj
:=

1

Nh(ai)

∑

T ′∈Th(ai)

∂wT ′

h (ai)

∂xj
, j = 1, 2, . . . , n, j = 1, 2, . . . , n, (3.6)

∂2vh(ai)

∂x2
j

:=
1

Nh(ai)

∑

T ′∈Th(ai)

∂2wT ′

h (ai)

∂x2
j

, i = 1, 2, . . . , 2n, j = 1, 2, . . . , n. (3.7)

Let φh := wh−vh and obviously φT
h ∈ PA(T ) on each T ∈ Th. By a standard scaling argument,

we find that, for 0 ≤ m ≤ 3,

|φh|
2
m,T . hn−2m

(
2n∑

i=1

∣
∣φT

h (ai)
∣
∣
2
+ h2

2n∑

i=1

n∑

j=1

∣
∣
∣
∣

∂φT
h (ai)

∂xj

∣
∣
∣
∣

2

+ h4
2n∑

i=1

n∑

j=1

∣
∣
∣
∣

∂2φT
h (ai)

∂x2
j

∣
∣
∣
∣

2
)

. (3.8)

Next we complete the proof by respectively estimating the terms |φh(ai)|, |∂φh(ai)/∂xj| and

|∂2φh(ai)/∂x
2
j | in (3.8). If ai ∈ T is an interior node of Ω, by definition we have

φT
h (ai) =

1

Nh(ai)

∑

T ′∈Th(ai)

(
wT

h (ai)− wT ′

h (ai)
)
.

For any other element T ′ in the patch Th(ai), there exists an integer J > 0 and T1, T2, · · · , TJ ∈

Th(ai) such that T1 = T, TJ = T ′ and F̃j = Tj ∩ Tj+1 is a common (n− 1)-dimensional surface

of Tj and Tj+1, with ai ∈ F̃j , 1 ≤ j ≤ J . A simple computation with the inverse estimate gives

∣
∣wT

h (ai)− wT ′

h (ai)
∣
∣
2
=

∣
∣
∣
∣
∣

J−1∑

j=1

(

w
Tj

h (ai)− w
Tj+1

h (ai)
)
∣
∣
∣
∣
∣

2

. h1−n
J−1∑

j=1

∥
∥w

Tj

h − w
Tj+1

h

∥
∥
2

0,F̃j

. h1−n
J−1∑

j=1

(∥
∥v − w

Tj

h

∥
∥
2

0,F̃j
+
∥
∥v − w

Tj+1

h

∥
∥
2

0,F̃j

)

.
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Taking m = 0, 1 in (3.4) and using the local trace theorem, we obtain that
∥
∥v − w

Tj

h

∥
∥
2

0,F̃j
. h−1

∥
∥v − w

Tj

h

∥
∥
2

0,Tj
+ h
∣
∣v − w

Tj

h

∣
∣
2

1,Tj
. h5+2s|v|3+s,Tj

.

Since the values J and Nh(ai) are uniformly bounded for any interior vertex ai in Ω, then it is

concluded that

|φh(ai)|
2 . h6−n+2s

∑

T ′∈Th(ai)

|v|23+s,T ′ . (3.9)

If the vertex ai of T is on the boundary ∂Ω, then there exist T ′ ∈ Th(ai) with an (n− 1)-

dimensional face F ⊂ ∂Ω, such that ai ∈ F . Therefore, we estimate φh by

|φh(ai)| ≤
∣
∣wT

h (ai)− wT ′

h (ai)
∣
∣+
∣
∣wT ′

h (ai)
∣
∣.

The first term above in the right hand side can be handled with previous technique, and the

inverse estimate gives the bound for the second term
∣
∣wT ′

h (ai)
∣
∣
2
. h1−n

∥
∥wT ′

h

∥
∥
2

0,F
h h1−n

∥
∥v − wT ′

h

∥
∥
2

0,F
. h6−n+2s|v|23+s,T ′ .

