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Abstract

This paper presents space-time continuous and time discontinuous Galerkin schemes

for solving nonlinear time-fractional partial differential equations based on B-splines in

time and non-uniform rational B-splines (NURBS) in space within the framework of Iso-

geometric Analysis. The first approach uses the space-time continuous Petrov-Galerkin

technique for a class of nonlinear time-fractional Sobolev-type equations and the optimal

error estimates are obtained through a concise equivalence analysis. The second approach

employs a generalizable time discontinuous Galerkin scheme for the time-fractional Allen-

Cahn equation. It first transforms the equation into a time integral equation and then uses

the discontinuous Galerkin method in time and the NURBS discretization in space. The

optimal error estimates are provided for the approach. The convergence analysis under

time graded meshes is also carried out, taking into account the initial singularity of the

solution for two models. Finally, numerical examples are presented to demonstrate the

effectiveness of the proposed methods.

Mathematics subject classification: 65M12, 65M22, 65M60.
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1. Introduction

In this paper, we consider a class of nonlinear time-fractional Sobolev-type equations

(TFSEs)














ut =
C
0 D

α
t ∆xu+ g(u), (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u|∂Ω = 0, t ∈ [0, T ],

(1.1)
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and time-fractional Allen-Cahn equation (TFACE)















C
0 D

α
t u = ǫ2∆xu− f(u), (x, t) ∈ Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u|∂Ω = 0, t ∈ [0, T ],

(1.2)

where the Caputo fractional derivative operator C
aD

α
t with 0 < α < 1 on interval [a, b] ⊂ R is

defined as follows:

C
aD

α
t u(x, t) =

1

Γ(1− α)

∫ t

a

(t− s)−α ∂u(x, s)

∂s
ds, t ∈ [a, b].

Here f(u) = F
′

(u), where F (u) = (u2 − 1)2/4 is double-well potential function. In addition, Ω

is a bounded domain in R
d with d = 1, 2, 3, and

∆xu(x, t) =
∂2u

∂x21
+ · · ·+

∂2u

∂x2d
.

Caputo derivative can be regarded as 1− α fractional integral of ut(x, t), i.e.

C
aD

α
t u(x, t) = aI

1−α
t ut(x, t).

The Riemann-Liouville fractional integral operator aI
1−α
t is defined by

aI
1−α
t u(x, t) =

1

Γ(1− α)

∫ t

a

(t− s)−αu(x, s)ds, t ∈ [a, b]. (1.3)

We assume that nonlinear term g(u) satisfies the following Lipschitz condition: There is a con-

stant L1 > 0 such that

|g(u)− g(v)| ≤ L1|u− v|.

Sobolev equation is a widely used model in fluid mechanics and heat conduction prob-

lems [4,9,51]. In recent years, there has been ongoing development of effective numerical algo-

rithms for nonlinear Sobolev problem, as seen in works such as [8,14,47]. For the TFSEs (1.1),

previous studies such as [33,36,59] employed the difference method in time direction in combi-

nation with spatial finite element or finite volume element discretization to consider the linear

form. On the other hand, TFACE model is an important phase field model, with its classical

case firstly introduced by Allen and Cahn [2]. Several recent works have focused on develop-

ing effective numerical methods to solve problem (1.2), utilizing difference techniques in time

direction and introducing stable numerical schemes [19,23,32,49]. Finite difference methods in-

deed offer several advantages, including simplicity of implementation, computational efficiency,

and broad applicability. However, it is important to acknowledge that their accuracy in the

temporal direction for fractional problems may be limited, especially when dealing with singu-

larity problems. Therefore, in order to improve accuracy and better handle singular solutions,

instead of traditional finite element methods (FEM) combined with difference methods, also

called method of lines, we propose to construct time-stepping space-time methods for nonlinear

problems (1.1) and (1.2), where temporal direction is discretized by using continuous Petrov-

Galerkin (CPG) [21, 22] and discontinuous Galerkin (DG) [29] methods, with solving carried

out one by one time slice. Specially, when u is absolutely continuous with respect to t on [0, T ],
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we utilize the semigroup property of the fractional operator 0I
α
t to transform the Eq. (1.2) into

an equivalent form [10, Lemma 2.2]

{

u = u0 + ǫ20I
α
t ∆xu− 0I

α
t f(u), (x, t) ∈ Ω× (0, T ],

u|∂Ω = 0, t ∈ [0, T ].
(1.4)

So we construct numerical method for equivalent form (1.4) to obtain the numerical approxima-

tion of the solution to original equation (1.2). In some sense, we unify two models as Volterra

integro-differential equations with respect to different variables and nonlinear terms.

It is worth noting that the TFACE (1.2) satisfies the maximum bound principle [49], i.e.

|u(x, t)| ≤ M , if |u(x, 0)| ≤ M , where M = maxx∈Ω |u0(x)|. Hence, using the truncation

technique in [46], we can modify F (u) as following:

F̃ (u) =































3K2 − 1

2
u2 − 2K3u+

3K4 + 1

4
, u > K,

(u2 − 1)2

4
, −K ≤ u ≤ K,

3K2 − 1

2
u2 + 2K3u+

3K4 + 1

4
, u < −K,

(1.5)

where K = M + 1. With this modification, the nonlinear term f̃(u) = F̃ ′(u) satisfies a global

Lipschitz condition

|f̃(a)− f̃(b)| ≤ L2|a− b|,

where L2 = 3K2 − 1. Since the modified equation is equivalent to the original problem, it is

recommended to substitute f, F with f̃ , F̃ respectively, but we still denote them in their original

form. In particular, let L = max{L1, L2}.

As two time-stepping space-time methods, space-time continuous FEM adopts CPG method

in time direction while space is independent, and constructs space-time finite element space

by tensor product generation, while time discontinuous FEM applies DG method in time.

CPG requires C0-continuity of the solution at time nodes and uses inconsistent test function

and trail function spaces, which is different from DG method. Both methods have been used

successfully to solve univariate problems, such as first-order nonlinear differential equations [56],

Volterra integro-differential equations [37,57], and second-order nonlinear differential equations

[55]. Recent works have also applied DG to univariate Volterra integral equations with weakly

singular kernels [31, 54] and nonlinear fractional differential equations [10], obtaining optimal

error estimates.

On the other hand, isogeometric analysis (IGA), introduced by [20], is a powerful tool

for solving partial differential equations (PDEs). The basic idea of IGA is to use the same

basis functions that approximate both the geometry and the exact solution. NURBS, the basis

functions of IGA, can achieve arbitrary high-order continuity, which is different from traditional

FEM. IGA has been used to solve various complex interface problems, nonlinear problems,

and high-order PDEs, such as parabolic evolution equations [27], time-fractional PDEs [17],

the phase field model involving manifolds and high-dimensional geometries [13, 16, 52], and

the benchmark lid-driven cavity problem for higher Reynolds numbers [48]. So in this work,

NURBS will be used for spatial direction discretization to handle more complex geometries.

Space-time continuous and time discontinuous FEM have proven to be highly effective in

solving time dependent problems. These methods have been extensively used to solve problems
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involving integer operators [3, 15, 25, 26, 30]. Recent studies have explored the application of

space-time continuous and time discontinuous FEM to fractional problems. Mustapha et al. [41]

used time discontinuous FEM to study parabolic integro-differential equations and fractional

diffusion problems [38,40]. Bu et al. [6] investigated distributed-order time-fractional reaction-

diffusion equations and multi-term time-space fractional diffusion equations [7] using space-time

continuous FEM. Meanwhile, Zheng et al. [60] presented a time discontinuous FEM for frac-

tional diffusion-wave equations and established convergence rates in L2 and L∞ norms. How-

ever, to the best of our knowledge, the majority of numerical studies on time-stepping space-

time Galerkin methods for time-fractional PDEs have only been applicable to a small number

of linear models and limited to low-dimensional or regular spatial geometries, which is far from

enough for addressing rich time-fractional problems. Therefore, we propose novel space-time

Galerkin methods for nonlinear time-fractional models, which are the first space-time continu-

ous and time discontinuous Galerkin schemes proposed for nonlinear TFSEs and TFACE. We

transform these two models as corresponding equivalent Volterra integro-differential equations.

Our intention is to emphasize that the CPG or DG methods proposed in this paper can be em-

ployed to solve any equation with the same Volterra-type structure. Actually, there is indeed

a connection between these two methods proposed in this paper. For instance, the space-time

continuous Galerkin method can, in a certain sense, be described using the time discontinuous

Galerkin framework, which can be observed through auxiliary problem (3.8) provided in the

subsequent section. This can be observed through the selection of the projection operator,

where we specifically choose the classical L2 projection that does not involve any information

related to time nodes. Besides, the proposed methods exhibit optimal convergence rates and are

effective in overcoming the initial singularity of the solution. They are suitable for a wider range

of spatial geometries, and can be extended to other nonlinear equations. The contributions of

this work are as follows:

• This study proposes a space-time continuous Galerkin method that uses CPG based on

B-splines in time and NURBS in space to solve a class of nonlinear TFSEs (1.1). Using

a more concise indirect equivalence analysis, the optimal error estimate is provided in the

sense of H1([0, T ];L2(Ω)) norm.

• Additionally, a time discontinuous Galerkin method is proposed for solving TFACE (1.2)

by utilizing DG method in time and NURBS in space for equivalent form (1.4). The

optimal error estimate is provided in the L2([0, T ];L2(Ω)) norm. This approach is highly

versatile and can be applied to other nonlinear time-fractional models.

• Solutions with initial singularities are considered, and the convergence rates of space-time

continuous and time discontinuous Galerkin methods on a time graded mesh are provided.

• Several numerical examples involving high-dimensional complex geometries support the

effectiveness and high accuracy of the algorithm.

For the original form (1.2) of TFACE, it can also be solved using the CPG method in time,

see [39]. The Petrov-Galerkin method is employed, where the polynomial degree of the test

function space is one less than that of the trial function space. Therefore, continuity conditions

need to be applied to compensate for the missing constraints. However, for the equivalent form

(1.4), the same trial and test spaces are utilized in time. The continuous Galerkin method can

not be used in this case, because it would result in an overdetermined system of equations,

which is not efficient for solving. In fact, the fractional operator on the left-hand side of (1.2)
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tends to complicate the analysis and often leads to suboptimal error estimates. Through the

equivalent transformation, our aim is to simplify the complexity of the fractional operator,

making it more amenable to analysis and providing improved error estimates. In a addition,

time DG method is not only efficiently solve equivalent form (1.4), but provide a new approach

for solving problem (1.2).

This paper is organized as follows. Section 2 presents a brief introduction to the basic frame-

work of IGA, and introduces some function spaces and useful projection operators. Section 3

solves a class of nonlinear TFSEs using space-time continuous Galerkin scheme, while Section 4

uses time discontinuous Galerkin scheme to solve TFACE. Section 5 presents numerical exam-

ples with various geometries to support the theoretical analysis. Section 6 contains concluding

summaries. Steps of the algorithm are given in the Appendix A.

