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Abstract

In this paper, we investigate the local discontinuous Galerkin method with generalized

numerical fluxes for one-dimensional nonlinear Korteweg-de Vries type equations. The

numerical flux for the nonlinear convection term is chosen as the generalized Lax-Friedrichs

flux, and the generalized alternating flux and upwind-biased flux are used for the dispersion

term. The generalized Lax-Friedrichs flux with anti-dissipation property will compensate

the numerical dissipation of the dispersion term, resulting in a nearly energy conservative

scheme that is useful in resolving waves and is beneficial for long time simulations. To

deal with the nonlinearity and different numerical flux weights, a suitable numerical initial

condition is constructed, for which a modified global projection is designed. By establishing

relationships between the prime variable and auxiliary variables in combination with sharp

bounds for jump terms, optimal error estimates are obtained. Numerical experiments are

shown to confirm the validity of theoretical results.

Mathematics subject classification: 65M12, 65M15, 65M60.

Key words: Korteweg-de Vries type equations, Local discontinuous Galerkin method, Gen-

eralized fluxes, Error estimates.

1. Introduction

In this paper, we study the local discontinuous Galerkin (LDG) method with generalized

numerical fluxes for one-dimensional nonlinear Korteweg-de Vries (KdV) type equations

ut + f(u)x + uxxx = 0, (x, t) ∈ I × (0, T ], (1.1a)

u(x, 0) = u0(x), x ∈ I, (1.1b)
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where u0(x) is a smooth function and I = [a, b]. The nonlinear function f(u) is assumed to be

sufficiently smooth with respect to u, and the exact solution u is smooth. The periodic boundary

conditions are mainly considered, and the case with mixed boundary conditions is numerically

investigated. For KdV equations, compared with the standard upwind and alternating fluxes,

the energy conserving scheme will produce a lower growth of errors and is efficient in resolving

waves. This can be achieved by choosing central fluxes for generalized KdV equations [1] or

the generalized numerical fluxes with different weights for linearized KdV equations [11]. For

nonlinear KdV type equations (1.1), by constructing a suitable numerical initial condition and

a modified projection in combination with the relationships between the prime variable and

auxiliary variables, optimal error estimates are derived.

The nonlinear KdV type equation is an important model for many nonlinear phenomena,

which can describe wave phenomena in bubble-liquid mixtures [19], plasma physics [8] and

anharmonic crystals [24]. There have been a variety of work on the theoretical and numeri-

cal aspects of KdV equations. For example, in [7], a generalized tanh function method was

implemented to find the exact solutions of the KdV equation and the coupled KdV equation.

A meshless method of lines was presented for the numerical solution of the KdV equation in [16].

Numerical solution of the KdV equation was obtained using the space-splitting technique and

the differential quadrature method with cosine expansion [15].

The LDG method is an extension of the discontinuous Galerkin (DG) method. The DG

method is a class of finite element method using discontinuous piecewise polynomials as the

numerical solution and test functions, leading to advantages in high order accuracy, high par-

allel efficiency, flexibility for hp-adaptivity. It was first introduced to solve a linear steady-state

hyperbolic equation [14] and was developed for solving nonlinear time dependent conservation

laws [3,5]. The LDGmethod was proposed by Cockburn and Shu [4] to solve convection-diffusion

equations. The main idea of the LDG method is to rewrite the original partial differential equa-

tion (PDE) involving high order spatial derivatives into an equivalent first order system and

then the DG method can be applied. Later, it was actively applied to solve various high order

equations. We refer to review papers [17, 21] for more details.

The LDG scheme for KdV type equations was first proposed in [23], in which stability

property was shown for nonlinear case and suboptimal (k + 1/2)-th order was derived for the

linear case. In [10], the method was extended to solve the nonlinear dispersive PDE involving

compactly supported traveling wave solutions. For the LDG scheme solving nonlinear KdV

equations, suboptimal (k + 1/2)-th order error estimate was obtained [20], and the loss of half

an order is mainly due to some extra boundary terms arising from high order derivatives. By

establishing several energy equations, optimal error estimate of order k + 1 is derived for lin-

earized KdV equations [22]. Note that purely upwind and alternating fluxes are used in above

work. For generalized KdV equations, a posteriori error estimates of conservative LDG meth-

ods is given [9]. In [25], for KdV type systems, four conservative and dissipative LDG schemes

are proposed, in which the conservative/dissipative numerical fluxes are designed for the lin-

ear dispersion term and the nonlinear convection term, respectively. By virtue of some local

Gauss-Radau projections, suboptimal error estimates of order k+1/2 are derived for dissipative

fluxes, and numerical examples indicate that the conservative scheme performs better than the

dissipative one for long time simulations.

In addition to the stability issue of the numerical fluxes in the design of scheme, the nu-

merical viscosity plays an important role in resolving waves and for long time simulations. The

LDG method with central and generalized alternating fluxes for solving the Burgers-Poisson
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equation was presented in [13]. The LDG scheme with upwind-biased and generalized alter-

nating fluxes for linear convection-diffusion problem was discussed in [2]. In [11], the LDG

method using generalized numerical fluxes for linearized KdV equations was studied and the

optimal error estimate was obtained. For scalar nonlinear hyperbolic conservation laws, the

generalized local Lax-Friedrichs (GLLF) flux that may not be monotone was proposed and

optimal error estimate was shown in [12]. In these studies, according to different choices of

numerical fluxes, generalized Gauss-Radau (GGR) projections were proposed, and an analysis

of inverse of the coefficient matrix was essential. In particular, for linear PDEs with high order

derivatives, a sub-family of numerical fluxes containing average values and jumps of numerical

solutions were constructed in [6], which were proved to be of optimal (k+ 1)-th order by using

some special projections. For the DG scheme with generalized fluxes solving wave equations,

instead of analyzing the inverse of some matrices, [18] proposed an energy argument based on

the coercivity of DG discretization operators and derived optimal error estimates, which can

be easily extended to unstructured meshes.

In current work, we aim at analyzing the LDG method with generalized numerical fluxes

for nonlinear KdV type equations. For initial error estimates, to deal with the nonlinearity

of the equation, a corresponding nonlinear steady-state problem with a small enough constant

is designed. As to the optimal error estimates of the LDG scheme, the main difficulty lies

in the estimates of the boundary terms arising from the nonlinear term and different weights

of generalized numerical fluxes. To do that, we first construct a modified GGR projection to

eliminate the boundary terms of projection errors. Then, by establishing relationships between

the prime variable and auxiliary variables in combination with sharp bounds for jump terms,

optimal error estimates are derived. This provides a solid theoretical foundation for using gen-

eralized fluxes to solve KdV type equations and numerical experiments confirm the benefits

of adjustable numerical viscosities for long time simulations, when compared to the standard

upwind and alternating fluxes, see Figs. 5.2 and 5.3 below.

The rest of this paper is organized as follows. Section 2 is devoted to notation and the LDG

scheme with generalized fluxes for nonlinear KdV type equations. Also, a numerical initial

condition pertaining to a nonlinear steady-state problem is carefully designed, which implies

optimal initial error estimates for auxiliary variables, prime variable and its time derivative

solving (1.1). In Section 3, we begin by introducing GGR projections and defining a modified

global projection. Then, we show the optimal initial error estimates. By establishing the rela-

tionships between the prime variable and auxiliary variables together with the control for jump

terms, the optimal error estimate is derived in Section 4. In Section 5, numerical experiments

are provided to verify theoretical results. Concluding remarks are given in Section 6.

2. The LDG Method

2.1. Notation

Let Ih = {Ij = (xj−1/2, xj+1/2)}
N
j=1 be a partition of I = [a, b]. The length of each element

is hj = xj+1/2 − xj−1/2. The maximum element length is denoted by h = max1≤j≤N hj . We

assume the partition is quasi-uniform. That is, there exists a positive constant ν such that

hj ≥ νh for any j, as h goes to zero. The discontinuous finite element space is defined as

V kh =
{
v ∈ L2(I) : v|Ij ∈ P k(Ij), j = 1, . . . , N

}
,
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where P k(Ij) denotes the space of polynomials of degree at most k in Ij . We use

[[p]]j+ 1

2

= p+
j+ 1

2

− p−
j+ 1

2

, {{p}}j+ 1

2

=
1

2

(
p+
j+ 1

2

+ p−
j+ 1

2

)

to represent the jump and the mean value of p at the element boundary. Furthermore, the

weighted average is denoted as

p
(θ)

j+ 1

2

= θp−
j+ 1

2

+ θ̃p+
j+ 1

2

, θ̃ = 1− θ.