Therefore, (3.9) also holds for vertices ai ∈ ∂Ω. It is noticed that the same analysis can be

applied on |∂φh(ai)/∂xj | and |∂2φh(ai)/∂x
2
j | so that we have the following estimates:

∣
∣
∣
∣

∂φh(ai)

∂xj

∣
∣
∣
∣

2

. h4−n+2s
∑

T ′∈Th(ai)

|v|23+s,T ′ , i = 1, 2, . . . , 2n, j = 1, 2, . . . , n, (3.10)

∣
∣
∣
∣
∣

∂2φh(ai)

∂x2
j

∣
∣
∣
∣
∣

2

. h2−n+2s
∑

T ′∈Th(ai)

|v|23+s,T ′ , i = 1, 2, . . . , 2n, j = 1, 2, . . . , n. (3.11)

Combining (3.8) with (3.9)-(3.11), and summing over T ∈ Th, for 0 ≤ m ≤ 3 we have

h2m|φh|
2
m,h . h6+2s|v|23+s,Ω. (3.12)

The result (3.3) follows from (3.12), (3.4), and the triangle inequality. �

3.2. Conforming relatives

Introduced by Brenner in [4], the conforming relative of a nonconforming finite element

is verified to be capable of reducing the regularity requirements in the convergence analysis

(e.g. [25]). Let us now consider a family of H3 conforming elements on n dimensional rectangle

meshes. For any integer k ≥ 0, define the set of degrees of freedom of an Hk+1 n-rectangle

finite element as follows:

N k
T (v) =

{
∂αv

∂xα
(ai) : 0 ≤ αj ≤ k, j = 1, 2, . . . , n, i = 1, 2, . . . , 2n

}

, (3.13)

where ai, 1 ≤ i ≤ 2n are vertices of the n-rectangle T . The corresponding shape function

space of N k
T on T ∈ Th is therefore Q2k+1(T ). Next we let V k

h , V k
h0 be the global finite element

space on the domain Ω. By regarding N k
T as a tensor product of n set of degree of freedoms of

(2k+1)-th order Hermitian interpolation in one dimension, it can be shown that V k
h ⊂ Hk+1(Ω)

through mathematical induction on the dimensionality n.

In the following we still borrow the notations of the projection-averaging strategy described

in Theorem 3.2 to construct the interpolation operators of functions with less smoothness.

Based on the existence of the conforming relative with arbitrary regularities, we have following

conclusion.
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Lemma 3.1 (Approximation Property of H3 Conforming Relative). There exists

an H3-conforming finite n-rectangle element space V c
h ⊂ H3

0 (Ω) and an interpolation opera-

tor Πc
h : Vh0 → V c

h such that

3∑

m=0

hm−3
∣
∣vh −Πc

hvh
∣
∣
m,h

. |vh|3,h, ∀ vh ∈ Vh. (3.14)

Proof. Note that for any vh ∈ Vh0, it holds that vh|T ∈ Q5(T ). Taking k = 2 in (3.13) and

V c
h = V 2

h0, the interpolation operator Πc
h is then defined as follows. For ai being an interior

vertex node of Th and dT ∈ N 2
T being any one of the degree of freedoms, let

dT
(
Πc

hvh
)
(ai) =

1

Nh(ai)

∑

T ′∈Th(ai)

dT ′

(
vT

′

h

)
(ai). (3.15)

Here, dT ′ should be of the same type as dT and T ′ shares the same vertex node ai with T . For

ai ∈ ∂Ω being a boundary vertex, we then define dT (Π
c
hvh)(ai) = 0. The rest of the estimation

is highly similar to the proof of Theorem 3.2 and we omit here for brevity. �

Lemma 3.2 (Approximation Property of H4 Conforming Relative). Let s ∈ [0, 1] and

u ∈ H3+s(Ω) ∩ H3
0 (Ω), there exists an n-rectangle finite element space Ṽh ⊂ H4(Ω) ∩ H3

0 (Ω)

and an interpolation operator Π̃h : H3+s(Ω) ∩H3
0 (Ω) → Ṽh such that

3∑

m=0

hm−3−s
∣
∣u− Π̃hu

∣
∣
m,h

+
∣
∣Π̃hu

∣
∣
3+s,Ω

. |u|3+s,Ω. (3.16)

Proof. Firstly we consider taking k = 3 in (3.13) to obtain a finite element space V 3
h ⊂ H4(Ω)

and the set of DoFsN 3
T . In order to maintain the boundary conditions ofH3

0 (Ω), some necessary

corrections should be made such that Ṽh ⊂ V 3
h ∩ H3

0 (Ω). For u ∈ H3+s(Ω) ∩ H3
0 (Ω), define

wh ∈ L2(Ω) such that

wh|T := wT
h ∈ Q7(T ),

∫

T

whq dx =

∫

T

uq dx, ∀ q ∈ Q7(T ), T ∈ Th. (3.17)

Then the interpolation Π̃hu is given by using N 3
T and evaluated as

dT
(
Π̃hu

)
(ai) =







0, if dT (v)(ai) = 0, ∀ v ∈ H3
0 (Ω) ∩C∞(Ω),

1

Nh(ai)

∑

T ′∈Th(ai)
dT ′

(
wT ′

h

)
(ai), otherwise.