2. Preliminaries

In this section, we provide a brief introduction to IGA, B-splines, and NURBS, along with

some function spaces and projection operators.

2.1. The frame of IGA

IGA uses NURBS to solve PDEs starting from approximating geometry. The physical

domain Ω can be irregular and be expressed by a parameter transformation F : Ω̂ → Ω, where

Ω̂ is a regular parametric domain. Next, we provide a brief introduction to the frame of IGA.

For more details see [5]. Firstly, let Ξ = {ξ1, ξ2, · · · , ξn+p+1} be a knot vector for a given

direction in the parametric domain, where 0 = ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1 = 1. Corresponding

to Ξ, a non-repeating knot vector {ζ1, ζ2, · · · , ζr} is obtained. Note that these knots may have

duplicates, but the number of repetitions cannot exceed p + 1. Then, the B-splines can be

obtained by the Cox-de Boor formula [11, 20, 42]

Bi,0(x̂) =

{

1, if ξi ≤ x̂ < ξi+1,

0, otherwise,
(2.1)

Bi,p(x̂) =
x̂− ξi
ξi+p − ξi

Bi,p−1(x̂) +
ξi+p+1 − x̂

ξi+p+1 − ξi+1
Bi+1,p−1(x̂), (2.2)

where x̂ is the variable in the parametric domain, and 1/0 ≡ 0. B-spline basis functions with

number n can be generated using (2.1) and (2.2). The knot vector is considered open if the

first and last knots appear p+1 times each, resulting in the first and last basis functions having

a value of 1 at their respective knots. Fig. 2.1 shows the B-splines with different degrees, which

are also called Bernstein polynomials. In Fig. 2.1(a), the knot vector used to generate the

basis of degree 1 is Ξ = {0, 0, 1, 1}. Knot vectors Ξ = {0, 0, 0, 1, 1, 1}, Ξ = {0, 0, 0, 0, 1, 1, 1, 1},

and Ξ = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1} are used to generate quadratic, cubic, and quartic splines,

respectively, as shown in Figs. 2.1(b)-2.1(d). It is evident that each basis function is nonnegative,

implying that the mass matrix is positive definite [11]. Moreover, B-spline basis functions offer

adjustable smoothness, which makes it flexible to deal with various complex problems.

The B-splines can be extended to high-dimensional cases by tensor product. In each para-

metric direction, the knot vector is defined as Ξa = {ξa1 , ξ
a
2 , · · · , ξ

a
na+pa+1}, where pa is the
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(a) p = 1 (b) p = 2

(c) p = 3 (d) p = 4

Fig. 2.1. B-spline basis functions with different degrees.

degree of splines in each parameter direction. Then, we have

Bi(x̂) :=

d
∏

a=1

Ba
ia,pa

(x̂a), i ∈ I,

where the index set

I := {i = (i1, i2, · · · , id) : 1 ≤ ia ≤ na, a = 1, 2, . . . , d},

and Ba
ia,pa

(x̂a) is a one-dimensional spline function. Additionally, we denote the mesh size

of Mh by ĥ := max{ĥM : M ∈ Mh}, where mesh

Mh :=
{

M := ⊗d
a=1

(

ζaja , ζ
a
ja+1

)

, 1 ≤ ja ≤ ra − 1
}

,

and ĥM is the diameter ofM . NURBS basis functions in the parametric domain can be regarded

as the weighted average of B-spline basis functions

Ni(x̂) =
wiBi(x̂)

w
, wi ∈ R, i ∈ I,

where

w =
∑

i∈I

wiBi(x̂).
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So we can use the obtained NURBS basis functions to approximate the parameter transforma-

tion F, that is, there is a set of control points Ci ∈ R
d, i ∈ I such that

F(x̂) =
∑

i∈I

CiNi(x̂).

Further, the NURBS basis functions in the physical domain Ω is given by {Ni ◦ F
−1}i∈I and

corresponding NURBS space is

Vh = span
{

Ni ◦ F
−1
}

i∈I
.

Let Hm(Ω) be the standard Sobolev space Wm,2(Ω) with norm ‖ · ‖Hm(Ω) and semi-norm

| · |Hm(Ω) [1]. We set pa = p for a = 1, 2, . . . , d. Lastly, a common global approximation theory

about NURBS space will be given to end this subsection. We can refer to [5, Theorem 3.2]

and [48, Proposition 3.2].

Lemma 2.1. Define projection ΠVh
: L2(Ω) → Vh. Given integers l and m such that 0 ≤ l ≤

m ≤ p+ 1 and m > 1, if l ≤ β and u ∈ L2(Ω) ∩Hm(Ω), we have

|u−ΠVh
u|Hl(Ω) ≤ Cshapeh

m−l‖u‖Hm(Ω),

where β is a nonnegative smoothness index representing continuous differentiability of NURBS,

the mesh size h of physical domain is defined by

h := max
{

‖∇F‖L∞(M)ĥM : M ∈ Mh

}

,

and Cshape is a dimensionless positive constant dependent on Ω and F.

Remark 2.1. In fact, β is related to the repeatability of nodes of knot vector and the degrees

of B-splines in each spatial parameter direction. In this paper, β is always appropriate in

numerical examples.

2.2. Approximation spaces

Here we will construct some discrete function spaces used to approximate the solutions of the

Eqs. (1.1) and (1.4). Firstly, in time direction, make the division 0 = t0 < t1 < · · · < tN = T .

For 1 ≤ n ≤ N , select following knot vector on subinterval In = [tn−1, tn]:

Ξn = {tn−1, · · · , tn−1, · · · , tn, · · · , tn},

where both tn−1 and tn are repeated rn + 1 times. According to Section 2.1, Ξn can generate

rn+1 B-spline functions with degree rn, such as Fig. 2.1, so that the polynomial space Brn(In)

can be spanned.

Next, we construct some tensor product spaces for solving (1.1) and (1.4). Let

Qn := In × Ω, V0h := Vh ∩H1
0 (Ω), Srn,p

0 (Qn) := Brn(In)⊗ V0h,

where Sobolev space H1
0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}. Considering that the basis functions in

the global sense are always required, we need to define the discrete space-time approximation

spaces by

Sr,p
0 (Q) :=

{

u ∈ H1
(

[0, T ];L2(Ω)
)

: u|Qn
∈ Srn,p

0 (Qn), 1 ≤ n ≤ N
}

Sr−1,p
0 (Q) :=

{

u ∈ L2
(

[0, T ];L2(Ω)
)

: u|Qn
∈ Srn−1,p

0 (Qn), 1 ≤ n ≤ N
}

,
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where r = (r1, r2, · · · , rn) and Q := [0, T ]× Ω. In every Srn,p
0 (Qn), we denote by In the basis

function sequence index, so we can find an finite element approximation for the solution of (1.1)

or (1.4), i.e. on every Qn, there is a real sequence {ci}i∈In such that

U(x, t) =
∑

i∈In

ciRi(x, t),

where {Ri}i∈In are basis of Srn,p
0 (Qn). We especially point out that the definition of Sr,p

0 (Q)

is different when time discontinuous Galerkin scheme is constructed for (1.4), i.e. in the global

sense, u ∈ L2([0, T ];L2(Ω)), but we still use the original notation.

2.3. Projection operators

Now we introduce the Ritz projection in space direction and the L2 orthogonal projection

in time direction to end this section. Let (· , ·) represent the L2 inner product on Ω, that is

(u, v) =

∫

Ω

uvdx.

Below is an approximation property of Ritz projection Rh, which is a special case of [50,

Lemma 1.1].

Lemma 2.2. For ω ∈ H1
0 (Ω), let Rh : H1

0 (Ω) → V0h be the Ritz projector defined by

(∇xRhω,∇xvh) = (∇xω,∇xvh)

for all vh ∈ V0h, where

∇xω =

(

∂ω

∂x1
, · · · ,

∂ω

∂xd

)T

.

If ω ∈ H1
0 (Ω) ∩H

κ̃+1(Ω) (κ̃ > 0), it holds that

‖ω −Rhω‖L2(Ω) ≤ CΩ,Fh
s̃+1‖ω‖Hs̃+1(Ω),

where 0 ≤ s̃ ≤ min{κ̃, p} and CΩ,F is a positive constant dependent on Ω and F.

Next, for χ|In ∈ L2(In), we define the temporal L2 orthogonal projection Prn−1 : L2(In) →

Brn−1(In) by
∫

In

(

Prn−1χ− χ
)

µdt = 0 (2.3)

for all µ ∈ Brn−1(In), where rn > 1. Further, the piecewise L2 projection Lr−1 is defined by

Lr−1χ|In = Prn−1χ.

Then, from [45], we can get following approximation result: If χ|In ∈ Hκn+1(In) and κn > 0,

then
∥

∥χt − Lr−1χt

∥

∥

2

L2([0,T ])
≤ C

N
∑

n=1

τ2snn ‖χt‖
2
Hsn (In)

, (2.4)

where τn = tn−tn−1, 0 ≤ sn ≤ min{κn, rn} and positive constant C is independent of χ and τn.

Similarly, we can also define Prn (rn > 0) and obtain the following approximation property:

‖χ− Lrχ‖2L2([0,T ]) ≤ C

N
∑

n=1

τ2sn+2
n ‖χ‖2Hsn+1(In)

, (2.5)

where 0 ≤ sn ≤ min{κn, rn} and Lrχ|In = Prnχ.
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3. Space-Time Continuous Galerkin Scheme

In this part, a space-time continuous Galerkin scheme is proposed, using CPG technique in

time and NURBS in space for (1.1). Furthermore, we carry out the well-posedness analysis and

error estimation. Before that, we introduce a space-time Sobolev space

Hq
(

In;H
m(Ω)

)

=

{

u :

q
∑

i=0

∫

In

∥

∥

∥

∥

di

dti
u(·, t)

∥

∥

∥

∥

2

Hm(Ω)

dt <∞

}

,

and define norm on Hq(In;H
m(Ω)) by

‖u‖Hq(In;Hm(Ω)) =

(

q
∑

i=0

∫

In

∥

∥

∥

∥

di

dti
u(·, t)

∥

∥

∥

∥

2

Hm(Ω)

dt

)
1
2

.