Let W ℓ,p(D) be the classical Sobolev space equipped with norm ‖·‖ℓ,p,D for functions in D.

In particular, the L2-norm is denoted by ‖u‖2D =
∫
D
|u|2dx and the L∞-norm is denoted by

‖u‖∞,D = maxx∈D |u(x)|. The subscripts D, p, ℓ will be omitted when D = I, p = 2 or ℓ = 0,

and denote W ℓ,2(D) = Hℓ(D). The broken Sobolev space W ℓ,p(Ih) and the corresponding

norms can be defined in an analogous way. For example, the Sobolev norm is denoted as

‖u‖ℓ,2,Ih
, ‖u‖ℓ =

(
N∑

j=1

‖u‖2ℓ,Ij

) 1

2

.

We use

‖u‖Γh =

(
N∑

j=1

((
u−
j+ 1

2

)2
+
(
u+
j+ 1

2

)2)
) 1

2

to denote the L2-norm at cell boundaries.

2.2. Preliminaries

2.2.1. DG discretization operators

For notational convenience, we would like to denote the DG spatial discretization operators by

Hθ
j (v, w) =

∫

Ij

vwxdx− v
(θ)

j+ 1

2

w−

j+ 1

2

+ v
(θ)

j− 1

2

w+
j− 1

2

, (2.1a)

H∧
j (v, w) =

∫

Ij

vwxdx− v̂j+ 1

2

w−

j+ 1

2

+ v̂j− 1

2

w+
j− 1

2

, (2.1b)

and the removal of the subscript j indicates the summation of all j. Note that the operator

(2.1a) is introduced for linear dispersive term with weighted numerical fluxes and the operator

(2.1b) is defined for nonlinear convection term with the generalized Lax-Friedrichs (GLF) flux.

The following properties of DG operators have been shown in [11].

Lemma 2.1. Under the periodic boundary conditions, for v, w ∈ H1(Ih), there holds

Hθ1(v, w) +Hθ2(w, v) = (θ̃2 − θ1)
N∑

j=1

([[v]][[w]])j+ 1

2

, (2.2a)

Hθ(w,w) =

(
1

2
− θ

) N∑

j=1

[[w]]2j+ 1

2

. (2.2b)
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2.2.2. Inverse inequalities

For vh ∈ V kh , there exists a positive constant C independent of vh and h such that

‖∂xvh‖ ≤ Ch−1‖vh‖, (2.3)

‖vh‖Γh ≤ Ch−
1

2 ‖vh‖, (2.4)

‖vh‖∞ ≤ Ch−
1

2 ‖vh‖. (2.5)

2.3. The LDG scheme

As usual, we introduce two auxiliary variables q, p to rewrite (1.1) as

ut + f(u)x + px = 0, p = qx, q = ux. (2.6)

Then, the semi-discrete LDG scheme is: ∀ t ∈ (0, T ], to find

(
uh(t), qh(t), ph(t)

)
∈ V kh × V kh × V kh , [V kh ]

3

such that
∫

Ij

uhtvhdx = H∧
j

(
f(uh), vh

)
+Hγ̃

j (ph, vh), (2.7a)

∫

Ij

phwhdx = −Hµ̃
j (qh, wh), (2.7b)

∫

Ij

qhzhdx = −Hγ
j (uh, zh) (2.7c)

hold for any (vh, wh, zh) ∈ [V kh ]
3 and j = 1, . . . , N . To possess adjustable numerical viscosities,

we choose the generalized alternating and upwind-biased fluxes for the dispersion term

(ûh)j+ 1

2

= (uh)
(γ)

j+ 1

2

, (q̂h)j+ 1

2

= (qh)
(µ̃)

j+ 1

2

, (p̂h)j+ 1

2

= (ph)
(γ̃)

j+ 1

2

(2.8a)

with γ 6= 1/2, µ > 1/2, and the GLF flux analogous to [12] for the nonlinear convection term,

namely

f̂(u−h , u
+
h ) =

(
1

2
+ θ

)
f(u−h ) +

(
1

2
− θ

)
f(u+h )− λα[[uh]], (2.8b)

in which the subscript j + 1/2 is omitted, and α = maxu∈[m,M ] |f
′(u)| with [m,M ] being the

range of u0(x). We would like to emphasize that the GLF flux with a larger numerical viscosity

coefficient is beneficial to the estimate of W3 in the proof of Theorem 4.1 below.

2.4. The numerical initial condition

The numerical initial condition is chosen as the LDG approximation with fluxes (2.8) to

a nonlinear steady-state problem

u+ ǫ̃0f(u)x + ǫ̃0uxxx = u0(x) + ǫ̃0f
(
u0(x)

)
x
+ ǫ̃0(u0)xxx(x) (2.9)

equipped with periodic boundary conditions, where ǫ̃0 > 0 is a constant that will be specified

in the derivation of (3.13), and u0(x) = u(x, 0) is the initial condition of (1.1). Optimal

initial error estimates for auxiliary variables, the prime variable and its time derivative will be
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shown in Section 3.2. It is worth noting that ǫ̃0 is introduced to deal with the nonlinearity

of the problem when generalized numerical fluxes are used, and ǫ̃0 = 1 for linearized KdV

equations [11]. Moreover, a relationship between the steady-state problem (2.9) and the time

dependent problem (1.1) is established in (3.19) below, which is essential to derive the optimal

initial error estimate for time derivative of the error.

3. A New Projection and Initial Error Estimates

3.1. A new projection

Let us first recall the definition of the standard GGR projection [2]. For z ∈ H1(Ih), the

GGR projection P
ψ
hz (ψ 6= 1/2) is a global projection of z satisfying

∫

Ij

(z − P
ψ
hz)vhdx = 0, ∀ vh ∈ P k−1(Ij), (3.1a)

(
P
ψ
hz
)(ψ)
j− 1

2

= z
(ψ)

j− 1

2

, j = 1, . . . , N. (3.1b)

For u, q, we can simply take the GGR projections Pγhu and P
µ̃
hq, respectively.

Since the nonlinear convection term may change its flow direction, the projection errors of

the prime variable u for the nonlinear convection and dispersion terms cannot be simultaneously

eliminated by the projection P
γ
hu. For this reason, we need to define a modified projection P

γ̃
dp

for p as
∫

Ij

(p− P
γ̃
dp)vhdx = 0, ∀ vh ∈ P k−1(Ij), (3.2a)

(
P
γ̃
d

)γ̃
j− 1

2

= p
(γ̃)

j− 1

2

+ d ̂f ′(u)
(
u− P

γ
hu
)
j− 1

2

, j = 1, . . . , N. (3.2b)

Here, u is the exact solution of the Eq. (1.1), d is a constant, which is taken as d = ǫ20 with

ǫ30 = ǫ̃0 for the estimate of (3.12d) in Lemma 3.2, and d = 1 for the proof of Theorem 4.1; that

is, Pγ̃
ǫ2
0

p̃ and P
γ̃
1p will be used respectively. The term ̂f ′(u)(u− P

γ
hu) depends on the choice of

flux f̂(u−h , u
+
h ), and its specific expression, namely

̂f ′(u)(u − P
γ
hu) =

(
1

2
+ θ

)
f ′(u)

(
u− P

γ
hu
)−

+

(
1

2
− θ

)
f ′(u)

(
u− P

γ
hu
)+

− λα
[[
u− P

γ
hu
]]
,

or
̂f ′(u)
(
u− P

γ
hu
)
= f ′(u)

{{
u− P

γ
hu
}}

− (θf ′(u) + λα)
[[
u− P

γ
hu
]]

can be obtained by the definition of GLF flux and the Taylor expansion, where α is the same

as that in (2.8b), and the subscript j+1/2 is omitted. It can be seen that Pγ̃dp depends on P
γ
hu

(already known), making P
γ
hu and P

γ̃
dp become a pair of projections. The new projection P

γ̃
dp

is beneficial to balance the projection errors of p − P
γ̃
dp and df ′(u)(u − P

γ
hu), see (3.12d) and

the estimate of Π4 in (4.9a) below.