(3.18)

We note here the first condition of (3.18) only guarantees part of the DoFs to be zero on

boundary vertices. Furthermore, it ensures that all DoFs with normal derivatives less than or

equal to two, along with at least one boundary face containing the vertex ai, will vanish. This,

in turn, implies that Π̃hu belongs to the space H3
0 (Ω).

Again, we refer to the proof of Theorem 3.2 for the rest of the estimation, following which

we also have
∣
∣u− Π̃hu

∣
∣
3,Ω

. |u|3,Ω, u ∈ H3
0 (Ω),

∣
∣u− Π̃hu

∣
∣
4,Ω

. |u|4,Ω, u ∈ H4(Ω) ∩H3
0 (Ω).

This gives the stability result
∣
∣u− Π̃hu

∣
∣
3+s,Ω

. |u|3+s,Ω

for any s ∈ [0, 1] by applying the interpolation theory of the Sobolev spaces. �
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4. Estimate of Tangential-Normal Terms by n-Rectangle Interpolation

From the convergence framework of nonconforming methods [20], the weak continuities are

crucial in the analysis. In terms of the H3 problems, one needs to take care of all the second-

order derivatives, which consist of the tangential-tangential, normal-normal, and tangential-

normal components. For the Morley-type element, the tangential-tangential and normal-normal

continuities are weak, see Lemmas 2.1 and 2.2, respectively. Thanks to the C0-continuity of

Adini-type finite element space and Lemma 2.4, the tangential-tangential and normal-normal

components are strongly continuous.

The rest of the second-order terms, i.e. the tangential-normal terms, can not be tackled via

the DoFs. As a special property of the n-rectangle element, the interpolation is a crucial tool

in the convergence analysis.

4.1. Some properties by local interpolation

We establish several properties regarding the interaction between local interpolation and

partial derivatives. Let us denote the (n− 2)-dimensional sub-rectangles of T as

ℓ±,±
T,i,j =

{
x ∈ T̄ | ξi = ±1, ξj = ±1

}
, j 6= i. (4.1)

Lemma 4.1 (Properties of Morley-Type Element by Local Interpolation). Let v ∈

PM (T ). For j 6= i, it holds that

∫

F±

j

∂

∂xi

(

∂
(
Π1

T v
)

∂xi
−Π0

T

∂
(
Π1

T v
)

∂xi

)

dS = 0, (4.2)

where Π0

T and Π1

T are the local interpolations of Q1 and Adini elements, respectively (see (2.3)).

Proof. We have Π1

T v ∈ Q1(T ) · span{1, x2
k | 1 ≤ k ≤ n}.

∂(Π1

T v)

∂xi
∈ Q1(T ) +Qî

1(T ) · span
{
ξ2k − 1 | 1 ≤ k ≤ n

}
=: Q1(T ) + G̃i(T ).

Next, we observe that both ∂(Π1

T v)/∂xi − Π0

T∂(Π
1

T v)/∂xi and G̃i(T ) vanish at the vertices of

T , whence
∂
(
Π1

T v
)

∂xi
−Π0

T

∂
(
Π1

T v
)

∂xi
∈ G̃i(T ).

As a result, by denoting Gi(T ) := Qî
1(T ) · span{ξ

2
i − 1}, we have

∂

∂xi

(

∂
(
Π1

T v
)

∂xi
−Π0

T

∂
(
Π1

T v
)

∂xi

)

∈
∂

∂xi
G̃i(T ) =

∂

∂xi
Gi(T ).

Notice that Gi(T ) vanishes on (n−2)-dimensional sub-rectangles ℓ±,±
T,i,j due to the factor (ξ

2
i −1).