The weak form of (1.1) reads: Find u ∈ H1([0, T ];H1
0 (Ω)) such that











∫ T

0

(ut, φ)dt+

∫ T

0

(

C
0 D

α
t ∇xu,∇xφ

)

dt =

∫ T

0

(

g(u), φ
)

dt,

u(x, 0) = u0

for all φ ∈ L2([0, T ];H1
0 (Ω)). Then we give fully discrete scheme: Find U ∈ Sr,p

0 (Q) such that














N
∑

n=1

∫

In

(Ut, φ)dt+

N
∑

n=1

∫

In

(

C
0 D

α
t ∇xU,∇xφ

)

dt =

N
∑

n=1

∫

In

(

g(U), φ
)

dt,

U(x, 0) = Rhu0

(3.1)

for all φ ∈ Sr−1,p
0 (Q). Recalling the definition of Sr−1,p

0 (Q), scheme (3.1) can be rewritten as

a time stepping scheme [21, 22], that is, find U |Qn
∈ Srn,p

0 (Qn) such that







∫

In

(Ut, φ)dt+

∫

In

(

C
0 D

α
t ∇xU,∇xφ

)

dt =

∫

In

(

g(U), φ
)

dt,

U |Qn
(x, tn−1) = U |Qn−1

(x, tn−1)

(3.2)

for all φ ∈ Srn−1,p
0 (Qn) and 1 ≤ n ≤ N , where U(x, 0) = Rhu0. Here we require rn > 1 for

1 ≤ n ≤ N . Further details regarding the solution of scheme (3.1) have been provided in the

Appendix A, where we need to solve a nonlinear system with rn × dim(V0h) degrees of freedom

at each time slice.

3.1. Unique solvability

To prove the unique solvability of scheme (3.1), we need several lemmas.

Lemma 3.1 ([54, Lemma 2.1]). If α < 1 and q ∈ L2(In), then

∫

In

(
∫ t

tn−1

(t− s)−αq(s)ds

)2

dt ≤
τ
2(1−α)
n

(1− α)2

∫

In

q2(s)ds, 1 ≤ n ≤ N. (3.3)

Specially, if q ∈ L2([0, tn]), we have

∫ tn

0

(
∫ t

0

(t− s)−αq(s)ds

)2

dt ≤
t1−α
n

1− α

∫ tn

0

(tn − t)−α

∫ t

0

q2(s)dsdt, 1 ≤ n ≤ N.
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Lemma 3.2. Let w ∈ H1(In), if w(tn−1) = 0, then

‖w‖L2(In) ≤ τn|w|H1(In).

Proof. This conclusion follows from taking q(s) = w
′

(s) and α = 0 in (3.3). �

The following property indicates that the weakly singular kernel (t− s)−α is positive semi-

definite [34, 35].

Lemma 3.3. If aI
1−α
t is defined by (1.3), then

∫ t

a

q
(

aI
1−α
s q

)

ds > 0

for q ∈ L2([a, b]) and t ∈ [a, b].

Next, we will show the well-posedness of scheme (3.1) by the above lemmas.

Theorem 3.1. When

Lτn < 1, 1 ≤ n ≤ N,

the scheme (3.1) is unique solvable.

Proof. Firstly, construct mapping T1 : Sr1,p
0 (Q1) → Sr1,p

0 (Q1) so that U = T1Ũ ∈ Sr1,p
0 (Q1)

is the solution of following auxiliary problem for a fixed Ũ ∈ Sr1,p
0 (Q1):







∫

I1

(Ut, φ)dt +

∫

I1

(

0I
1−α
t ∇xUt,∇xφ

)

dt =

∫

I1

(

g(Ũ), φ
)

dt,

U(x, 0) = Rhu0

(3.4)

for all φ ∈ Sr1−1,p
0 (Q1). The problem (3.4) is a linear system, and it is unique solvable.

Therefore, T1 is well-defined. Next we show that T1 is a contraction. For Ũ1, Ũ2 ∈ Sr1,p
0 (Q1),

setting U1 = T1Ũ1, U2 = T1Ũ2,W = U1 − U2 and W̃ = Ũ1 − Ũ2, from (3.4), we have
∫

I1

(Wt, φ)dt+

∫

I1

(

0I
1−α
t ∇xWt,∇xφ

)

dt =

∫

I1

((

g(Ũ1)− g(Ũ2)
)

, φ
)

dt

for all φ ∈ Sr1−1,p
0 (Q1), together with W (x, 0) = 0. Taking φ = Wt, then using the Cauchy-

Schwarz inequality and Lemma 3.3, we can get

‖Wt‖
2
L2(I1;L2(Ω)) ≤ L‖W̃‖L2(I1;L2(Ω))‖Wt‖L2(I1;L2(Ω)),

which yields that ‖Wt‖L2(I1;L2(Ω)) ≤ L‖W̃‖L2(I1;L2(Ω)). From Lemma 3.2, one obtains

∥

∥T1Ũ1 − T1Ũ2

∥

∥

L2(I1;L2(Ω))
≤ Lτ1

∥

∥Ũ1 − Ũ2

∥

∥

L2(I1;L2(Ω))
,

so that T1 is a contraction when Lτ1 < 1. Hence, we can obtain the uniqueness solvability of

scheme (3.1) on Q1 from Banach’s fixed point theorem.

When n > 2, suppose that the solution of (3.1) is unique solvable on Q1, · · · , Qn−1 and

define Ũ |Qm
= U |Qm

, m = 1, . . . , n − 1. For Ũ |Qn
∈ Srn,p

0 (Qn), let U = TnŨ ∈ Srn,p
0 (Qn) be

the solution of following problem:







∫

In

(Ut, φ)dt+

∫

In

(

0I
1−α
t ∇xUt,∇xφ

)

dt =

∫

In

(

g(Ũ), φ
)

dt,

U |Qn
(x, tn−1) = U |Qn−1

(x, tn−1)

(3.5)
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for all φ ∈ Srn−1,p
0 (Qn). We will prove that Tn is a contraction. For Ũ1, Ũ2 ∈ Srn,p

0 (Qn), set

U1 = TnŨ1, U2 = TnŨ2,W = U1 − U2 and W̃ = Ũ1 − Ũ2. Noting that W = 0 on Q1, · · · , Qn−1

and from (3.5), one has

∫

In

(Wt, φ)dt+

∫

In

(

tn−1
I1−α
t ∇xWt,∇xφ

)

dt =

∫

In

((

g(Ũ1)− g(Ũ2)
)

, φ
)

dt

for all φ ∈ Srn−1,p
0 (Qn), together with W (x, tn−1) = 0. Let φ = Wt. By the Cauchy-Schwarz

inequality and Lemma 3.3, we have

‖Wt‖
2
L2(In;L2(Ω)) ≤ L‖W̃‖L2(In;L2(Ω))‖Wt‖L2(In;L2(Ω)).

Lemma 3.2 leads to

∥

∥TnŨ1 − TnŨ2

∥

∥

L2(In;L2(Ω))
≤ Lτn

∥

∥Ũ1 − Ũ2

∥

∥

L2(In;L2(Ω))
,

which indicates that Tn is a contraction when Lτn < 1 so that scheme (3.1) is unique solvable.

The proof is completed. �

3.2. Error analysis

In this subsection, we give the error estimate of scheme (3.1) in the sense of norm

‖ · ‖H1([0,T ];L2(Ω)). Here and after, unless otherwise specified, C denote generic constants that

are independent of u, ut, τn, h, In, N and can take different values in different places. For sim-

plicity, denote norm ‖ · ‖Hm(Ω) by ‖ · ‖m, where ‖ · ‖0 represents ‖ · ‖L2(Ω). Firstly, there is

a Grönwall inequality.

Lemma 3.4 ([44, Lemma 1.4.2]). Let {an}
N
n=1 and {bn}

N
n=1 be nonnegative sequences and

{bn}
N
n=1 is monotonically increasing, λ > 0. If

an ≤ λ

n−1
∑

j=1

τjaj + bn, 1 ≤ n ≤ N,

then

an ≤ eλtn−1bn, 1 ≤ n ≤ N.

The operators Rh and Prn−1 in Section 2.3 can be extended to multivariable case on ev-

ery Qn, that is, Rh : L2(In;H
1
0 (Ω)) → L2(In)⊗ V0h defined by

∫

In

(

∇xRhv −∇xv,∇xφ̂
)

dt = 0, ∀ φ̂ ∈ L2(In)⊗ V0h,

and Prn−1 : L2(In;L
2(Ω)) → Brn−1(In)⊗ L2(Ω) defined by

∫

In

(

Prn−1v − v, φ̃
)

dt = 0, ∀ φ̃ ∈ Brn−1(In)⊗ L2(Ω),

but they still maintain their approximation characteristics in space or time direction. Specif-

ically, for u0, Rh represents the standard space Ritz projection and we assume that u0 has

sufficiently high spatial regularity. Let us construct the local space-time projection operator
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Prn−1Rh. Following [3, Lemma 2.1], we know that if v|Qn
∈ H1(In;L

2(Ω)) ∩ L2(In;H
2(Ω)),

then

∇xP
rn−1v = Prn−1∇xv, Prn−1Rhv = RhP

rn−1v. (3.6)

To give the global estimate, a piecewise space-time projection Ir−1v is defined by

Ir−1v|Qn
= Prn−1Rhv,

where Ir−1v ∈ Sr−1,p
0 (Q). Subsequently, v is defined as the derivative of u with respect to

t, and numerical solution V is the approximation of v in space Sr−1,p
0 (Q). Furthermore, it is

assumed that v(·, t) ∈ H1
0 (Ω) for every t. The approximation result for Ir−1 is presented below.

Lemma 3.5. For u|Qn
∈ Hκn+1(In;L

2(Ω)) ∩H1(In;H
1
0 (Ω) ∩H

κ̃+1(Ω)), we have

‖v − Ir−1v‖2L2([0,T ];L2(Ω)) ≤ C
N
∑

n=1

(

τ2snn ‖v‖2Hsn (In;L2(Ω)) + h2s̃+2‖v‖2L2(In;Hs̃+1(Ω))

)

,

where 0 ≤ sn ≤ min{κn, rn} and 0 ≤ s̃ ≤ min{κ̃, p}.

Proof. Make the following split:

∥

∥v − Prn−1Rhv
∥

∥

L2(In;L2(Ω))

=
∥

∥Prn−1(v −Rhv)− (v −Rhv) + v − Prn−1v + v −Rhv
∥

∥

L2(In;L2(Ω))
.

Then using trigonometric inequality and ‖Prn−1v − v‖L2(In;L2(Ω)) ≤ ‖v‖L2(In;L2(Ω)), we have

∥

∥v − Prn−1Rhv
∥

∥

L2(In;L2(Ω))
≤ 2‖v −Rhv‖L2(In;L2(Ω)) + ‖v − Prn−1v‖L2(In;L2(Ω)). (3.7)

Combining (2.4), (3.7), Lemma 2.2 and some limiting arguments [3, Lemma 2.2], the proof

is complete. �

Before starting error analysis, we need to introduce an equivalent problem of (3.2), i.e. for

1 ≤ n ≤ N , find U |Qn
∈ Srn,p

0 (Qn) and V |Qn
∈ Srn−1,p

0 (Qn) such that











∫

In

(V, φ)dt+

∫

In

(

0I
1−α
t ∇xV,∇xφ

)

dt =

∫

In

(

g

(
∫ t

tn−1

V ds+U |Qn
(x, tn−1)

)

, φ

)

dt,

(U |Qn
)t = V |Qn

, U |Qn
(x, tn−1) = U |Qn−1

(x, tn−1)

(3.8)

for all φ ∈ Srn−1,p
0 (Qn), where U(x, 0) = Rhu0. The solution V of scheme (3.8) may be

discontinuous at time nodes while U is C0-continuous.