The GGR projection P
ψ
h defined in (3.1) exists and is unique, and for z ∈ Hk+1(Ih), there

holds the optimal approximation property [2]
∥∥z − P

ψ
hz
∥∥+ h

∥∥z − P
ψ
hz
∥∥
∞

+ h
1

2

∥∥z − P
ψ
hz
∥∥
Γh

≤ Chk+1‖z‖k+1. (3.3)

For the modified projection P
γ̃
d , the optimal projection property can be proved. Moreover,

by (3.2b), Pγ̃d depends on f ′(u) and thus t, indicating that (Pγ̃dp)t 6= P
γ̃
d(pt) and the optimal
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approximation property of the time derivative of the projection error is not trivial. Fortunately,

due to the fact that (Pγhu)t = P
γ
h(ut), the optimal approximation property of the time derivative

can be shown, which is given in the following lemma.

Lemma 3.1. Under periodic boundary conditions, the modified projection P
γ̃
dw exists and is

unique. Moreover, assuming ∂mt w ∈ Hk+1(Ih) and the exact solution u of (1.1) satisfies

∂mt u ∈ Hk+1(Ih), we have the following optimal approximation property:

∥∥∂mt (w − P
γ̃
dw)

∥∥ ≤ Chk+1
(∥∥∂mt u

∥∥
k+1

+
∥∥∂mt w

∥∥
k+1

)
,

where m = 0, 1, 2 and C is independent of h.

Proof. We will show the property of Pγ̃dw by the property of GGR projection P
γ̃
hw. To do

that, let W = P
γ̃
dw − P

γ̃
hw. Because P

γ̃
hw exists and is unique, we can obtain existence and

uniqueness of the projection P
γ̃
dw if W exists and is unique. Denote by Wj(x) the restriction

of W to each element Ij

Wj(x) =

k∑

ℓ=0

αj,ℓPj,ℓ(x) =

k∑

ℓ=0

αj,ℓPℓ(s),

where Pℓ(s) is the ℓ-th order Legendre polynomials in [−1, 1] with s = 2(x− xj)/hj , and

xj = (xj+1/2 + xj−1/2)/2 is the center of Ij . By the definitions of Pγ̃hw,P
γ̃
dw, we have

∫

Ij

Wvhdx = 0, ∀ vh ∈ P k−1(Ij), (3.4a)

W
(γ̃)

j− 1

2

= d ̂f ′(u)(u − P
γ
hu)j− 1

2

, j = 1, . . . , N. (3.4b)

From equality (3.4a) and the orthogonality of Pℓ(s), we obtain

αj,ℓ = 0, ℓ = 0, . . . , k − 1, j = 1, . . . , N.

Thus,Wj(x) = αj,kPk(s), and αj,k is determined by (3.4b). Substituting the values of Legendre

polynomials at the endpoints into (3.4b), we arrive at

γ̃αj−1,k + (−1)kγαj,k = d ̂f ′(u)
(
u− P

γ
hu
)
j− 1

2

, cj , j = 1, . . . , N,

which, for periodic boundary conditions, is the following linear system:

Aαk = c,

where A = circ((−1)kγ, 0, · · · , 0, γ̃) is an N ×N circulant matrix, and αk = [α1,k, · · · , αN,k]
T,

c = [c1, · · · , cN ]T. The determinant of A is

|A| =
(
(−1)kγ

)N
− (−γ̃)N .

Clearly, the determinant of A is always not equal to 0 when γ 6= 1/2. Therefore, the matrix A

is invertible. This implies the existence and uniqueness of W , and thus Pγ̃dw.

In what follows, we first prove the approximation property ‖w − P
γ̃
dw‖ ≤ Chk+1. Since the

inverse of a nonsingular circulant matrix is also circulant, we have

A−1 =
1

(−1)kγ
(
1− qN

)circ(1, q, · · · , qN−1),
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where q = −γ̃/(γ(−1)k) (|q| 6= 1). The row- and column-norm of the A−1 are equal and satisfy

‖A−1‖1 = ‖A−1‖∞ ≤
1∣∣γ(1− |q|)

∣∣ ,

hence the spectral norm satisfies

‖A−1‖2 ≤ ‖A−1‖1‖A
−1‖∞ ≤

1

γ2(1− |q|)2
.

Consequently,

‖αk‖
2 = ‖A−1c‖2 ≤ ‖A−1‖2‖c‖2 ≤ C‖c‖2.

To estimate ‖c‖2, let us consider the bound for cj = d ̂f ′(u)(u − P
γ
hu)j−1/2. Since

̂f ′(u)
(
u− P

γ
hub
)
= f ′(u)

{{
u− P

γ
hu
}}

−
(
θf ′(u) + λα

)[[
u− P

γ
hu
]]
, (3.5)

where α is the same as that in (2.8b), one has

|cj |
2 ≤ C

([[
u− P

γ
hu
]]2
j− 1

2

+
{{
u− P

γ
hu
}}2
j− 1

2

)
,

which, by (3.3), implies

‖c‖2 ≤ C
∥∥u− P

γ
hu
∥∥2
Γh

≤ Ch2k+1‖u‖2k+1,

where the positive constant C is independent of h. Therefore,

‖αk‖
2 ≤ Ch2k+1‖u‖2k+1.

This, together with the fact that

‖W‖2 =
N∑

j=1

α2
j,k‖Pj,k(x)‖

2
Ij =

N∑

j=1

hjα
2
j,k

2k + 1
≤ Ch‖αk‖

2,

produces the approximation result of ‖W‖ and thus

‖w − P
γ̃
dw‖ ≤ Chk+1

(
‖u‖k+1 + ‖w‖k+1

)
.

Next, we turn to the proof of ‖∂t(w − P
γ̃
dw)‖ ≤ Chk+1. Let Wt = (Pγ̃dw)t − (Pγ̃hw)t and

denote its restriction to each element Ij as

(Wt)j(x) =

k∑

ℓ=0

βj,ℓPj,ℓ(x) =

k∑

ℓ=0

βj,ℓPℓ(s).

Taking the time derivative of (3.4), we obtain

∫

Ij

Wtvhdx = 0, ∀ vh ∈ P k−1(Ij), (3.6a)

(Wt)
(γ̃)

j− 1

2

= d
(

̂f ′(u)
(
u− P

γ
hu
))
t
|j− 1

2

, j = 1, . . . , N. (3.6b)

By (3.6a), we have

βj,ℓ = 0, ℓ = 0, . . . , k − 1, j = 1, . . . , N,
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which implies (Wt)j(x) = βj,kPk(s), and further by (3.6b)

γ̃βj−1,k + (−1)kγβj,k = d
(

̂f ′(u)
(
u− P

γ
hu
))
t

∣∣
j− 1

2

, (ct)j , j = 1, . . . , N.

Thus,

Aβk = ct,

where A = circ((−1)kγ, 0, · · · , 0, γ̃) is an N ×N circulant matrix, and βk = [β1,k, · · · , βN,k]
T,

ct = [(ct)1, · · · , (ct)N ]T. By the above estimate

‖A−1‖2 ≤
1

γ2(1− |q|)2
,

we have

‖βk‖
2 =

∥∥A−1ct
∥∥2 ≤ ‖A−1‖2‖ct‖

2 ≤ C‖ct‖
2.

Moreover, using the estimate of ‖c‖2 and taking into account (Pγhu)t = P
γ
h(ut), it is easy to

show

‖ct‖
2 ≤ C

∥∥(u− P
γ
hu)t

∥∥2
Γh

≤ Ch2k+1‖ut‖
2
k+1,

where the positive constant C is independent of h. Therefore,

‖βk‖
2 ≤ Ch2k+1‖ut‖

2
k+1.

Combining the fact that

‖Wt‖
2 =

N∑

j=1

β2
j,k‖Pj,k(x)‖

2
Ij =

N∑

j=1

hjβ
2
j,k

2k + 1
≤ Ch‖βk‖

2,

we can obtain

‖Wt‖ ≤ Chk+1‖ut‖k+1,

and thus ∥∥∂t(w − P
γ̃
dw)

∥∥ ≤ Chk+1
(
‖ut‖k+1 + ‖wt‖k+1

)
.