Then, the desired result (4.2) can be obtained by integrating along the xi direction. �

Lemma 4.2 (Properties of Adini-Type Element by Local Interpolation). Let v ∈

PA(T ). For j 6= i, it holds that
∫

F±

j

∂

∂xi

(
∂v

∂xi
−Πei

T

∂v

∂xi

)

dS = 0, (4.3)

where Πei

T are the local interpolation of the partial Adini element (see (2.3)).
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Proof. For any v ∈ PA(T ) = Q1(T ) · span{1, x2
k, x

4
k | 1 ≤ k ≤ n}, we have

∂v

∂xi
∈ Qî

1(T ) · span
{
1, x2

k, x
4
k

∣
∣ 1 ≤ k ≤ n

}
+Q1(T ) · span

{
xi, x

3
i

}

= Q1(T ) · span
{
1, ξ2i

}
+Qî

1(T ) · span
{(

ξ2k − 1
)
,
(
ξ2t − 1

)2 ∣
∣ k 6= i, 1 ≤ t ≤ n

}

:= Q1(T ) · span
{
1, ξ2i

}
+Wi(T ).

Next, we see that for any w ∈ Wi(T ), w and ∂w/∂xi vanish at the vertices of T , which exactly

correspond to the DoFs of n-rectangle partial Adini element. Therefore,

∂v

∂xi
−Πei

T

∂v

∂xi
∈ Wi(T ).

Now, let αk, βt ∈ R and qk, rt ∈ Qî
1(T ) such that

∂v

∂xi
−Πei

T

∂v

∂xi
=
∑

k 6=i

αkqk
(
ξ2k − 1

)
+

n∑

t=1

βtrt
(
ξ2k − 1

)2
.

Then, we obtain
∫

F±

j

∂

∂xi

(
∂v

∂xi
−Πei

T

∂v

∂xi

)

dS =

∫

F±

j

∂

∂xi

(
βiri

(
ξ2i − 1

)2)
dS = 0.

This completes the proof. �

4.2. Estimate of tangential-normal terms: Exchange of sub-rectangles

We use a new technique called exchange of sub-rectangles to estimate the tangential-normal

terms.

Lemma 4.3 (Estimate of Tangential-Norm Terms). Let φ ∈ H1(Ω) be a piecewise poly-

nomial defined on Th, Vh0 be the finite element space of the n-rectangle Morley-type element or

the n-rectangle Adini-type element. For j 6= i, it holds that
∣
∣
∣
∣

∑

T∈Th

∫

∂T

φ
∂2vh

∂xi∂xj
νi dS

∣
∣
∣
∣
≤ Ch|φ|1,Ω|vh|3,h. (4.4)

Proof. For the sake of simplicity of the exposition, we first show (4.4) for the Adini-type

element, then sketch the proof for the Morly-type element.

Part I: Proof for Adini-type element. It is readily seen that νi|F±

T,i
= ±1 and vanishes

on other (n− 1)-dimensional faces of T . Then, using integration by parts on F±
T,i, we have

∑

T∈Th

∫

∂T

φ
∂2vh

∂xi∂xj
νi dS

=
∑

T∈Th

∫

F+

T,i
+F−

T,i

φ
∂2vh

∂xi∂xj
νi dS

=
∑

T∈Th

∫

F+

T,i
−F−

T,i

φ
∂2vh

∂xi∂xj
dS

=
∑

T∈Th

∫

∂F+

T,i
−∂F−

T,i

φ
∂vh
∂xi

νj dℓ−
∑

T∈Th

∫

F+

T,i
−F−

T,i

∂φ

∂xj

∂vh
∂xi

dS

:= I1 + I2. (4.5)
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Here, with a little bit abuse of notation, νj represents the j-th component of the unit outer

vector which is normal to ∂F±
T,i and parallel to FT,i.

Analysis of I2. Recall that Πc
h is the interpolation operator of the conforming relative

defined in Lemma 3.1. Notice that the inverse inequality can be applied on φ and that ∂φ/∂xj

is actually continuous across the surfaces F±
T,i due to the C0-continuity of φ. Therefore, using

the trace theorem, the estimate of Πc
h and the interpolation error (3.14) gives the estimate

|I2| =

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,i
−F−

T,i

∂φ

∂xj

∂

∂xi

(
vh −Πc

hvh
)
dS

∣
∣
∣
∣
∣

.
∑

T∈Th

|φ|1,∂T

∥
∥
∥
∥

∂

∂xi

(
vh −Πc

hvh
)
∥
∥
∥
∥
0,∂T

.
∑

T∈Th

hT |φ|1,T |vh|3,T . h|φ|1,Ω|vh|3,h. (4.6)

Analysis of I1. Note that Πei

h ∂vh/∂xi ∈ H1
0 (Ω). Hence, the following identity holds:

I1 =
∑

T∈Th

∫

∂F+

T,i
−∂F−

T,i

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

νj dℓ.