Lemma 3.6. When Lτn < 1 for 1 ≤ n ≤ N , the scheme (3.8) is unique solvable.

Proof. Following the proof of Theorem 3.1, it is easy to get the conclusion. �

Lemma 3.6 indicates that problem (3.8) is well-posed, so it is equivalent to original scheme.

In addition, (3.8) separates Ut and U , which is more conducive to our analysis. Therefore,

we carry out error analysis for scheme (3.8) so that the error estimate of scheme (3.1) can be

obtained.
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Theorem 3.2. Let u|Qn
∈ Hκn+1(In;H

2(Ω)) ∩H1(In;H
1
0 (Ω) ∩H

κ̃+1(Ω)) and U be the solu-

tions of (1.1) and (3.1) respectively, for sufficiently small τn, there is

‖u− U‖2H1([0,T ];L2(Ω))

≤ C

[

N
∑

n=1

(

τ2snn ‖u‖2Hsn+1(In;H2(Ω)) + h2s̃+2‖u‖2H1(In;Hs̃+1(Ω))

)

+ h2s̃+2‖u0‖
2
s̃+1

]

,

where 0 ≤ sn ≤ min{κn, rn} and 0 ≤ s̃ ≤ min{κ̃, p}.

Proof. Make the error splitting: v − V = θ + ρ, where θ = v − Ir−1v and ρ = Ir−1v − V .

Set e = u− U . Because

‖e‖2H1([0,T ];L2(Ω)) ≤ 2
(

‖θ‖2L2([0,T ];L2(Ω)) + ‖ρ‖2L2([0,T ];L2(Ω))

)

+ ‖e‖2L2([0,T ];L2(Ω)), (3.9)

it is sufficient to bound ‖ρ‖2L2([0,T ];L2(Ω)) and ‖e‖2L2([0,T ];L2(Ω)). Noting that exact solutions

(u, v) also satisfy (3.8), so we can get error equations

∫

In

(ρ+ θ, φ)dt +

∫

In

(

0I
1−α
t (∇xρ+∇xθ),∇xφ

)

dt =

∫

In

(

g(u)− g(U), φ
)

dt (3.10)

for all φ ∈ Srn−1,p
0 (Qn), and

e =

∫ t

tn−1

(v − V )ds+ e(x, tn−1), n > 1. (3.11)

For (3.10), using the definitions of Prn−1 and Rh together with properties (3.6) leads to

∫

In

(ρ, φ)dt +

∫

In

(

0I
1−α
t ∇xρ,∇xφ

)

dt

=

∫

In

(Rhv − v, φ)dt +

∫

In

(

0I
1−α
t ∇x(L

r−1v − v),∇xφ
)

dt

+

∫

In

(

g(u)− g(U), φ
)

dt. (3.12)

Taking φ = ρ in (3.12) and replacing n with j, then summing in j from 1 to n, one can obtain

‖ρ‖2L2([0,tn];L2(Ω)) ≤

∫ tn

0

(Rhv − v, ρ)dt−

∫ tn

0

(

0I
1−α
t ∆x(L

r−1v − v), ρ
)

dt

+

∫ tn

0

(

g(u)− g(U), ρ
)

dt

=: A1 +A2 +A3, (3.13)

where we use the result of Lemma 3.3

∫ tn

0

(

0I
1−α
t ∇xρ,∇xρ

)

dt > 0.

Let us estimate the right end of (3.13). By the Cauchy-Schwartz inequality and Lemma 3.1,

one has
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|A1| ≤ ‖v −Rhv‖
2
L2([0,tn];L2(Ω)) +

1

4
‖ρ‖2L2([0,tn];L2(Ω)), (3.14)

|A2| ≤
∥

∥

0I
1−α
t ∆x(v − Lr−1v)

∥

∥

2

L2([0,tn];L2(Ω))
+

1

4
‖ρ‖2L2([0,tn];L2(Ω))

≤
T 2(1−α)

Γ2(2− α)
‖∆x(v − Lr−1v)‖2L2([0,tn];L2(Ω)) +

1

4
‖ρ‖2L2([0,tn];L2(Ω)) (3.15)

|A3| ≤ L2‖e‖2L2([0,tn];L2(Ω)) +
1

4
‖ρ‖2L2([0,tn];L2(Ω)). (3.16)

Substituting (3.14)-(3.16) into (3.13) and combining trigonometric inequality, we have

‖ρ‖2L2([0,tn];L2(Ω)) ≤ C
(

‖v −Rhv‖
2
L2([0,tn];L2(Ω)) +

∥

∥∆x(v − Lr−1v)
∥

∥

2

L2([0,tn];L2(Ω))

+ ‖e‖2L2([0,tn];L2(Ω))

)

, (3.17)

‖v − V ‖2L2([0,tn];L2(Ω)) ≤ C
(

‖v −Rhv‖
2
L2([0,tn];L2(Ω)) +

∥

∥∆x(v − Lr−1v)
∥

∥

2

L2([0,tn];L2(Ω))

+ ‖θ‖2L2([0,tn];L2(Ω)) + ‖e‖2L2([0,tn];L2(Ω))

)

. (3.18)

Next, we consider (3.11) to bound ‖e‖2L2([0,T ];L2(Ω)). For convenience, we define

En := ‖v −Rhv‖
2
L2([0,tn];L2(Ω)) +

∥

∥∆x(v − Lr−1v)
∥

∥

2

L2([0,tn];L2(Ω))

+ ‖θ‖2L2([0,tn];L2(Ω)) + h2s̃+2‖u0‖
2
s̃+1.

From (3.18), there is

‖v − V ‖2L2([0,tn];L2(Ω)) ≤ C

(

En +

n
∑

j=1

‖e‖2L2(Ij ;L2(Ω))

)

.

Then by Lemma 3.1 and the Cauchy-Schwarz inequality in (3.11), one has

‖e‖2L2(In;L2(Ω)) ≤ 2τ2n‖v − V ‖2L2(In;L2(Ω)) + 2τn‖e(x, tn−1)‖
2
0

≤ 2τ2n‖v − V ‖2L2(In;L2(Ω)) + 4τn

∥

∥

∥

∥

∫ tn−1

0

(v − V )dt

∥

∥

∥

∥

2

0

+ 4τn‖u0 −Rhu0‖
2
0

≤ 2τ2n‖v − V ‖2L2(In;L2(Ω)) + 4tn−1τn‖v − V ‖2L2([0,tn−1];L2(Ω)) + 4τn‖u0 −Rhu0‖
2
0

≤ 2τ2n‖v − V ‖2L2([0,tn];L2(Ω)) + CτnEn−1 + Cτn

n−1
∑

j=1

‖e‖2L2(Ij ;L2(Ω))

≤ Cτn

n
∑

j=1

‖e‖2L2(Ij ;L2(Ω)) + CτnEn. (3.19)

When τn is small enough, dividing both ends of the inequality (3.19) by τn, we get

‖e‖2L2(In;L2(Ω))

τn
≤ C

n−1
∑

j=1

τj
‖e‖2L2(Ij ;L2(Ω))

τj
+ CEn.

Using Lemma 3.4 leads to ‖e‖2L2(In;L2(Ω)) ≤ CτnEn. Then summing up all intervals, one has

‖e‖2L2([0,T ];L2(Ω)) ≤ CEN . (3.20)
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Substituting (3.20) into (3.17) and using (2.4), (3.6), (3.9), Lemmas 2.2 and 3.5 give the fol-

lowing estimate:

‖u− U‖2H1([0,T ];L2(Ω))

≤ C

[

N
∑

n=1

(

τ2snn ‖u‖2Hsn+1(In;H2(Ω)) + h2s̃+2‖u‖2H1(In;Hs̃+1(Ω))

)

+ h2s̃+2‖u0‖
2
s̃+1

]

.

This proof is complete. �

The following conclusion is a corollary of Theorem 3.2 that will give the global error estimate,

so that the convergence rates of scheme (3.1) can be observed.

Corollary 3.1. Assume that rn ≡ r > 1 for 1 ≤ n ≤ N , and division in time direction is

quasi-uniform, that is, τ = max1≤n≤N τn satisfies τ ≤ Cτn for 1 ≤ n ≤ N , where C is a fixed

positive constant. When u ∈ Hκ+1([0, T ];H2(Ω))∩H1([0, T ];H1
0(Ω)∩H

κ̃+1(Ω)) and U are the

solutions of (1.1) and (3.1) respectively, for sufficiently small τ , we have

‖u− U‖H1([0,T ];L2(Ω)) ≤ C
[

τs‖u‖Hs+1([0,T ];H2(Ω)) + hs̃+1
(

‖u‖H1([0,T ];Hs̃+1(Ω)) + ‖u0‖s̃+1

)]

,

where κ > 0, 0 ≤ s ≤ min{κ, r} and 0 ≤ s̃ ≤ min{κ̃, p}.

3.3. Graded mesh

As we can see, the previous discussion assumes that the exact solution u has a good regu-

larity. The Eq. (1.1) can be regarded as a Volterra integro-differential equation about v = ut:

v = 0I
1−α
t ∆xv + l(v), where l(v) is nonlinear term of v. However, in most cases, the solu-

tion of this kind of equation has singularity at t = 0 because of the weakly singular kernels

(t− s)−α [43, 54]. So we assume that v satisfies the following regularity:
∥

∥

∥

∥

∂lv

∂tl

∥

∥

∥

∥

2

≤ Ctσ−l, σ > 0, l ∈ N0. (3.21)

In other words, we make the assumption about u
∥

∥

∥

∥

∂mu

∂tm

∥

∥

∥

∥

2

≤ Ctσ+1−m, m ∈ N0.

From Theorem 3.2, due to the initial singularity, there is a lower convergence rate in time

direction, although u has sufficiently high regularity outside the initial interval. In general, the

slow convergence rate caused by singularity can be overcame by using following time graded

mesh:

tk =

(

k

N

)γ

T, 0 ≤ k ≤ N. (3.22)

Under (3.22), for a fixed γ > 1, there are some useful mesh properties [37]

cγτ
γ ≤ τ1 ≤ Cγτ

γ , τk ≤ Cγτt
1− 1

γ

k , tk ≤ Cγtk−1, 2 ≤ k ≤ N, (3.23)

where cγ and Cγ are fixed positive constants.