Finally, ∥∥∂tt(w − P
γ̃
dw)

∥∥ ≤ Chk+1
(
‖utt‖k+1 + ‖wtt‖k+1

)

can be obtained in an analogous way. This completes the proof of Lemma 3.1. �

By above GGR projections, we are now ready to split eu, eq, ep into

eu = u− uh =
(
P
γ
hu− uh

)
+
(
u− P

γ
hu
)
, ξu + ηu,

eq = q − qh =
(
P
µ̃
hq − qh

)
+
(
q − P

µ̃
hq
)
, ξq + ηq,

ep = p− ph =
(
P
γ̃
dp− ph

)
+
(
p− P

γ̃
dp
)
, ξp + ηp,

where P
γ̃
ǫ2
0

and P
γ̃
1 will be used for the estimates when t = 0 and t > 0, respectively. Obviously,

by the definitions of Pγh and P
µ̃
h, one has

Hγ(ηu, vh) = 0, Hµ̃(ηq, vh) = 0, ∀ vh ∈ V kh . (3.7)
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3.2. Initial error estimates

For nonlinear KdV type equations (1.1), the nonlinear term, especially S3-S5 in (3.11), will

bring extra trouble for initial error estimates if we take the same numerical initial condition as

that for the linearized case [11]. Therefore, a small positive constant ǫ̃0 is introduced in (2.9),

which is independent of h. Besides, there are additional differences compared with the proof

for the linear case. For example, a modified projection P
γ̃
ǫ2
0

is needed, and some relationships of

the LDG solutions as well as the jump terms are constructed.

Lemma 3.2. For the numerical initial condition (2.9) with ǫ̃0 = 1/(24C⋆), periodic boundary

conditions and k ≥ 1, assuming u0 ∈ Hk+2(Ih) and ‖u0 − uh(0)‖∞ ≤ Ch, we have the following

optimal initial error estimates for time dependent nonlinear KdV type equations (1.1):

‖u0 − uh(0)‖+ ‖q0 − qh(0)‖+ ‖p0 − ph(0)‖+ ‖ut(0)− uht(0)‖ ≤ Chk+1,

where q0 = (u0)x, p0 = (u0)xx, and C is independent of h.

Proof. Clearly, the LDG scheme with fluxes (2.8) for the steady-state problem (2.9) is
∫

Ij

ũhvhdx = ǫ̃0H
∧
j

(
f(ũh), vh

)
+ ǫ0H

γ̃
j (p̃h, vh) +

∫

Ij

g(x)vhdx,

∫

Ij

p̃hwhdx = −ǫ0H
µ̃
j (q̃h, wh),

∫

Ij

q̃hzhdx = −ǫ0H
γ
j (ũh, zh),

where the positive constant ǫ̃0 has been introduced in (2.9) with ǫ30 = ǫ̃0, and ǫ̃0 will be specified

in the estimate of (3.13). Here and below,

g(x) = u0(x) + ǫ̃0f
(
u0(x)

)
x
+ ǫ̃0(u0)xxx(x),

the exact solution and numerical solution of the steady-state problem are ũ, q̃, p̃ and ũh, q̃h, p̃h
respectively, and

ũ = u0, q̃ = ǫ0ũx = ǫ0(u0)x = ǫ0q0, p̃ = ǫ0q̃x = ǫ20(u0)xx = ǫ20p0.

By the continuity of numerical solutions with respect to time, the LDG scheme (2.7) for the

time dependent problem still holds when t = 0. This implies that ũh = uh(0), q̃h = ǫ0qh(0),

p̃h = ǫ20ph(0). Thus, the following relationships hold:

eũ = eu(0), eq̃ = ǫ0eq(0), ep̃ = ǫ20ep(0),

ξũ = ξu(0), ξq̃ = ǫ0ξq(0), ξp̃ = ǫ20
(
P
γ̃
ǫ2
0

p0 − ph(0)
)
,

ηũ = ηu(0), ηq̃ = ǫ0ηq(0), ηp̃ = ǫ20
(
p0 − P

γ̃
ǫ2
0

p0
)
.

(3.8)

The optimal initial error estimates can be obtained by establishing the estimates to ‖ξũ‖, ‖ξq̃‖,

‖ξp̃‖ and the jump terms, which are divided into the following five steps.

Step 1: Error equations. By Galerkin orthogonality, the error decomposition (3.8), the

second order Taylor expansion

f(ũ)− f(ũh) = f ′(ũ)eũ − e2ũ

∫ 1

0

f ′′
(
ũ+ s(ũh − ũ)

)
(1 − s)ds

, f ′(ũ)ξũ + f ′(ũ)ηũ − R̃e2ũ, (3.9)
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and summing over all elements, there hold the following error equations:

∫

I

ξũvhdx = −

∫

I

ηũvhdx+ ǫ̃0H
∧
(
f ′(ũ)ξũ, vh

)
+ ǫ̃0H

∧
(
f ′(ũ)ηũ, vh

)

− ǫ̃0H
∧
(
R̃e2ũ, vh

)
+ ǫ0H

γ̃(ξp̃, vh) + ǫ0H
γ̃(ηp̃, vh), (3.10a)

∫

I

ξp̃whdx = −

∫

I

ηp̃whdx− ǫ0H
µ̃(ξq̃, wh)− ǫ0H

µ̃(ηq̃ , wh), (3.10b)

∫

I

ξq̃zhdx = −

∫

I

ηq̃zhdx− ǫ0H
γ(ξũ, zh)− ǫ0H

γ(ηũ, zh). (3.10c)

Step 2: Estimate to ‖ξũ‖. Taking (vh, wh, zh) = (ξũ, ξq̃,−ξp̃) in (3.10), summing over all j

and using (3.7), we have

‖ξũ‖
2 = S1 + S2 + S3 + S4 + S5, (3.11)

where

S1 = −

∫

I

ηũξũdx−

∫

I

ηp̃ξq̃dx+

∫

I

ηq̃ξp̃dx,

S2 = ǫ0
(
Hγ̃(ξp̃, ξũ) +Hγ(ξũ, ξp̃)−Hµ̃(ξq̃, ξq̃)

)
,

S3 = ǫ̃0H
∧
(
f ′(ũ)ξũ, ξũ

)
,

S4 = ǫ̃0H
∧
(
f ′(ũ)ηũ, ξũ

)
+ ǫ0H

γ̃(ηp̃, ξũ),

S5 = −ǫ̃0H
∧
(
R̃e2ũ, ξũ

)
,

which will be estimated separately. By the optimal approximation properties of projections and

Young’s inequality,

S1 ≤
1

8
‖ξũ‖

2 + ǫ1
(
‖ξq̃‖

2 + ‖ξp̃‖
2
)
+ Ch2k+2, (3.12a)

where ǫ1 can be small enough and C is a constant independent of h. S2 can be estimated by

Lemma 2.1 and µ > 1/2; it reads,

S2 = −ǫ0

(
µ−

1

2

) N∑

j=1

[[ξq̃]]
2
j+ 1

2

≤ 0. (3.12b)

For S3, it is easy to show that

S3 = ǫ̃0

(
N∑

j=1

∫

Ij

f ′(ũ)ξũ(ξũ)xdx+

N∑

j=1

̂
(
f ′(ũ)ξũ

)
j+ 1

2

[[ξũ]]j+ 1

2

)

= −
ǫ̃0
2

N∑

j=1

∫

Ij

f ′(ũ)xξ
2
ũdx− ǫ̃0

N∑

j=1

(
f ′(ũ){{ξũ}}[[ξũ]]

)
j+ 1

2

+ ǫ̃0

N∑

j=1

(
f ′(ũ){{ξũ}}[[ξũ]]−

(
θf ′(ũ) + λα̃

)
[[ξũ]]

2
)
j+ 1

2

= −
ǫ̃0
2

N∑

j=1

∫

Ij

f ′(ũ)xξ
2
ũdx− ǫ̃0

N∑

j=1

(
θf ′(ũ) + λα̃

)
j+ 1

2

[[ξũ]]
2
j+ 1

2

,
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where we have also used the following expression of ̂f ′(ũ)ξũ implied by the definition of GLF

flux and Taylor expansion:

̂f ′(ũ)ξũ =

(
1

2
+ θ

)
f ′(ũ)ξ−ũ +

(
1

2
− θ

)
f ′(ũ)ξ+ũ − λα̃[[ξũ]]

= f ′(ũ){{ξũ}} −
(
θf ′(ũ) + λα̃

)
[[ξũ]],

where α̃ = α(0) is the value of α at t = 0, and α is the same as that in (2.8b). By the definition

of α̃ and λ ≥ |θ|, we have

−
(
θf ′(ũ) + λα̃

)
j+ 1

2

≤ 0.