Rearranging the integrals over the edges and using the integration by parts, we find

I1 =
∑

T∈Th

(
∫

ℓ+,+

T,i,j
−ℓ+,−

T,i,j

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dℓ−

∫

ℓ−,+

T,i,j
−ℓ−,−

T,i,j

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dℓ

)

=
∑

T∈Th

(
∫

ℓ+,+

T,i,j
−ℓ−,+

T,i,j

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dℓ−

∫

ℓ+,−

T,i,j
−ℓ−,−

T,i,j

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dℓ

)

=
∑

T∈Th

∫

∂F+

T,j
−∂F−

T,j

φ

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

νi dℓ

=
∑

T∈Th

∫

F+

T,j
−F−

T,j

∂φ

∂xi

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dS

︸ ︷︷ ︸

I11

+
∑

T∈Th

∫

F+

T,j
−F−

T,j

φ
∂

∂xi

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dS

︸ ︷︷ ︸

I12

.

Here, the second equality applies a new trick called exchange of sub-rectangles (see Fig. 4.1).

Fig. 4.1. Exchange of sub-rectangles.
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Again, the C0-continuity of ∂φ/∂xi across the faces F±
T,j provides

|I11| =

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,j
−F−

T,j

∂φ

∂xi

∂

∂xi

(
vh −Πc

hvh
)
dS

∣
∣
∣
∣
∣
. h|φ|1,Ω|vh|3,h. (4.7)

Now let P 0
F : L2(F ) → P0(F ) be the orthogonal projection. Thanks to Lemma 4.2, we

obtain

|I12| =

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,j
−F−

T,j

φ
∂

∂xi

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dS

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,j
−F−

T,j

(
φ− P 0

Fφ
) ∂

∂xi

(
∂vh
∂xi

−Πei

h

∂vh
∂xi

)

dS

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,j
−F−

T,j

(
φ− P 0

Fφ
) ∂2

∂x2
i

(
vh −Πc

hvh
)
dS

∣
∣
∣
∣
∣
. h|φ|1,Ω|vh|3,h. (4.8)

Combining (4.6)-(4.8), we finish the proof for the Adini-type element.

Part II: Sketch of the proof for Morley-type element. We recall the special property

of Morley-type element (2.6), and consider the fact that the basis functions r±k defined in (2.5)

depend only on the single variable xk. Then,

∑

T∈Th

∫

∂T

φ
∂2vh

∂xi∂xj
νi dS

=
∑

T∈Th

∫

∂T

φ
∂2
(
Π1

hvh
)

∂xi∂xj
νi dS

=
∑

T∈Th

∫

∂F+

T,i
−∂F−

T,i

φ
∂
(
Π1

hvh
)

∂xi
νj dℓ−

∑

T∈Th

∫

F+

T,i
−F−

T,i

∂φ

∂xj

∂
(
Π1

hvh
)

∂xi
dS

:= Ĩ1 + Ĩ2. (4.9)

The estimate of Ĩ2 is then similar to (4.6), by noticing that Π1

T (local projection of Adini-type

element) preserves P3(T ), namely,

|Ĩ2| ≤

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,i
−F−

T,i

∂φ

∂xj

∂

∂xi

(
vh −Πc

hvh
)
dS

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∑

T∈Th

∫

F+

T,i
−F−

T,i

∂φ

∂xj

∂

∂xi

(
vh −Π1

hvh
)
dS

∣
∣
∣
∣
∣

. h|φ|1,Ω|vh|3,h.

For Ĩ1, we insert a global C0 Q1-projection of ∂(Π1

hvh)/∂xi to obtain that

Ĩ1 =
∑

T∈Th

∫

∂F+

T,i
−∂F−

T,i

φ

(

∂(Π1

hvh)

∂xi
−Π0

h

∂
(
Π1

hvh
)

∂xi

)

νj dℓ.