Actually, according to [45, Theorem 3.17], we can get: If χ|In ∈ Hκn+1(In) and κn > 0,

then
∥

∥χt − Lr−1χt

∥

∥

2

L2([0,T ])
≤ C

N
∑

n=1

τ2snn |χt|
2
Hsn (In)

, (3.24)
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where 0 ≤ sn ≤ min{κn, rn}, which is a more accurate approximation result than (2.4). Then

we give the convergence rates of the scheme (3.1) on the graded mesh.

Theorem 3.3. Let u|Qn
∈ H1(In;H

1
0 (Ω)∩H

κ̃+1(Ω)) and U be the solutions of (1.1) and (3.1)

respectively. Setting rn ≡ r > 1, under mesh (3.23) and assumption (3.21), it holds that

‖u− U‖H1([0,T ];L2(Ω)) ≤ C



























τr + Cuh
s̃+1, γ >

r

σ + 1/2

τr| ln τ |
1
2 + Cuh

s̃+1, γ =
r

σ + 1/2
,

τ (σ+
1
2
)γ + Cuh

s̃+1, γ <
r

σ + 1/2
,

where Cu = ‖u‖H1([0,T ];Hs̃+1(Ω)) + ‖u0‖s̃+1 and 0 ≤ s̃ ≤ min{κ̃, p}.

Proof. Separating interval I1 from [0, T ], following from Theorem 3.2, using (3.7) and (3.24),

one has

‖u− U‖2H1([0,T ];L2(Ω)) ≤ C‖v −Rhv‖
2
L2(I1;L2(Ω))

+ C‖v − Pr1−1v‖2L2(I1;H2(Ω)) + Ch2s̃+2‖u0‖
2
s̃+1

+ C

N
∑

n=2

(

τ2rn

∫

In

∥

∥

∥

∥

∂r+1u

∂tr+1

∥

∥

∥

∥

2

2

dt+ h2s̃+2‖u‖2H1(In;Hs̃+1(Ω))

)

. (3.25)

Furthermore, combining (3.21), (3.23), and (3.25), we can get

‖u− U‖2H1([0,T ];L2(Ω)) ≤ Ch2s̃+2‖u‖2H1([0,t1];Hs̃+1(Ω)) + C‖v‖2L2(I1;H2(Ω)) + Ch2s̃+2‖u0‖
2
s̃+1

+ C

N
∑

n=2

τ2rn

∫

In

∥

∥

∥

∥

∂rv

∂tr

∥

∥

∥

∥

2

2

dt+ Ch2s̃+2‖u‖2H1([t1,T ];Hs̃+1(Ω))

≤ C

∫

I1

t2σdt+ C

N
∑

n=2

τ2rn

∫

In

t2(σ−r)dt+ CC2
uh

2s̃+2

≤ Cτ2σ+1
1 + Cτ2r

N
∑

n=2

t
2r− 2r

γ
n

∫

In

t2σ−2rdt+ CC2
uh

2s̃+2

≤ Cτ (2σ+1)γ + CC2r
γ τ2r

N
∑

n=2

∫

In

t2σ−
2r
γ dt+ CC2

uh
2s̃+2.

Then this theorem can be obtained by the discuss in [54, Theorem 3.4]. �

4. Time Discontinuous Galerkin Scheme

In this section, we will construct a time discontinuous Galerkin scheme for (1.4) so that

we can find the numerical approximation for the solution of (1.2). Time direction applies DG

method based on B-splines and space is discretized by NURBS. Firstly, we give a weak form of

problem (1.4): Find u ∈ L2([0, T ];H1
0(Ω)) such that

∫ T

0

(u, ψ)dt+ ǫ2
∫ T

0

(

0I
α
t ∇xu,∇xψ

)

dt =

∫ T

0

(

u0 − 0I
α
t f(u), ψ

)

dt
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for all ψ ∈ L2([0, T ];H1
0 (Ω)). Then the fully discrete scheme reads: Find U ∈ Sr,p

0 (Q) such that

N
∑

n=1

∫

In

(U,ψ)dt+ ǫ2
N
∑

n=1

∫

In

(

0I
α
t ∇xU,∇xψ

)

dt =

N
∑

n=1

∫

In

(

u0 − 0I
α
t f(U), ψ

)

dt (4.1)

for all ψ ∈ Sr,p
0 (Q). According to the discontinuity of space Sr,p

0 (Q) in time direction, scheme

(4.1) can be rewritten as a time-stepping scheme: Find U |Qn
∈ Srn,p

0 (Qn) such that

∫

In

(U,ψ)dt+ ǫ2
∫

In

(

0I
α
t ∇xU,∇xψ

)

dt =

∫

In

(

u0 − 0I
α
t f(U), ψ

)

dt (4.2)

for all ψ ∈ Srn,p
0 (Qn) and 1 ≤ n ≤ N . Here the requirement is rn > 0 for 1 ≤ n ≤ N . More

detailed information on how to solve scheme (4.1) can be found in the Appendix A, where we

need to solve a nonlinear system with (rn+1)×dim(V0h) degrees of freedom at each time slice.

Remark 4.1. In the time discontinuous Galerkin scheme (4.2), there is no involvement of flux

terms because we have previously transformed the time-fractional Allen-Cahn equation from its

original form into a time integral equation. By eliminating the derivative term, the need for flux

terms is avoided. For the time discontinuous Galerkin method with flux, we can refer to [41].

4.1. Unique solvability

Next, we will give the unique solvability conditions of scheme (4.1) by using the technique

in [10, Theorem 2.1].

Theorem 4.1. When
Lταn

Γ(1 + α)
< 1, 1 ≤ n ≤ N,

the scheme (4.1) is unique solvable.

Proof. When n = 1, construct mapping R1 : Sr1,p
0 (Q1) → Sr1,p

0 (Q1) and define U = R1Ũ ∈

Sr1,p
0 (Q1) as the solution of following problem for a fixed Ũ ∈ Sr1,p

0 (Q1):

∫

I1

(U,ψ)dt+ ǫ2
∫

I1

(

0I
α
t ∇xU,∇xψ

)

dt =

∫

I1

(

u0 − 0I
α
t f(Ũ), ψ

)

dt (4.3)

for all ψ ∈ Sr1,p
0 (Q1). The problem (4.3) is a linear system, and it is unique solvable, which

implies that R1 is well-defined. For showing the well-posedness of scheme (4.1) on Q1, according

to Banach’s fixed point theorem, it is sufficient to prove that R1 is a contraction. For Ũ1, Ũ2 ∈

Sr1,p
0 (Q1), let U1 = R1Ũ1, U2 = R1Ũ2,W = U1 − U2 and W̃ = Ũ1 − Ũ2. From (4.3), we have

∫

I1

(W,ψ)dt+ ǫ2
∫

I1

(

0I
α
t ∇xW,∇xψ

)

dt =

∫

I1

(

0I
α
t

(

f(Ũ2)− f(Ũ1)
)

, ψ
)

dt

for all ψ ∈ Sr1,p
0 (Q1). Taking ψ = W and using the Cauchy-Schwarz inequality, Lemmas 3.1

and 3.3, we can get

‖W‖2L2(I1;L2(Ω)) ≤ L
∥

∥

0I
α
t W̃

∥

∥

L2(I1;L2(Ω))
‖W‖L2(I1;L2(Ω))

≤
Lτα1

Γ(1 + α)
‖W̃‖L2(I1;L2(Ω))‖W‖L2(I1;L2(Ω)).
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That is,
∥

∥R1Ũ1 − R1Ũ2

∥

∥

L2(I1;L2(Ω))
≤

Lτα1
Γ(1 + α)

∥

∥Ũ1 − Ũ2

∥

∥

L2(I1;L2(Ω))
,

which indicates that R1 is a contraction under condition Lτα1 /Γ(1 + α) < 1.

When n > 2, suppose that the solutions on Q1, · · · , Qn−1 are unique solvable and define

Ũ |Qm
= U |Qm

,m = 1, . . . , n − 1. For Ũ |Qn
∈ Srn,p

0 (Qn), let U = RnŨ ∈ Srn,p
0 (Qn) be the

solution of following problem:

∫

In

(U,ψ)dt+ ǫ2
∫

In

(

0I
α
t ∇xU,∇xψ

)

dt =

∫

In

(

u0 − 0I
α
t f(Ũ), ψ

)

dt (4.4)

for all ψ ∈ Srn,p
0 (Qn). Next we will prove that Rn is a contraction so that the unique solvability

of the scheme (4.1) on Qn can be obtained. For Ũ1, Ũ2 ∈ Srn,p
0 (Qn), set U1 = RnŨ1, U2 = RnŨ2,

W = U1 − U2 and W̃ = Ũ1 − Ũ2. Because W = W̃ = 0 on Q1, · · · , Qn−1, from (4.4), we have

∫

In

(W,ψ)dt + ǫ2
∫

In

(

tn−1
Iαt ∇xW,∇xψ

)

dt =

∫

In

(

tn−1
Iαt
(

f(Ũ2)− f(Ũ1)
)

, ψ
)

dt

for all ψ ∈ Srn,p
0 (Qn). Setting ψ =W and by the Cauchy-Schwarz inequality, Lemmas 3.1 and

3.3, we have

‖W‖2L2(In;L2(Ω)) ≤ L
∥

∥

tn−1
Iαt W̃

∥

∥

L2(In;L2(Ω))
‖W‖L2(In;L2(Ω))

≤
Lταn

Γ(1 + α)
‖W̃‖L2(In;L2(Ω))‖W‖L2(In;L2(Ω)),

which leads to

∥

∥RnŨ1 − RnŨ2

∥

∥

L2(In;L2(Ω))
≤

Lταn
Γ(1 + α)

∥

∥Ũ1 − Ũ2

∥

∥

L2(In;L2(Ω))
,

so that Rn is a contraction when Lταn /Γ(1 + α) < 1. The proof is complete. �

4.2. Error analysis

Next, we give the ‖ · ‖L2([0,T ];L2(Ω)) norm error estimate of scheme (4.1). First of all, there

is a fractional Grönwall inequality.

Lemma 4.1 ([28, Lemma 6.4]). Let {an}
N
n=1 and {bn}

N
n=1 be nonnegative sequences and

{bn}
N
n=1 is monotonically increasing. Assume that

an ≤ bn + λ
n
∑

j=1

ωn,j(α)an, 1 ≤ n ≤ N,

where λ > 0 and ωn,j(α) =
∫

Ij
(tn− t)

α−1dt. When 0 < α ≤ 1 and δ = λτα/α < 1, it holds that

an ≤ Cbn, 1 ≤ n ≤ N,

where C is a constant related to δ, α, λ and T .
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Similar to Prn−1,Prn can be extended to multivariable case in L2 sense. Besides, the

piecewise space-time projector Ir define by

Iru|Qn
= PrnRhu,

where Iru ∈ Sr,p
0 (Q). Recalling (2.5), Lemmas 2.2 and 3.5, we can directly obtain the approx-

imation property of Ir, that is, for u|Qn
∈ Hκn+1(In;L

2(Ω)) ∩ L2
(

In;H
1
0 (Ω) ∩H

κ̃+1(Ω)
)

, we

have

‖u− Iru‖2L2([0,T ];L2(Ω)) ≤ C

N
∑

n=1

(

τ2sn+2
n ‖u‖2Hsn+1(In;L2(Ω)) + h2s̃+2‖u‖2L2(In;Hs̃+1(Ω))

)

, (4.5)

where 0 ≤ sn ≤ min{κn, rn} and 0 ≤ s̃ ≤ min{κ̃, p}. Next we give the convergence analysis of

scheme (4.1).