Consequently,

S3 ≤ C⋆ǫ̃0‖ξũ‖
2. (3.12c)

Here and below, C⋆ represents a constant depending on f ′′. Using the definitions of Pγh,P
γ̃
d and

the inverse inequality (2.3), we obtain

S4 = ǫ̃0

(
N∑

j=1

∫

Ij

f ′(ũ)ηũ(ξũ)xdx+
N∑

j=1

̂
(
f ′(ũ)ηũ

)
j+ 1

2

[[ξũ]]j+ 1

2

)

+ ǫ0

(
N∑

j=1

∫

Ij

ηp̃(ξũ)xdx+

N∑

j=1

(
η
(γ̃)
p̃ [[ξũ]]

)
j+ 1

2

)

= ǫ̃0

N∑

j=1

(∫

Ij

f ′(ũj)ηũ(ξũ)xdx+

∫

Ij

(
f ′(ũ)− f ′(ũj)

)
ηũ(ξũ)xdx

)

≤ C⋆ǫ̃0‖ξũ‖
2 + Ch2k+2. (3.12d)

For the high order term S5, by the assumption ‖u0 − uh(0)‖∞ ≤ Ch, the inverse inequalities

and the approximation properties of projections, one has

S5 = −ǫ̃0

(
N∑

j=1

∫

Ij

R̃e2ũ(ξũ)xdx+

N∑

j=1

̂(R̃e2ũ)j+ 1

2

[[ξũ]]j+ 1

2

)

≤ C⋆ǫ̃0‖ξũ‖
2 + Ch2k+2. (3.12e)

Collecting (3.12a)-(3.12e) into (3.11) and taking ǫ̃0 = 1/(24C⋆), we arrive at

‖ξũ‖
2 ≤

(
1

8
+ 3C⋆ǫ̃0

)
‖ξũ‖

2 + ǫ1
(
‖ξq̃‖

2 + ‖ξp̃‖
2
)
+ Ch2k+2

≤
1

4
‖ξũ‖

2 + ǫ1
(
‖ξq̃‖

2 + ‖ξp̃‖
2
)
+ Ch2k+2. (3.13)

Step 3: Estimate to ‖ξq̃‖. Prior to estimating ‖ξq̃‖, let us first consider the bounds for

H∧(f ′(ũ)ξũ, ξq̃),H
∧(f ′(ũ)ξũ, ξp̃) and the jump terms [[ξũ]]

2, [[ξq̃]]
2, [[ξp̃]]

2. To this end, we rewrite

H∧(f ′(ũ)ξũ, ξq̃) as

H∧
(
f ′(ũ)ξũ, ξq̃

)
=

N∑

j=1

∫

Ij

f ′(ũ)ξũ(ξq̃)xdx+

N∑

j=1

̂
(
f ′(ũ)ξũ

)
j+ 1

2

[[ξq̃ ]]j+ 1

2
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=

N∑

j=1

∫

Ij

f ′(ũ)ξũ(ξq̃)xdx+

N∑

j=1

(
f ′(ũ)ξ

(γ)
ũ [[ξq̃]]

)
j+ 1

2

+

N∑

j=1

((
γ − θ −

1

2

)
f ′(ũ)− λα̃

)

j+ 1

2

(
[[ξũ]][[ξq̃]]

)
j+ 1

2

=

N∑

j=1

f ′
(
ũj+ 1

2

)
Hγ
j (ξũ, ξq̃) +

N∑

j=1

∫

Ij

(
f ′(ũ)− f ′

(
ũj+ 1

2

))
ξũ(ξq̃)xdx

+

N∑

j=1

((
γ − θ −

1

2

)
f ′(ũ)− λα̃

)

j+ 1

2

(
[[ξũ]][[ξq̃]]

)
j+ 1

2

−

N∑

j=1

(
f ′
(
ũj+ 3

2

)
− f ′

(
ũj+ 1

2

))(
ξ
(γ)
ũ ξ+q̃

)
j+ 1

2

,

where we have used the fact

̂f ′(ũ)ξũ = f ′(ũ){{ξũ}} − (θf ′(ũ) + λα̃)[[ξũ]]

= f ′(ũ)ξ
(γ)
ũ +

((
γ − θ −

1

2

)
f ′(ũ)− λα̃

)
[[ξũ]].

Taking zh = ξq̃ in the cell error equation corresponding to (3.10c), we get

ǫ0H
γ
j (ξũ, ξq̃) = −

∫

Ij

ξq̃ξq̃dx−

∫

Ij

ηq̃ξq̃dx.

An application of the inverse inequalities leads to the bound for H∧(f ′(ũ)ξũ, ξq̃), it reads,

∣∣H∧
(
f ′(ũ)ξũ, ξq̃

)∣∣ ≤ C⋆‖ξũ‖ ‖ξq̃‖+
C

ǫ0

(
‖ξq̃‖

2 + hk+1‖ξq̃‖
)

+ C

∣∣∣∣∣

N∑

j=1

(
[[ξũ]][[ξq̃ ]]

)
j+ 1

2

∣∣∣∣∣. (3.14a)

Analogously,

∣∣H∧
(
f ′(ũ)ξũ, ξp̃

)∣∣ ≤ C⋆‖ξũ‖ ‖ξp̃‖+
C

ǫ0

(
‖ξq̃‖ ‖ξp̃‖+ hk+1‖ξp̃‖

)

+ C

∣∣∣∣∣

N∑

j=1

(
[[ξũ]][[ξp̃]]

)
j+ 1

2

∣∣∣∣∣. (3.14b)

For the estimates of jump terms, taking (vh, wh, zh) = (ξp̃, ξq̃, ξũ) in (3.10), by Lemma 2.1, the

properties of Pγh,P
γ̃
h,P

γ̃
d and the estimate of |H∧(f ′(ũ)ξũ, ξp̃)| in (3.14b), we get

N∑

j=1

[[ξũ]]
2
j+ 1

2

≤
C

ǫ0

(
‖ξũ‖ ‖ξq̃‖+ hk+1‖ξũ‖

)
, (3.15a)

N∑

j=1

[[ξq̃]]
2
j+ 1

2

≤
C

ǫ0

(
‖ξq̃‖ ‖ξp̃‖+ hk+1‖ξq̃‖

)
, (3.15b)

N∑

j=1

[[ξp̃]]
2
j+ 1

2

≤
C

ǫ0

(
‖ξũ‖ ‖ξp̃‖+ ‖ξq̃‖ ‖ξp̃‖+ ‖ξũ‖ ‖ξq̃‖+ hk+1(‖ξũ‖+ ‖ξp̃‖)

)
, (3.15c)
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where we have used Young’s inequality for boundary terms of (3.14b) and also (3.15a) in the

derivation of (3.15c). We are now ready to estimate ‖ξq̃‖. Taking (wh, zh) = (ξũ, ξq̃) in (3.10b)-

(3.10c) and adding them up, we arrive at

‖ξq̃‖
2 = −

∫

I

ξp̃ξũdx−

∫

I

ηp̃ξũdx−

∫

I

ηq̃ξq̃dx− ǫ0
(
Hµ̃(ξq̃, ξũ) +Hγ(ξũ, ξq̃)

)
.

It follows from Lemma 2.1, the approximation properties of projections, the Young’s inequality

and the estimate of jump terms in (3.15a)-(3.15b) that

‖ξq̃‖
2 ≤ ‖ξũ‖ ‖ξp̃‖+ Chk+1

(
‖ξq̃‖+ ‖ξũ‖

)
+ ǫ0

N∑

j=1

(
(γ − µ)2

4ǫ2
[[ξũ]]

2
j+ 1

2

+ ǫ2[[ξq̃ ]]
2
j+ 1

2

)

≤ ‖ξũ‖ ‖ξp̃‖+
(γ − µ)2

4ǫ2
C‖ξũ‖ ‖ξq̃‖+ Cǫ2‖ξq̃‖ ‖ξp̃‖+

(γ − µ)2

4ǫ2
Chk+1‖ξũ‖

+ Cǫ2h
k+1‖ξq̃‖+ Chk+1

(
‖ξq̃‖+ ‖ξũ‖

)

≤
ǫ2
8
‖ξp̃‖

2 +
2

ǫ2
‖ξũ‖

2 +
1

8
‖ξq̃‖

2 +
C2(γ − µ)4

8ǫ22
‖ξũ‖

2 +
ǫ2
8
‖ξp̃‖

2 + 2C2ǫ2‖ξq̃‖
2

+
1

8
‖ξq̃‖

2 + ‖ξũ‖
2 + Ch2k+2

≤

(
2C2ǫ2 +

1

4

)
‖ξq̃‖

2 +

(
1 +

2

ǫ2
+
C2(γ − µ)4

8ǫ22

)
‖ξũ‖

2 +
ǫ2
4
‖ξp̃‖

2 + Ch2k+2,

where ǫ2 can be sufficiently small. Taking ǫ2 = 1/(4C2), it is easy to show that

‖ξq̃‖
2 ≤ C1‖ξũ‖

2 + ǫ2‖ξp̃‖
2 + Ch2k+2, (3.16)

where C1 depends on C, γ, µ, but is independent of h.