Then the estimate follows from the similar trick (exchange of sub-rectangles) by involving

Lemma 4.1 (local projection of Morley-type element). �
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5. Convergence Analysis and Error Estimate

In this section, we will give the convergence analysis of the elements and the error estimate

for solving the sixth-order partial differential equations. Given f ∈ L2(Ω), we consider the

following triharmonic equation:






(−∆)3u = f in Ω,

u =
∂u

∂ν
=

∂2u

∂ν2
= 0 on ∂Ω,

(5.1)

where ∆ is the standard Laplacian operator. Define the bilinear form

a(w, v) =

∫

Ω

∇3w : ∇3v dx =

∫

Ω

n∑

i,j,k=1

∂3w

∂xi∂xj∂xk

∂3v

∂xi∂xj∂xk
dx, ∀w, v ∈ H3(Ω). (5.2)

Then, the weak form for the Eq. (5.1) is to find u ∈ H3
0 (Ω) such that

a(u, v) = (f, v), ∀ v ∈ H3
0 (Ω). (5.3)

Since the finite element spaces Vh are H3-nonconforming, we define a discrete bilinear form

for any w, v ∈ L2(Ω) with w|T , v|T ∈ H3(T )

ah(w, v) =
∑

T∈Th

∫

T

n∑

i,j,k=1

∂3w

∂xi∂xj∂xk

∂3v

∂xi∂xj∂xk
dx, ∀T ∈ Th. (5.4)

Corresponding to the n-rectangle Morley-type element or the n-rectangle Adini-type element,

the finite element method for (5.1) is to find uh ∈ Vh0 such that

ah(uh, vh) = (f, vh), ∀ vh ∈ Vh0. (5.5)

We are in the position to estimate the consistency error.

Theorem 5.1 (Consistency Error). Let Vh0 be the finite element space of the n-rectangle

Morley-type element or the n-rectangle Adini-type element. If u ∈ H3+s(Ω)∩H3
0 (Ω) for s ∈ [0, 1]

and f ∈ L2(Ω), then we have

|ah(u, vh)− (f, vh)| .
(
hs|u|3+s,Ω + h3‖f‖0,Ω

)
|vh|3,h, ∀ vh ∈ Vh0. (5.6)

Proof. Following the notation in Lemma 3.2, we take wh := Π̃hu ∈ Ṽh as the conforming

approximation of u. Then, the consistency error can be written as

ah(u, vh)− (f, vh) = ah
(
u− wh, vh −Πc

hvh
)
+ ah

(
wh, vh − Πc

hvh
)
−
(
f, vh −Πc

hvh
)
.

Thanks to Lemma 3.1, the first and the third term can be estimated by
∣
∣ah
(
u− wh, vh −Πc

hvh
)∣
∣ . |u− wh|3,h

∣
∣vh −Πc

hvh
∣
∣
3,h

. |u− wh|3,h|vh|3,h, (5.7)
∣
∣
(
f, vh −Πc

hvh
)∣
∣ . ‖f‖0,Ω

∥
∥vh −Πc

hvh
∥
∥
0,Ω

. h3‖f‖0,Ω|vh|3,h. (5.8)

For the middle term of the consistency error, we have

ah
(
wh, vh −Πc

hvh
)

=
∑

T∈Th

∫

T

∇3wh : ∇3
(
vh −Πc

hvh
)
dx

=
∑

T∈Th

∫

∂T

∂

∂ν

(
∇2wh

)
: ∇2

(
vh −Πc

hvh
)
dS

︸ ︷︷ ︸

:=E1

−
∑

T∈Th

∫

T

∇2(∆wh) : ∇
2
(
vh −Πc

hvh
)
dx.

︸ ︷︷ ︸

:=E2
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Using the C3-continuity of wh in Lemma 3.2 and C2-continuity of Πc
hvh in Lemma 3.1, we find

E1 =
∑

T∈Th

∫

∂T

∂

∂ν

(
∇2wh

)
: ∇2vh dS

=
∑

T∈Th

∫

∂T

∂3wh

∂ν3
∂2vh
∂ν2

dS + 2
∑

T∈Th

n−1∑

j=1

∫

∂T

∂3wh

∂ν2∂τj

∂2vh
∂ν∂τj

dS

+
∑

T∈Th

n−1∑

j=1

n−1∑

k=1

∫

∂T

∂3wh

∂ν∂τj∂τk

∂2vh
∂τj∂τk

dS := E1,νν + E1,τν + E1,ττ , (5.9)

where {τj}
n−1
j=1 is the set of unit orthogonal vectors along ∂T .

Estimate of E1. For the Morley-type element, Lemmas 2.1 and 2.2 imply that, by a stan-

dard scaling argument,

|E1,νν |+ |E1,ττ | . h|wh|4,Ω|vh|3,h.

For the Adini-type element, the C0-continuity of Vh and Lemma 2.4 imply that E1,νν=E1,ττ=0.