Theorem 4.2. Let u|Qn
∈ Hκn+1(In;H

2(Ω))∩L2(In;H
1
0 (Ω)∩H

κ̃+1(Ω)) and U be the solutions

of (1.4) and (4.1) respectively, for sufficiently small τn, there is

‖u− U‖2L2([0,T ];L2(Ω)) ≤ C

N
∑

n=1

(

τ2sn+2
n ‖u‖2Hsn+1(In;H2(Ω)) + h2s̃+2‖u‖2L2(In;Hs̃+1(Ω))

)

,

where 0 ≤ sn ≤ min{κn, rn} and 0 ≤ s̃ ≤ min{κ̃, p}.

Proof. Make a splitting of the error u − U = η + ξ, where η = u − Iru and ξ = Iru − U .

Because

‖u− U‖2L2([0,T ];L2(Ω)) ≤ 2
(

‖η‖2L2([0,T ];L2(Ω)) + ‖ξ‖2L2([0,T ];L2(Ω))

)

, (4.6)

it is sufficient to bound ‖ξ‖2L2([0,T ];L2(Ω)). Noting that u satisfies (4.2), we have error equations

∫

In

(ξ + η, ψ)dt+ ǫ2
∫

In

(

0I
α
t (∇xξ +∇xη),∇xψ

)

dt

=

∫

In

(

0I
α
t

(

f(U)− f(u)
)

, ψ
)

dt (4.7)

for all ψ ∈ Srn,p
0 (Qn). Using the definitions of Prn and Rh together with (3.6) in (4.7) leads to

∫

In

(ξ, ψ)dt+ ǫ2
∫

In

(

0I
α
t ∇xξ,∇xψ

)

dt

=

∫

In

(Rhu− u, ψ)dt+ ǫ2
∫

In

(

0I
α
t ∇x(L

ru− u),∇xψ
)

dt

+

∫

In

(

0I
α
t

(

f(U)− f(u)
)

, ψ
)

dt. (4.8)

Taking ψ = ξ in (4.8), then replacing n with j and summing up j from 1 to n, one can obtain

‖ξ‖2L2([0,tn];L2(Ω)) ≤

∫ tn

0

(Rhu− u, ξ)dt− ǫ2
∫ tn

0

(

0I
α
t ∆x(L

ru− u), ξ
)

dt

+

∫ tn

0

(

0I
α
t

(

f(U)− f(u)
)

, ξ
)

dt

=: B1 +B2 +B3, (4.9)
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where we use the result of Lemma 3.3

ǫ2
∫ tn

0

(

0I
α
t ∇xξ,∇xξ

)

dt > 0.

By the Cauchy-Schwartz inequality and Lemma 3.1, one has

|B1| ≤ ‖u−Rhu‖
2
L2([0,tn];L2(Ω)) +

1

4
‖ξ‖2L2([0,tn];L2(Ω)), (4.10)

|B2| ≤
T 2αǫ4

Γ2(1 + α)

∥

∥∆x(u− Lru)
∥

∥

2

L2([0,tn];L2(Ω))
+

1

4
‖ξ‖2L2([0,tn];L2(Ω)). (4.11)

Specially, using Lemma 3.1 again, one can obtain

|B3| ≤ L2
∥

∥

0I
α
t (u− U)

∥

∥

2

L2([0,tn];L2(Ω))
+

1

4
‖ξ‖2L2([0,tn];L2(Ω))

≤ 2L2
∥

∥

0I
α
t η
∥

∥

2

L2([0,tn];L2(Ω))
+

1

4
‖ξ‖2L2([0,tn];L2(Ω)) + 2L2

∥

∥

0I
α
t ξ
∥

∥

2

L2([0,tn];L2(Ω))

≤
2L2T 2α

Γ2(1 + α)
‖η‖2L2([0,tn];L2(Ω)) +

1

4
‖ξ‖2L2([0,tn];L2(Ω))

+
2L2Tα

Γ(1 + α)Γ(α)

∫ tn

0

(tn − t)α−1

(
∫ t

0

‖ξ‖20ds

)

dt

≤
2L2T 2α

Γ2(1 + α)
‖η‖2L2([0,tn];L2(Ω)) +

1

4
‖ξ‖2L2([0,tn];L2(Ω))

+
2L2Tα

Γ(1 + α)Γ(α)

n
∑

j=1

∫

Ij

(tn − t)α−1dt‖ξ‖2L2([0,tj ];L2(Ω)). (4.12)

Substituting (4.10)-(4.12) into (4.9) yields that

‖ξ‖2L2([0,tn];L2(Ω)) ≤ 4‖u−Rhu‖
2
L2([0,tn];L2(Ω))

+
4T 2αǫ4

Γ2(1 + α)

∥

∥∆x(u − Lru)
∥

∥

2

L2([0,tn];L2(Ω))

+
8L2T 2α

Γ2(1 + α)
‖η‖2L2([0,tn];L2(Ω))

+
8L2Tα

Γ(1 + α)Γ(α)

n
∑

j=1

ωn,j(α)‖ξ‖
2
L2([0,tj ];L2(Ω)).

When τn is small enough, according to Lemma 4.1, we can get

‖ξ‖2L2([0,tn];L2(Ω)) ≤ C
(

‖u−Rhu‖
2
L2([0,tn];L2(Ω)) +

∥

∥∆x(u − Lru)
∥

∥

2

L2([0,tn];L2(Ω))

+ ‖η‖2L2([0,tn];L2(Ω))

)

. (4.13)

Furthermore, substituting (4.13) into (4.6) and using (2.5), (3.6), (4.5) and Lemma 2.2, one has

‖u− U‖2L2([0,T ];L2(Ω)) ≤ C

N
∑

n=1

(

τ2sn+2
n ‖u‖2Hsn+1(In;H2(Ω)) + h2s̃+2‖u‖2L2(In;Hs̃+1(Ω))

)

.

This proof is complete. �

From following corollary of Theorem 4.2, we can get the global error estimate and the

convergence rates of scheme (4.1).
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Corollary 4.1. Assume that rn ≡ r > 0 for 1 ≤ n ≤ N , and division of time is quasi-uniform.

When u ∈ Hκ+1([0, T ];H2(Ω)) ∩L2([0, T ];H1
0 (Ω) ∩H

κ̃+1(Ω)) and U are the solutions of (1.4)

and (4.1) respectively, for sufficiently small τ , we have

‖u− U‖L2([0,T ];L2(Ω)) ≤ C
(

τs+1‖u‖Hs+1([0,T ];H2(Ω)) + hs̃+1‖u‖L2([0,T ];Hs̃+1(Ω))

)

,

where 0 ≤ s ≤ min{κ, r} and 0 ≤ s̃ ≤ min{κ̃, p}.

In most cases, the exact solution of TFACE (1.2) will have initial singularity [18]. When

we consider its equivalent form (1.4), there will also be singular solution in time direction. We

make the regularity assumption for u
∥

∥

∥

∥

∂lu

∂tl

∥

∥

∥

∥

2

≤ Ctσ−l, σ > 0, l ∈ N0. (4.14)

Similar to Theorem 3.3, we can draw the following convergence conclusion on graded mesh.

Theorem 4.3. Let u|Qn
∈ L2(In;H

1
0 (Ω)∩H

κ̃+1(Ω)) and U be the solutions of (1.4) and (4.1)

respectively. Setting rn ≡ r > 0, under mesh (3.23) and assumption (4.14), it holds that

‖u− U‖L2([0,T ];L2(Ω)) ≤ C































τr+1 + C̃uh
s̃+1, γ >

r + 1

σ + 1/2

τr+1| ln τ |
1
2 + C̃uh

s̃+1, γ =
r + 1

σ + 1/2
,

τ (σ+
1
2
)γ + C̃uh

s̃+1, γ <
r + 1

σ + 1/2
,

where C̃u = ‖u‖L2([0,T ];Hs̃+1(Ω)) and 0 ≤ s̃ ≤ min{κ̃, p}.

Proof. Combining Theorem 4.2, and following from Theorem 3.2, the theorem can be

proved. �

5. Numerical Examples

In this section, we verify the accuracy and effectiveness of our proposed schemes (3.1) and

(4.1) for solving the Eqs. (1.1) and (1.2) respectively through numerical experiments, where

we set g(·) = cos(·) in (1.1). Our program is based on GeoPDEs 3.0 [12, 53], which provides

convenient programming space structures. To handle the nonlinear term, we use the Newton

iterative technique [11]. For both schemes, we define the global error as E(τ, h), and the

convergence rates for time and space are calculated using the formula

rate = log2
E(2τ, 2h)

E(τ, h)
.

To distinguish between the Eqs. (1.1) and (1.2), we use u1 and α1 to denote the exact solution

and fractional order of the Eq. (1.1), and u2 and α2 for the Eq. (1.2).

Example 5.1 (Two-Dimensional Geometry). In this example, we choose Ω as a ring with

inner radius of 0.5 and outer radius of 1 in the first quadrant. Add the source term to the

equations and select the following exact solutions:

u1(x, y, t) = xy(x2 + y2 − 0.25)(x2 + y2 − 1)[sin(t) + 1],

u2(x, y, t) = xy(x2 + y2 − 0.25)(x2 + y2 − 1)et

with T = 1, α1 = 0.3, α2 = 0.6 and ǫ2 = 0.5.
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We test convergence rates in temporal and spatial directions using different degrees of space

and time splines, and perform h-refinement as shown in Fig. 5.1 (note that this is not the

space-time NURBS geometry). Error results with respect to the space-time total number of

degrees of freedom (Ndof) are provided in Tables 5.1 and 5.2. As the solution exhibits good

regularity, increasing the spline degrees and mesh refinement yields a convergence rate of r in

Fig. 5.1. Space-time domain refinement process (left to right).

Table 5.1: H1([0, 1];L2(Ω)) norm error results of (3.1) in 2-D case.