Step 4: Estimate to ‖ξp̃‖. Taking (vh, wh) = (−ξq̃, ξp̃) in (3.10a)-(3.10b) and summing them

up, we have

‖ξp̃‖
2 =

∫

I

ξũξq̃dx+

∫

I

ηũξq̃dx−

∫

I

ηp̃ξp̃dx+ ǫ̃0

(
−H∧

(
f ′(ũ)ξũ, ξq̃

)
+H∧

(
R̃e2ũ, ξq̃

))

− ǫ̃0H
∧
(
f ′(ũ)ηũ, ξq̃

)
− ǫ0

(
Hµ̃(ξq̃ , ξp̃) +Hγ̃(ξp̃, ξq̃) +Hγ̃(ηp̃, ξq̃)

)
.

By Lemma 2.1, the approximation properties of projections, the assumption ‖u0−uh(0)‖∞≤Ch

together with the estimates of H∧(f ′(ũ)ξũ, ξq̃) and jump terms in (3.14a), (3.15), we obtain,

after using Young’s inequality

‖ξp̃‖
2 ≤ 2‖ξũ‖ ‖ξq̃‖+ Chk+1

(
‖ξq̃‖+ ‖ξp̃‖

)
+ ǫ0

N∑

j=1

(
C2

4
[[ξũ]]

2
j+ 1

2

+ [[ξq̃]]
2
j+ 1

2

)

+ C‖ξq̃‖
2 + ǫ0

N∑

j=1

(
(γ − µ̃)2

4
[[ξq̃]]

2
j+ 1

2

+ [[ξp̃]]
2
j+ 1

2

)

≤ 2‖ξũ‖ ‖ξq̃‖+ C
(
‖ξũ‖ ‖ξq̃‖+ ‖ξũ‖ ‖ξp̃‖+ ‖ξq̃‖ ‖ξp̃‖

)
+

(γ − µ̃)2

4
C‖ξq̃‖ ‖ξp̃‖

+
C3

4
‖ξũ‖ ‖ξq̃‖+ C‖ξq̃‖

2 +
(γ − µ̃)2

4
Chk+1‖ξq̃‖+

C3

4
hk+1‖ξũ‖

+ Chk+1
(
‖ξũ‖+ ‖ξq̃‖+ ‖ξp̃‖

)

≤
1

2
‖ξp̃‖

2 +
C2

2

(
‖ξũ‖

2 + ‖ξq̃‖
2
)
+
C

2
h2k+2.
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Consequently,

‖ξp̃‖
2 ≤ C2

(
‖ξũ‖

2 + ‖ξq̃‖
2
)
+ Ch2k+2, (3.17)

where C2 depends on C, γ, µ, but is independent of h. Substituting (3.17) into (3.16) and letting

ǫ2 = min(1/(4C2), 1/(2C2)), it is easy to get

‖ξq̃‖
2 ≤ (2C1 + 1)‖ξũ‖

2 + Ch2k+2, (3.18a)

‖ξp̃‖
2 ≤ 2C2(C1 + 1)‖ξũ‖

2 + Ch2k+2. (3.18b)

Step 5: Final estimates. Inserting (3.18) into (3.13) and taking

ǫ1 =
1

4
(
2C1 + 1 + 2C2(C1 + 1)

) ,

we obtain

‖ξũ‖ ≤ Chk+1, ‖ξq̃‖+ ‖ξp̃‖ ≤ Chk+1,

where C is a constant independent of h. Further, by the relationship (3.8) and the property of

the projection P
γ̃
d in Lemma 3.1, we obtain

‖ξu(0)‖+ ‖ξq(0)‖+ ‖ξp(0)‖ ≤ Chk+1.

It remains to consider ‖ξut(0)‖. The error equation for (2.7a) is

∫

I

ξutvhdx = −

∫

I

ηutvhdx+H∧
(
f ′(u)ξu, vh

)
+H∧

(
f ′(u)ηu, vh

)

−H∧
(
Re2u, vh

)
+Hγ̃(ξp, vh) +Hγ̃(ηp, vh).

Due to the continuity of numerical solutions with respect to time, the above equation still holds

when t = 0. This, by virtue of (3.8) and ǫ̃0 = ǫ30 in combination with the error equation (3.10a),

leads to ∫

I

ξut(0)vhdx = −

∫

I

ηut(0)vhdx+
1

ǫ̃0

∫

I

euvhdx. (3.19)

Taking vh=ξut(0), it is easy to get ‖ξut(0)‖≤Ch
k+1. This finishes the proof of Lemma 3.2. �

4. Optimal Error Estimates

For the LDG scheme (2.7), using the same argument as that in (3.10) for initial error

estimates, we arrive at the following error equations:

∫

I

ξutvhdx = −

∫

I

ηutvhdx+H∧
(
f ′(u)ξu, vh

)
+H∧

(
f ′(u)ηu, vh

)

−H∧
(
Re2u, vh

)
+Hγ̃(ξp, vh) +Hγ̃(ηp, vh), (4.1a)

∫

I

ξpwhdx = −

∫

I

ηpwhdx−Hµ̃(ξq, wh), (4.1b)

∫

I

ξqzhdx = −

∫

I

ηqzhdx−Hγ(ξu, zh), (4.1c)
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which hold for all (vh, wh, zh) ∈ [V kh ]
3, where we have used the definitions of projections Pγhu,P

µ̃
hq

in (3.1). To deal with the nonlinearity of the flux f(u) at t > 0, we would like to adopt the

a priori assumption [26] that for k ≥ 1,

‖ξu(t)‖ ≤ h
3

2 , ‖ξut(t)‖ ≤ h
3

2 , (4.2a)

where ξu = P
γ
hu− uh and P

γ
hu is a GGR projection of u defined in (3.1) and t > 0. By inverse

property (2.5), we have

‖ξu(t)‖∞ ≤ Ch, ‖ξut(t)‖∞ ≤ Ch. (4.2b)

To derive the optimal error estimates, let us first show an intermediate result for ‖ξq‖, ‖ξp‖.

Lemma 4.1. The LDG solution to the scheme (2.7) with generalized numerical fluxes (2.8)

satisfies

‖ξq‖
2 + ‖ξp‖

2 ≤ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
, (4.3)

where C is independent of h.

Proof. We start by presenting the estimates to jump terms and H∧(f ′(u)ξu, ξq) to be used

later. Letting (vh, wh, zh) = (ξp, ξq, ξu) in (4.1) and using the same argument as that in deriving

(3.15) for initial error estimate, we obtain

N∑

j=1

[[ξu]]
2
j+ 1

2

≤ C
(
‖ξu‖ ‖ξq‖+ hk+1‖ξu‖

)
, (4.4a)

N∑

j=1

[[ξq]]
2
j+ 1

2

≤ C
(
‖ξq‖ ‖ξp‖+ hk+1‖ξq‖

)
, (4.4b)

N∑

j=1

[[ξp]]
2
j+ 1

2

≤ C
(
‖ξut‖ ‖ξp‖+ ‖ξu‖ ‖ξp‖+ ‖ξu‖ ‖ξq‖+ ‖ξq‖ ‖ξp‖

)

+ Chk+1
(
‖ξu‖+ ‖ξp‖

)
. (4.4c)

Similar to the estimate of H∧(f ′(ũ)ξũ, ξq̃) in (3.14a), we have

∣∣H∧
(
f ′(u)ξu, ξq

)∣∣ ≤ C
(
‖ξu‖

2 + ‖ξq‖
2 + h2k+2

)
+ C

∣∣∣∣∣

N∑

j=1

(
[[ξu]][[ξq ]]

)
j+ 1

2

∣∣∣∣∣. (4.5)

We are now ready to estimate ‖ξq‖ and ‖ξp‖. Letting (wh, zh) = (ξu, ξq) in (4.1b)-(4.1c)

and adding them up, we arrive at

‖ξq‖
2 = −

∫

I

ξpξudx−

∫

I

ηpξudx−

∫

I

ηqξqdx−Hµ̃(ξq , ξu)−Hγ(ξu, ξq).