For the tangential-normal term, on each (n− 1)-dimensional face of T ∈ Th, we notice that

νiνj = 0 for i 6= j. It follows that ∂vh/∂xj is the tangent derivative along the faces on which

νi is not zero. Therefore,

E1,τν = 2
∑

T∈Th

n−1∑

j=1

∫

∂T

∂3wh

∂ν2∂τj

∂2vh
∂ν∂τj

dS = 2
∑

T∈Th

n∑

i=1

n∑

j=1,j 6=i

∫

∂T

∂3wh

∂x2
i ∂xj

∂2vh
∂xi∂xj

νi dS.

Then, we apply Lemma 4.3 to conclude that

|E1,τν | . h|wh|4,Ω|vh|3,h.

By using interpolation of spaces and Lemma 3.2, we have

|E1| . hs|wh|3+s,Ω|vh|3,h . hs|u|3+s,Ω|vh|3,h. (5.10)

Estimate of E2. Using the orthogonal projection P 0
T : L2(T ) → P0(T ), we have

E2 = −
∑

T∈Th

∫

T

∇
(
∇∆wh − P 0

T∇∆u
)
: ∇2

(
vh −Πc

hvh
)
dx.

Therefore, the inverse inequality and the standard approximation property of P 0
T imply

|E2| .
∑

T∈Th

h−1
T

∥
∥∇∆wh − P 0

T∇∆u
∥
∥
0,T

∣
∣vh −Πc

hvh
∣
∣
2,T

. |u− wh|3,h|vh|3,h +
∑

T∈Th

∥
∥∇∆u− P 0

T∇∆u
∥
∥
0,T

|vh|3,T

.
(
|u − wh|3,h + hs|u|3+s,Ω

)
|vh|3,h. (5.11)

Combining (5.7), (5.8), (5.10), (5.11) with the approximation property (3.16), we prove the

desired estimate. �

Based on the well-known Strang’s Lemma

|u− uh|3,h . inf
vh∈Vh0

|u− vh|3,h + sup
06=vh∈Vh0

|ah(u, vh)− (f, vh)|

|vh|3,h
,

and the interpolation theory, we finally arrive at the following convergence result.
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Theorem 5.2. Let Vh0 be the finite element space of the n-rectangle Morley-type element or

the n-rectangle Adini-type element. If u ∈ H3+s(Ω) ∩ H3
0 (Ω) for s ∈ [0, 1] solves (5.1) with

f ∈ L2(Ω), then

‖u− uh‖3,h . hs|u|3+s,Ω + h3‖f‖0,Ω. (5.12)

6. Numerical Experiments

In this section, we present several numerical results in both 2D and 3D to support the

theoretical results.

Example 6.1 (2D Smooth Solution). In the first example, we test the Adini-type H3-

nonconforming finite element by solving the following two-dimensional triharmonic equation:

(−∆)3u = f, x ∈ Ω,

where Ω = (0, 1)2. We choose the source term and boundary conditions so that the exact

solution is given by u(x, y) = cos(2πx) cos(2πy). We compute the numerical solution and

calculate its convergence order in the sense of Hk broken norm, where k = 1, 2, 3. The Table 6.1

shows the numerical results obtained on uniform n-rectangle meshes with various mesh-sizes h.

We see that the numerical solution approximates to the exact solution with a linear convergence

in the H3 semi-norm, which corresponds with our theoretical prediction. Moreover, the table

also indicates that both |u− uh|1,h and |u− uh|2,h is of the second-order.

Table 6.1: Numerical errors and observed convergence orders of Adini-type element for Example 6.1.

N ‖u− uh‖0 Order |u− uh|1,h Order |u− uh|2,h Order |u− uh|3,h Order

4 1.142e-01 - 7.092e-01 - 8.272e+00 - 1.436e+02 -

8 3.140e-02 1.86 1.822e-01 1.96 2.115e+00 1.97 6.971e+01 1.04

16 7.997e-03 1.97 4.566e-02 2.00 5.320e-01 1.99 3.455e+01 1.01

32 2.008e-03 1.99 1.142e-02 2.00 1.332e-01 2.00 1.723e+01 1.00

64 5.027e-04 2.00 2.855e-03 2.00 3.331e-02 2.00 8.612e+00 1.00

Example 6.2 (2D Singular Solution). In this example, we solve the triharmonic equation

on a two-dimensional L-shaped domain Ω = (−1, 1)2 \ [0, 1)× (−1, 0], in which the solution has

partial regularity. The exact solution is given in the polar coordinates (r, θ) as

u(r, θ) = r2.5 sin(2.5θ).