Degree Ndof Error Rate Degree Ndof Error Rate

p = 7
128 2.736e-03 ∗

p = 7
486 2.492e-04 ∗

324 1.360e-03 1.01 1452 6.679e-05 1.90

r = 1
968 6.747e-04 1.01

r = 2
5400 1.599e-05 2.06

3600 3.367e-04 1.00 25392 3.611e-06 2.15

p = 7
256 4.407e-05 ∗

p = 7
320 5.275e-06 ∗

648 5.330e-06 3.05 810 3.536e-07 3.90

r = 3
1936 6.361e-07 3.07

r = 4
2420 2.364e-08 3.90

7200 7.610e-08 3.06 9000 1.218e-09 4.28

p = 1
96 1.239e-02 ∗

p = 2
128 2.259e-03 ∗

480 3.501e-03 1.82 576 2.350e-04 3.27

r = 3
2880 9.024e-04 1.96

r = 3
3200 2.712e-05 3.12

19584 2.273e-04 1.99 20736 3.309e-06 3.04

Table 5.2: L2([0, 1];L2(Ω)) norm error results of (4.1) in 2-D case.

Degree Ndof Error Rate Degree Ndof Error Rate

p = 7
64 9.410e-03 ∗

p = 7
128 1.527e-03 ∗

162 4.642e-03 1.02 324 4.266e-04 1.84

r = 0
484 2.316e-03 1.00

r = 1
968 1.098e-04 1.96

1800 1.155e-03 1.00 3600 2.659e-05 2.05

p = 7
192 1.370e-04 ∗

p = 7
256 8.981e-06 ∗

486 1.663e-05 3.04 648 5.900e-07 3.93

r = 2
1452 2.006e-06 3.05

r = 3
1936 3.741e-08 3.98

5400 2.408e-07 3.06 7200 2.111e-09 4.15

p = 1
96 1.296e-02 ∗

p = 2
128 2.363e-03 ∗

480 3.663e-03 1.82 576 2.458e-04 3.27

r = 3
2880 9.440e-04 1.96

r = 3
3200 2.837e-05 3.12

19584 2.378e-04 1.99 20736 3.462e-06 3.04
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time direction for scheme (3.1) and r + 1 for scheme (4.1), and a convergence rate of p + 1

in space direction. Scheme (3.1) only requires r = 4 or (4.1) only requires r = 3 to achieve

an accuracy of 4 in the temporal direction.

Example 5.2 (Three-Dimensional Geometry).This example solves the three-dimensional

problems (1.1) and (1.2), where Ω is a spherical shell located in the first octant, with an inner

radius of 0.9 and an outer ones of 1. We choose exact solutions

u1(x, y, z, t) = xyz(x2 + y2 + z2 − 1)(x2 + y2 + z2 − 0.81)[sin(t) + 1],

u2(x, y, z, t) = xyz(x2 + y2 + z2 − 1)(x2 + y2 + z2 − 0.81)et.

Set T = 1, α1 = 0.8, α2 = 0.3 and ǫ2 = 0.1.

Fig. 5.2 shows 3-D geometry with space mesh division and control points. Different from the

two-dimensional situation, the space-time domain of three-dimensional geometry involves four

dimensions, which increases computing costs. The calculation results are presented in Tables 5.3

and 5.4. Firstly, select p = 4, and then change the degree of splines in time direction, we can

(a) Original geometry with 1×1×1 elements. (b) Geometry with control points.

Fig. 5.2. 3-D geometry original mesh division (left) and control points (right).

Table 5.3: H1([0, 1];L2(Ω)) norm error results of (3.1) in 3-D case.

p = 4, r = 1 p = 4, r = 2 p = 1, r = 2

Ndof Error Rate Ndof Error Rate Ndof Error Rate

250 3.028e-05 ∗ 375 7.451e-06 ∗ 54 3.370e-04 ∗

864 1.573e-05 0.95 1296 2.171e-06 1.78 288 8.861e-05 1.93

4096 7.883e-06 1.00 6144 4.736e-07 2.20 2160 2.176e-05 2.03

27648 3.945e-06 1.00 41472 1.126e-07 2.07 21600 5.419e-06 2.01

Table 5.4: L2([0, 1];L2(Ω)) norm error results of (4.1) in 3-D case.

p = 4, r = 0 p = 4, r = 1 p = 1, r = 2

Ndof Error Rate Ndof Error Rate Ndof Error Rate

125 1.057e-04 ∗ 250 1.532e-05 ∗ 54 3.525e-04 ∗

432 5.388e-05 0.97 864 4.208e-06 1.86 288 9.261e-05 1.93

2048 2.703e-05 1.00 4096 1.032e-06 2.03 2160 2.274e-05 2.03

13824 1.351e-05 1.00 27648 2.567e-07 2.01 21600 5.662e-06 2.01
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observe the convergence rates r of (3.1) and r + 1 of (4.1). If we fix r = 2 and set p = 1, we

can observe the space convergence rate p+1. This conforms to the conclusion of Theorems 3.2

and 4.2.

Example 5.3 (Singularity Problems). In this example, select α1 = 0.5, α2 = 0.5, ǫ2 = 0.5

and T = 1. We choose the below non-smooth functions as the exact solutions

u1(x, t) = (x3 − x2)t1.5,

u2(x, t) = (x3 − x2)t0.5.

Consider different spline degrees r in a fixed p = 4.

For the solution with certain singular behavior at t = 0, we use graded mesh tn = (n/N)γ

with different γ to calculate error. The exact solution u1 has one order smoothness while u2 is

nonsmooth, and the corresponding σ in (3.21) are σ1 = σ2 = 0.5. According to Theorem 3.3,

when r = 2, in order to achieve the optimal convergence rate for scheme (3.1), it is necessary

to make γ > 2, while when r = 3, it is necessary to make γ > 3. On the other hand, for scheme

(4.1), according to Theorem 4.3, when r = 1 with γ > 2 and r = 2 with γ > 3, we can observe

the optimal convergence rates. The relevant calculation results are shown in Tables 5.5 and 5.6,

which is consistent with the conclusions of Theorems 3.3 and 4.3.

Finally, we fix r = 2, p = 4, and Ndof = 672, and plot the error surfaces for different values

of γ, as shown in Fig. 5.3. From Figs. 5.3(a)-5.3(c), it can be observed that as γ increases,

Table 5.5: H1([0, 1];L2([0, 1])) norm error results of (3.1).

r Ndof γ = 1 γ = 1.5 γ = 2 γ = 2.5

r = 2

96 1.825e-03 ∗ 1.004e-03 ∗ 7.816e-04 ∗ 8.517e-04 ∗

288 8.977e-04 1.02 3.536e-04 1.51 2.228e-04 1.81 2.280e-04 1.90

960 4.432e-04 1.02 1.244e-04 1.51 6.089e-05 1.87 5.773e-05 1.98

3456 2.201e-04 1.01 4.397e-05 1.50 1.631e-05 1.90 1.428e-05 2.02

r Ndof γ = 2 γ = 2.5 γ = 3 γ = 3.5

r = 3

128 2.025e-04 ∗ 1.451e-04 ∗ 1.511e-04 ∗ 1.842e-04 ∗

384 5.139e-05 1.98 2.693e-05 2.43 2.315e-05 2.71 2.599e-05 2.83

1280 1.310e-05 1.97 4.879e-06 2.47 3.330e-06 2.80 3.409e-06 2.93

4608 3.336e-06 1.97 8.753e-07 2.48 4.631e-07 2.85 4.325e-07 2.98

Table 5.6: L2([0, 1];L2([0, 1])) norm error results of (4.1).

r Ndof γ = 1 γ = 1.5 γ = 2 γ = 2.5

r = 1

64 1.176e-03 ∗ 6.464e-04 ∗ 4.905e-04 ∗ 5.262e-04 ∗

192 5.867e-04 1.00 2.318e-04 1.48 1.405e-04 1.80 1.403e-04 1.91

640 2.938e-04 1.00 8.279e-05 1.49 3.887e-05 1.85 3.578e-05 1.97

2304 1.476e-04 0.99 2.954e-05 1.49 1.055e-05 1.88 8.964e-06 2.00

r Ndof γ = 2 γ = 2.5 γ = 3 γ = 3.5

r = 2

96 1.372e-04 ∗ 9.555e-05 ∗ 9.700e-05 ∗ 1.171e-04 ∗

288 3.511e-05 1.97 1.790e-05 2.42 1.500e-05 2.69 1.660e-05 2.82

960 8.934e-06 1.98 3.260e-06 2.46 2.176e-06 2.79 2.190e-06 2.92

3546 2.261e-06 1.98 5.853e-07 2.48 3.045e-07 2.84 2.798e-07 2.97
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(a) γ = 1 (b) γ = 2 (c) γ = 3

(d) γ = 2 (e) γ = 3 (f) γ = 4

Fig. 5.3. Error surfaces under different γ for singularity problems, where Figs. 5.3(a)-5.3(c) correspond

to scheme (3.1), while Figs. 5.3(d)-5.3(f) correspond to scheme (4.1).

the absolute error between numerical solution U1 of space-time continuous Galerkin scheme

and exact solution u1 decreases significantly near t = 0. Likewise, we also observe a reduction

in the absolute error between numerical solution U2 of time discontinuous Galerkin scheme

and exact solution u2, which has stronger singularity, as shown in Figs. 5.3(d)-5.3(f). This

demonstrates that using locally refined graded meshes to solve singularity problems is highly

effective.

Example 5.4. This example focuses on solving the model problems (1.1) and (1.2) using time

difference method. The chosen exact solution and relevant parameters are as follows:

ui(x, y, t) = xy(x2 + y2 − 0.25)(x2 + y2 − 1)t2, i = 1, 2,

T = 1 and ǫ2 = 0.01. Additionally, we adopt the spatial geometry from Example 5.1, with

p = 6 and a fixed number of spatial degrees of freedom set to 225.

In practice, in most cases, finite difference methods are commonly used to solve the two

types of nonlinear models discussed in the paper. Therefore, in this example, we aim to solve

the Eqs. (1.1) and (1.2) using a combination of time-discretization using finite difference meth-

ods and space-discretization using NURBS. This approach highlights the high accuracy and

effectiveness of the proposed space-time methods. To approximate the function u, a piecewise

linear interpolation method is utilized. As a result, the L1h formula [24, 58] can be derived for

discretizing the Caputo derivative operator. This formula is given by

C
0 D

α
t u
(

x, tn− 1
2

)

≈
(

Dα
τ u
)n− 1

2 :=
1

Γ(1− α)

∫ t
n−

1
2

0

(

tn− 1
2
− s
)−α(

Π1u(x, s)
)

s
ds,

where

tn− 1
2
=
tn + tn−1

2
, (Π1u)t|In =

∇τu
n

τn
, ∇τu

n = u(x, tn)− u(x, tn−1).