By virtue of (4.4a)-(4.4b) and using an analogous argument as that of ‖ξq̃‖
2 in the initial error

estimate, we get

‖ξq‖
2 ≤ ‖ξu‖ ‖ξp‖+ Chk+1

(
‖ξq‖+ ‖ξu‖

)
+

N∑

j=1

(
(γ − µ)2

4ǫ
[[ξu]]

2
j+ 1

2

+ ǫ[[ξq]]
2
j+ 1

2

)

≤ ‖ξu‖ ‖ξp‖+
(γ − µ)2

4ǫ
C‖ξu‖ ‖ξq‖+ Cǫ‖ξq‖ ‖ξp‖+

(γ − µ)2

4ǫ
Chk+1‖ξu‖
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+ Cǫhk+1‖ξq‖+ Chk+1
(
‖ξq‖+ ‖ξu‖

)

≤
ǫ

8
‖ξp‖

2 +
2

ǫ
‖ξu‖

2 +
1

8
‖ξq‖

2 +
C2(γ − µ)4

8ǫ2
‖ξu‖

2 +
ǫ

8
‖ξp‖

2 + 2C2ǫ‖ξq‖
2

+
1

8
‖ξq‖

2 + ‖ξu‖
2 + Ch2k+2

≤

(
2C2ǫ+

1

4

)
‖ξq‖

2 +

(
1 +

2

ǫ
+
C2(γ − µ)4

8ǫ2

)
‖ξu‖

2 +
ǫ

4
‖ξp‖

2 + Ch2k+2,

where ǫ obtained by the Young’s inequality satisfies 2C2ǫ ≤ 1/2. Thus,

‖ξq‖
2 ≤ C1‖ξu‖

2 + ǫ‖ξp‖
2 + Ch2k+2. (4.6)

Taking (vh, wh) = (−ξq, ξp) in error equations (4.1a)-(4.1b) and adding them up, we have

‖ξp‖
2 =

∫

I

ξutξqdx +

∫

I

ηutξqdx−

∫

I

ηpξpdx−H∧
(
f ′(u)ξu, ξq

)
+H∧

(
Re2u, ξq

)

−H∧
(
f ′(u)ηu, ξq

)
−Hγ̃(ξp, ξq)−Hµ̃(ξq, ξp)−Hγ̃(ηp, ξq).

Collecting (4.4), (4.5) and following the analogous argument as that of ‖ξp̃‖
2 in the initial error

estimate, one has

‖ξp‖
2 ≤ C2

(
‖ξu‖

2 + ‖ξq‖
2 + ‖ξut‖

2
)
+ Ch2k+2. (4.7)

Substituting (4.7) into (4.6) and letting ǫ = min(1/(4C2), 1/(2C2)), we deduce that

‖ξq‖
2 + ‖ξp‖

2 ≤ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
.

This completes the proof. �

Theorem 4.1. Assume that the exact solution u of (1.1) is sufficiently smooth, i.e. ‖u‖k+2,

‖ut‖k+2, ‖utt‖k+2 are bounded uniformly for any time t, and f ∈ C2. Let uh, qh, ph be the LDG

solution of (2.7) with generalized numerical fluxes (2.8). For a quasi-uniform mesh and k ≥ 1,

we have, for any t > 0, the following optimal error estimates:

‖eu(t)‖+ ‖eut(t)‖+ ‖eq(t)‖+ ‖ep(t)‖ ≤ Chk+1, (4.8)

where C is independent of h.

Proof. Taking (vh, zh) = (ξu,−ξp) in (4.1a), (4.1c) and adding them up, we have

1

2

d

dt
‖ξu‖

2 = Π1 +Π2 +Π3 +Π4 +Π5,

where

Π1 =

∫

I

ξqξpdx−

∫

I

ηutξudx+

∫

I

ηqξpdx,

Π2 = Hγ̃(ξp, ξu) +Hγ(ξu, ξp),

Π3 = H∧
(
f ′(u)ξu, ξu

)
,

Π4 = H∧
(
f ′(u)ηu, ξu

)
+Hγ̃(ηp, ξu),

Π5 = −H∧
(
Re2u, ξu

)
.
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Following the process (3.12a)-(3.12e) in Lemma 3.2, it is easy to show

1

2

d

dt
‖ξu‖

2 ≤ C
(
‖ξu‖

2 + ‖ξq‖
2 + ‖ξp‖

2 + h2k+2
)
. (4.9a)

Taking the time derivatives of (4.1), choosing (vh, wh, zh) = (ξut, ξqt,−ξpt) and adding them

up, we arrive at
1

2

d

dt
‖ξut‖

2 =W1 +W2 +W3 +W4 +W5,

where

W1 = −

∫

I

(ηu)ttξutdx−

∫

I

ηptξqtdx+

∫

I

ηqtξptdx,

W2 = Hγ̃(ξpt, ξut) +Hγ(ξut, ξpt)−Hµ̃(ξqt, ξqt),

W3 = H∧
((
f ′(u)ξu

)
t
, ξut

)
,

W4 = H∧
((
f ′(u)ηu

)
t
, ξut

)
+Hγ̃(ηpt, ξut),

W5 = −H∧
((
Re2u

)
t
, ξut

)
.

Using the same argument as that in the estimate of (3.11) except for W3, we obtain

1

2

d

dt
‖ξut‖

2 ≤W3 −

∫

I

ηptξqtdx+

∫

I

ηqtξptdx+ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
. (4.9b)

A combination of (4.9a) and (4.9b) together with Lemma 4.1 leads to

1

2

d

dt

(
‖ξu‖

2 + ‖ξut‖
2
)
≤W3 −

∫

I

ηptξqtdx+

∫

I

ηqtξptdx

+ C
(
‖ξu‖

2 + ‖ξut‖
2 + ‖ξq‖

2 + ‖ξp‖
2 + h2k+2

)

≤W3 −

∫

I

ηptξqtdx+

∫

I

ηqtξptdx

+ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
. (4.10)

Let us now consider the estimate of W3. Since

W3 = H∧
(
f ′(u)ξut, ξut

)
+H∧

(
f ′(u)tξu, ξut

)
, Z1 + Z2,

we use the same argument as that for (3.12c) to obtain

Z1 ≤ C‖ξut‖
2 −

N∑

j=1

(
θf ′(u) + λα

)
j+ 1

2

[[ξut]]
2
j+ 1

2

,

where (θf ′(u)+λα)j+1/2 ≥ C0 by the definition of α and λ ≥ |θ|, and C0 is a positive constant

independent of h. As for Z2, we follow the estimate of (3.14a) to get

Z2 ≤

N∑

j=1

((
γ − θ −

1

2

)
f ′(u)t − λαt

)

j+ 1

2

(
[[ξu]][[ξut]]

)
j+ 1

2

+ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
.

By Young’s inequality, the estimate of [[ξu]] in (4.4a) and Lemma 4.1, we arrive at the estimate

of Z2

Z2 ≤ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
+

1

4

N∑

j=1

(
θf ′(u) + λα

)
j+ 1

2

[[ξut]]
2
j+ 1

2

.
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Consequently,

W3 ≤ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
−

3

4

(
θf ′(u) + λα

)
j+ 1

2

[[ξut]]
2
j+ 1

2

≤ C
(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
. (4.11)

Inserting the above estimate into (4.10), one has

1

2

d

dt

(
‖ξu‖

2 + ‖ξut‖
2
)
≤ C

(
‖ξu‖

2 + ‖ξut‖
2 + h2k+2

)
−

∫

I

ηptξqtdx+

∫

I

ηqtξptdx.

Integrating the above inequality from 0 to T and using integration by parts in time together

with the initial error estimates in Lemma 3.2, we get

‖ξu(T )‖
2 + ‖ξut(T )‖

2 ≤ C

∫ T

0

(
‖ξu‖

2 + ‖ξut‖
2
)
dt+ ‖ξu(0)‖

2 + ‖ξut(0)‖
2

+ 2

∫ T

0

(
−

∫

I

ηptξqtdx+

∫

I

ηqtξptdx

)
dt+ Ch2k+2

≤ C

∫ T

0

(
‖ξu‖

2 + ‖ξut‖
2
)
dt+ 2

∫ T

0

∫

I

(
ηpttξq − ηqttξp

)
dxdt

+ 2

∫

I

(
− ηptξq + ηqtξp

)∣∣T
0
dx+ Ch2k+2,

≤ C

∫ T

0

(
‖ξu‖

2 + ‖ξut‖
2
)
dt+

1

2

(
‖ξu(T )‖

2 + ‖ξut(T )‖
2
)
+ Ch2k+2,

where we have also used the optimal approximation property of projections, Young’s inequality

and Lemma 4.1. An application of Gronwall’s inequality and the approximation property of

the projection leads to the desired optimal error estimate

‖eu(t)‖+ ‖eut(t)‖+ ‖eq(t)‖+ ‖ep(t)‖ ≤ Chk+1.