Due to the singularity at the origin, we have u ∈ H3+1/2−ǫ(Ω) for any ǫ > 0. Our method

converges with the optimal rate 1/2 in the H3 broken norm, which is shown in the Table 6.2.

Example 6.3 (3D Smooth Solution). For the last example, let us consider solving the tri-

hamonic equation on a three-dimensional domain Ω = (0, 1)3. We choose the right hand side

function and appropriate boundary conditions so that the exact solution of (5.1) is

u(x, y, z) = sin(2πx) cos(πy) cos(πz).

We solve the equation using both Adini-type and Morley-type nonconforming element and the

results are shown in Tables 6.3 and 6.4, respectively. It is observed that both the finite element
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methods have a first-order convergence to the exact solution in H3-norm. The convergence

rates in other norms do not appear to be steady on these coarse meshes, and we believe they

will eventually be steady as finer meshes are employed.

Table 6.2: Numerical errors on the L-shaped domain and observed convergence orders of Adini-type

element for Example 6.2.

N ‖u− uh‖0 Order |u− uh|1,h Order |u− uh|2,h Order |u− uh|3,h Order

2 4.031e-03 - 2.223e-02 - 2.049e-01 - 2.353e+00 -

4 1.589e-03 1.34 8.677e-03 1.36 8.988e-02 1.19 1.630e+00 0.53

8 7.368e-04 1.11 4.002e-03 1.12 3.980e-02 1.18 1.140e+00 0.52

16 3.442e-04 1.10 1.860e-03 1.11 1.776e-02 1.16 8.030e-01 0.51

32 1.603e-04 1.10 8.571e-04 1.12 7.969e-03 1.16 5.670e-01 0.50

64 7.474e-05 1.10 3.940e-04 1.12 3.594e-03 1.15 4.007e-01 0.50

Table 6.3: Numerical errors and observed convergence orders of Adini-type element for Example 6.3.

N ‖u− uh‖0 Order |u− uh|1,h Order |u− uh|2,h Order |u− uh|3,h Order

2 8.721e-02 - 9.877e-01 - 1.008e+01 - 9.809e+01 -

4 6.866e-03 3.67 1.275e-01 2.95 2.302e+00 2.13 3.741e+01 1.39

8 4.389e-04 3.97 1.702e-02 2.90 5.926e-01 1.96 1.781e+01 1.07

16 5.028e-05 3.13 2.237e-03 2.93 1.494e-01 1.99 8.785e+00 1.02

32 1.352e-05 1.89 3.181e-04 2.81 3.742e-02 2.00 4.377e+00 1.01

Table 6.4: Numerical errors and observed convergence orders of Morley-type element for Example 6.3.

N ‖u− uh‖0 Order |u− uh|1,h Order |u− uh|2,h Order |u− uh|3,h Order

2 1.210e-01 - 1.216e+00 - 1.120e+01 - 1.153e+02 -

4 9.100e-03 3.73 1.439e-01 3.08 2.473e+00 2.18 4.254e+01 1.44

8 1.100e-03 3.05 1.990e-02 2.85 6.352e-01 1.96 1.888e+01 1.17

16 1.741e-04 2.66 2.900e-03 2.78 1.583e-01 2.00 8.949e+00 1.08

32 3.678e-05 2.24 5.192e-04 2.48 3.950e-02 2.00 4.401e+00 1.02

7. Concluding Remarks

We propose two new families of nonconforming finite element for solving the sixth-order

equations. We begin by proving some basic properties of such finite elements and discussing

their approximation abilities in any dimensionality n ≥ 2. After showing the approximation

property and the stability of the interpolation operator, we provide some key lemmas to obtain

the main convergence theory for solving the sixth-order equations. By using the technique of

conforming relatives, we discover that the numerical solutions of these non-conforming finite

elements have an hs convergence order where s ∈ [0, 1], provided that the exact solution has

H3+s regularity. We then give two examples to examine our theories for the cases n = 2 and
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n = 3 respectively, and another one example to show the robustness of our method when solving

the triharmonic equation with a singular solution.

Although the new technique (i.e. exchange of sub-rectangles) presented in this paper focuses

on the sixth-order equations, we believe it has the potential to be extended to higher-order

equations. Since the proposed analysis does not rely on the local quasi-uniformity of the n-

rectangle grids, we believe that our analysis is also applicable to anisotropic problems. These

will also be the future work.
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