At the time node tn−1/2, we construct the following Crank-Nicolson scheme for model (1.1):

Find unh ∈ V0h such that
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





(

∇τu
n
h

τn
, v

)

+
(

(

Dα
τ ∇uh

)n− 1
2 ,∇v

)

−
(

g(uh)
n− 1

2 , v
)

= 0,

u0h = Rhu0

(5.1)

for all v ∈ V0h, and the following Crank-Nicolson scheme for model (1.2): Find unh ∈ V0h such

that






(

(

Dα
τ uh

)n− 1
2 , v
)

+ ǫ2
(

∇u
n− 1

2

h ,∇v
)

+
(

f
(

unh
)n− 1

2 , v
)

= 0,

u0h = Rhu0
(5.2)

for all v ∈ V0h, where u
n
h represents the numerical approximation at t = tn,

g(uh)
n− 1

2 =
1

2

(

g
(

unh
)

+ g
(

un−1
h

))

,

∇u
n− 1

2

h =
1

2

(

∇unh +∇un−1
h

)

,

f(uh)
n− 1

2 =
1

2

(

f
(

unh
)

+ f
(

un−1
h

))

.

Using uniform time mesh, we present the results of solving problems (5.1) and (5.2) in Tables 5.7

and 5.8, respectively. In these tables, we report the error max0≤k≤N ‖u(tk)−u
k
h‖0. It is evident

that for sufficiently smooth solutions, both difference schemes achieve convergence in time only

up to 2 − α accuracy. This falls short of the convergence accuracy achieved by the two con-

structed space-time methods. Hence, in this aspect, the space-time continuous Galerkin method

and the time discontinuous Galerkin method can be considered as improvements over the clas-

sical finite difference methods. However, it should be noted that the space-time continuous

Galerkin and time discontinuous Galerkin methods tend to be computationally intensive due

to the larger algebraic system. Therefore, developing efficient parallel computing or adaptive

methods for space-time methods is also a worthwhile consideration for future research.

Table 5.7: Accuracy test results of scheme (5.1).

α1 = 0.2 α1 = 0.4 α1 = 0.8

N Error Rate N Error Rate N Error Rate

40 1.886e-06 ∗ 40 6.290e-06 ∗ 40 2.139e-05 ∗

80 5.762e-07 1.71 80 2.149e-06 1.55 80 9.449e-06 1.18

160 1.741e-07 1.73 160 7.272e-07 1.56 160 4.149e-06 1.19

320 5.215e-08 1.74 320 2.445e-07 1.57 320 1.815e-06 1.19

Table 5.8: Accuracy test results of scheme (5.2).

α2 = 0.3 α2 = 0.5 α2 = 0.7

N Error Rate N Error Rate N Error Rate

40 6.810e-06 ∗ 40 1.614e-05 ∗ 40 2.726e-05 ∗

80 2.206e-06 1.63 80 5.889e-06 1.45 80 1.131e-05 1.27

160 7.064e-07 1.64 160 2.128e-06 1.47 160 4.655e-06 1.28

320 2.243e-07 1.66 320 7.639e-07 1.48 320 1.906e-06 1.29
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6. Conclusion

This paper proposes two Galerkin-type schemes with the framework of IGA for solving

nonlinear time-fractional PDEs. By utilizing space-time continuous and time discontinuous

Galerkin schemes, we are able to successfully solve a class of nonlinear TFSEs and TFACE.

In fact, the two models addressed in the paper have been transformed into Volterra-type

equations, specifically one involving the time derivative ut and another involving the variable u.

Although this approach introduces a discrepancy in the analysis, it is important to note that the

purpose of discussing both models together is to emphasize that the methods proposed in this

paper can be applied to solve equations with a similar Volterra-type structure. However, careful

consideration should be given to the placement of the fractional operator, the inclusion of time

derivative terms, and the necessity of performing equivalent transformations on the equations.

Moreover, we examine the relationship between the two space-time methods proposed for the

two distinct model problems.

Our numerical examples support the optimal error estimates on both uniform and graded

meshes. Additionally, space-time continuous and time discontinuous Galerkin schemes using

CPG and DG techniques based on B-splines in time and NURBS in space show promising

potential to achieve high accuracy in time direction and handle complex space geometries. Due

to the open property of basis functions, the use of B-spline basis (Bernstein basis) allows us to

perform CPG algorithm by only considering the connections between head and tail time nodes

(see Appendix A). Therefore, we intend to apply the above two space-time Galerkin schemes

to solve more challenging nonlinear fractional models in the future.

Appendix A

Here we will give the algorithms for solving problems (3.1) and (4.1). The main idea is to

integrate in time direction first for schemes (3.1) and (4.1), and derive the nonlinear system

about the spatial degrees of freedom on every time slice, then Newton method will be used to

deal with this nonlinear system. Firstly, we assume that {Bn
j,rn

(t)}rn+1
j=1 and {Sj(x)}

K
j=1 are

a set of basis of spaces Brn(In) and V0h respectively. On every Qn, the approximation for the

solution of (1.1) or (1.4) has form

U(x, t) =

rn+1
∑

i=1

Pi,n(x)B
n
i,rn(t),

V (x, t) =

rn
∑

i=1

P̃i,n(x)B
n
i,rn−1(t),

where

Pi,n(x) =

K
∑

j=1

cnijSj(x), P̃i,n(x) =

K
∑

j=1

c̃nijSj(x).

Besides, for convenience, we define

Cn =
(

cnij
)

rn+1,K
, C̃n =

(

c̃nij
)

rn,K
,

Mrn,n =
(

mn
ij

)

rn+1,rn+1
, mn

ij =

∫

In

Bn
i,rn(t)B

n
j,rn(t)dt,
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D1−α
rn,n =

(

dnij
)

rn+1,rn+1
, dnij =

∫

In

Bn
i,rn(t)

(

tn−1
I1−α
t Bn

j,rn

)

dt,

Rn(x, t) = g

(
∫ t

tn−1

V (x, s)ds+ U |Qn
(x, tn−1)

)

,

Jn(x, t) = −
1

Γ(1−α)

∫ tn−1

0

(t−s)−αV (x, s)ds,

Hn(x, t) = −tn−1
Iαt f(U)−

1

Γ(α)

∫ tn−1

0

(t− s)α−1f
(

U(x, s)
)

ds+ u0,

Yn(x, t) = −
ǫ2

Γ(α)

∫ tn−1

0

(t− s)α−1U(x, s)ds,

LC
n =

(

lCi,n
)

rn,1
, GC

n =
(

gCi,n
)

rn,1
, lCi,n =

∫

In

Bn
i,rn−1Rndt, gCi,n =

∫

In

Bn
i,rn−1Jndt,

LD
n =

(

lDi,n
)

rn+1,1
, GD

n =
(

gDi,n
)

rn+1,1
, lDi,n =

∫

In

Bn
i,rnHndt, gDi,n =

∫

In

Bn
i,rnYndt,

Pn = (Pi,n)rn+1,1, P̃n =
(

P̃i,n

)

rn,1
.

Recalling that

Ξn = [t0,n, · · · , trn,n, trn+1,n, · · · , t2rn+1,n],

where

t0,n = · · · = trn,n = tn−1, trn+1,n = · · · = t2rn+1,n = tn,

we can construct

Tn = rn
















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

−
1

trn+1,n−t1,n

1

trn+1,n−t1,n
· · · 0 0

0 −
1

trn+2,n−t2,n

1

trn+2,n−t2,n
· · · 0

· · · · · ·

0 · · · 0 −
1

t2rn,n−trn,n

1

t2rn,n−trn,n





















.

When we solve problem (3.1) by equivalent form (3.8), according to the derivation rule of

B-splines [42], there is a relationship between Cn and C̃n

C̃n = TnCn. (A.1)

Given the size of Tn as rn × (rn +1), the C0-continuity condition in scheme (3.8) and the open

property of B-splines, we can obtain Cn from C̃n using (A.1). Thus, by computing the first row

of Cn through continuity conditions and multiplying it with the first column of Tn to yield CT ,

we can transform the coefficient matrix Tn to a lower triangular matrix T̃n. This allows us to

represent the rows from 2 to rn + 1 of Cn as T̃−1
n (C̃n − CT ).

Next, we will give the main steps to solve (3.1) and (4.1) (see Algorithms A.1 and A.2).

Acknowledgements. J. Shen was supported in part by the National Natural Science Founda-

tion of China (Grant No. 12101509) and by the Undergraduate Research and Learning Program

of Southwestern University of Finance and Economics. L. Yi was supported in part by the Na-

tional Natural Science Foundation of China (Grant No. 12171322) and by the Natural Science

Foundation of Shanghai (Grant No. 21ZR1447200).



Space-Time Methods for Fractional Sobolev and Allen-Cahn Equations 29

Algorithm A.1: Solve Problem (3.1).

REQUIRE: Time nodes {tk}
N
k=0, B-splines degrees {rn}

N
n=1, and spatial structures.

ENSURE : {Cn}
N
n=1.

1 for n = 1 : N do

2 for i = 1 : rn do

3 For all w ∈ V0h such that

4

∫

In

Bn
i,rn−1(V,w)dt +

∫

In

Bn
i,rn−1

(

tn−1
I1−α
t ∇xV,∇xw

)

dt

5 =

∫

In

Bn
i,rn−1(Rn, w)dt +

∫

In

Bn
i,rn−1(∇xJn,∇xw)dt.

6 end

7 Obtain nonlinear system: Find P̃n ∈ [V0h]
rn such that

8

(

Mrn−1,nP̃n,w
)

+
(

D1−α
rn−1,n∇xP̃n,∇xw

)

=
(

LC
n ,w

)

+
(

∇xG
C
n ,∇xw

)

9 for all w ∈ [V0h]
rn .

10 Solve above system to get C̃n.

11 Combine (A.1) and C0-continuity condition to get Cn.

12 U |Qn
=
∑rn+1

i=1

(

∑K
j=1 c

n
ijSj(x)

)

Bn
i,rn(t) .

13 end

Algorithm A.2: Solve Problem (4.1).

REQUIRE: Time nodes {tk}
N
k=0, B-splines degrees {rn}

N
n=1, and spatial structures.

ENSURE : {Cn}
N
n=1.

1 for n = 1 : N do

2 for i = 1 : rn + 1 do

3 For all w ∈ V0h such that

4

∫

In

Bn
i,rn(U,w)dt + ǫ2

∫

In

Bn
i,rn

(

tn−1
Iαt ∇xU,∇xw

)

dt

5 =

∫

In

Bn
i,rn(Hn, w)dt +

∫

In

Bn
i,rn(∇xYn,∇xw)dt.

6 end

7 Obtain nonlinear system: Find Pn ∈ [V0h]
rn+1 such that

8 (Mrn,nPn,w) + ǫ2
(

Dα
rn,n∇xPn,∇xw

)

=
(

LD
n ,w

)

+
(

∇xG
D
n ,∇xw

)

9 for all w ∈ [V0h]
rn+1.

10 Solve above system to get Cn.

11 U |Qn
=
∑rn+1

i=1

(

∑K
j=1 c

n
ijSj(x)

)

Bn
i,rn(t).

12 end
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