Finally, it follows from the above inequality that

‖ξu(t)‖+ ‖ξut(t)‖ ≤ Chk+1 ≤ Ch2 ≤ h
3

2 ,

and thus the a priori assumption (4.2a) is reasonable. This finishes the proof. �

5. Numerical Experiments

In this section, numerical experiments including accuracy tests, uniform and nonuniform

meshes (10% random perturbation of the uniform mesh), lower growth of the error, performance

for mixed boundary conditions and the capacity in resolving waves are presented. The explicit

third order total variation diminishing Runge-Kutta time discretization is used. We would like

to remark that the parameter ǫ̃0 in (2.9) is designed for the technical purpose only in deriving

optimal initial error estimate for the nonlinear case. In actual numerical computations, we

can simply use the standard L2 projection as the numerical initial condition and still observe

expected optimal convergence orders.
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Example 5.1. Consider

ut + (3u2)x + uxxx = g(x, t), (x, t) ∈ [0, π]× (0, T ],

u(x, 0) = sin(2x), x ∈ [0, π]

with periodic boundary conditions. The source term g(x, t) is chosen such that the exact

solution is

u(x, t) = sin(2x+ t).

Table 5.1 lists the L2 errors and numerical orders for Example 5.1 with different θ, γ, µ and λ

at T = 1, in which P k polynomials with 0 ≤ k ≤ 3 and uniform meshes are used. The results

with nonuniform meshes are shown in Table 5.2, and we can always observe optimal (k+1)-th

order, confirming the sharpness of the result in Theorem 4.1.

Example 5.2. To show the capacity in resolving waves with mixed boundary conditions, con-

sider the double solitary-wave problem

ut + (3u2)x + uxxx = 0, (x, t) ∈ [−20, 1]× (0, T ]

with the initial condition

u(x, 0) =
45csch2

(
1.5(x+ 14.5)

)
+ 20sech2(x+ 12)

2
(
3 coth

(
1.5(x+ 14.5)

)
− 2 tanh(x+ 12)

)2

Table 5.1: The errors ‖u− uh‖ and orders for Example 5.1 using P k polynomials with different θ, γ, µ

and λ on a uniform mesh of N cells. T = 1.

N

θ = 0.4 θ = 0.1 θ = 0.0

γ = 0.7 γ = 0.6 γ = 1.0

µ = 0.9 µ = 0.8 µ = 1.0

λ = 0.5 λ = −0.1 λ = 0.5

L2 error Order L2 error Order L2 error Order

P 0

20 5.68E-01 – 1.63E-01 – 5.65E-01 –

40 2.98E-01 0.93 6.61E-02 1.30 2.99E-01 0.92

80 1.31E-01 1.18 3.16E-02 1.06 1.32E-01 1.18

160 5.47E-02 1.26 1.57E-02 1.01 5.51E-02 1.26

P 1

20 1.48E-02 – 2.38E-02 – 7.57E-03 –

40 3.48E-03 1.94 7.02E-03 1.76 1.88E-03 2.00

80 9.71E-04 1.99 1.85E-03 1.93 4.71E-04 2.00

160 2.43E-04 2.00 4.68E-04 1.98 1.18E-04 2.00

P 2

20 1.37E-04 – 1.27E-04 – 1.89E-04 –

40 1.70E-05 3.01 1.58E-05 3.01 2.37E-05 2.99

80 2.12E-06 3.00 1.97E-06 3.00 2.96E-06 3.00

160 2.65E-07 3.00 2.46E-07 3.00 3.70E-07 3.00

P 3

20 6.78E-06 – 1.10E-05 – 3.65E-06 –

40 4.47E-07 3.92 8.13E-07 3.76 2.29E-07 3.99

60 8.93E-08 3.97 1.67E-07 3.91 4.55E-08 3.99

80 2.87E-08 3.94 5.37E-08 3.94 1.51E-08 3.83
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Table 5.2: The errors ‖u− uh‖ and orders for Example 5.1 using P k polynomials with different θ, γ, µ

and λ on a nonuniform mesh of N cells. T = 1.

N

θ = 0.4 θ = 0.1 θ = 0.0

γ = 0.7 γ = 0.6 γ = 1.0

µ = 0.9 µ = 0.8 µ = 1.0

λ = 0.5 λ = −0.1 λ = 0.5

L2 error Order L2 error Order L2 error Order

P 0

20 5.75E-01 – 1.73E-01 – 5.70E-01 –

40 3.01E-01 0.93 6.90E-02 1.33 3.01E-01 0.92

80 1.34E-01 1.17 3.39E-02 1.03 1.33E-01 1.18

160 5.57E-02 1.27 1.69E-02 1.01 5.56E-02 1.25

P 1

20 1.48E-02 – 2.45E-02 – 7.88E-03 –

40 3.89E-03 1.93 7.07E-03 1.79 1.91E-03 2.05

80 9.82E-04 1.99 1.87E-03 1.92 4.91E-04 1.96

160 2.46E-04 2.00 4.73E-04 1.98 1.22E-04 2.01

P 2

20 1.64E-04 – 1.36E-04 – 2.15E-04 –

40 1.92E-05 3.09 2.23E-05 2.61 2.50E-05 3.11

80 2.68E-06 2.85 2.62E-06 3.09 3.10E-06 3.01

160 3.00E-07 3.16 3.38E-07 2.95 3.89E-07 3.00

P 3

20 7.02E-06 – 1.21E-05 – 3.93E-06 –

40 4.78E-07 3.87 8.41E-07 3.84 2.50E-07 3.98

60 9.44E-08 4.00 1.73E-07 3.90 5.14E-08 3.90

80 3.01E-08 3.97 5.65E-08 3.89 1.67E-08 3.92

and mixed boundary conditions

u(−20, t) =
45csch2

(
1.5(−5.5− 9t)

)
+ 20sech2(−8− 4t)

2
(
3 coth

(
1.5(−5.5− 9t)

)
− 2 tanh(−8− 4t)

)2 ,

u(1, t) =
45csch2

(
1.5(15.5− 9t)

)
+ 20sech2(13− 4t)

2
(
3 coth

(
1.5(15.5− 9t)

)
− 2 tanh(13− 4t)

)2 ,

ux(1, t) =

(
45csch2

(
1.5(x+ 14.5− 9t)

)
+ 20sech2(x+ 12− 4t)

2
(
3 coth

(
1.5(x+ 14.5− 9t)

)
− 2 tanh(x+ 12− 4t)

)2

)

x

∣∣∣∣
x=1

,

and the exact solution is

u(x, t) =
45csch2

(
1.5(x+ 14.5− 9t)

)
+ 20sech2(x + 12− 4t)

2
(
3 coth

(
1.5(x+ 14.5− 9t)

)
− 2 tanh(x+ 12− 4t)

)2 .

The L2 errors and numerical orders for Example 5.2 with different θ, γ, µ and λ at T = 0.5

are given in Table 5.3. From the table, we observe that optimal (k+ 1)-th order can be always

achieved, indicating that the optimal error estimate is also valid for mixed boundary conditions.

Moreover, to show the collisions and interactions of soliton waves, we display the graphs of exact

solutions and numerical solutions at different time in Fig. 5.1, in which the numerical solutions

are computed by using P 2 polynomials with θ = −0.4, γ = 0.9, µ = 0.9, λ = 0 and 100 cells.

We can see that the two waves collide with each other at about T = 0.5 and the shape of waves

remains unchanged after collision.
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Table 5.3: The errors ‖u− uh‖ and orders for Example 5.2 using P k polynomials with different θ, γ, µ

and λ on a uniform mesh of N cells. T = 0.5.

N

θ = −0.2 θ = −0.4 θ = 0.5

γ = 0.8 γ = 0.9 γ = 1.0

µ = 1.0 µ = 0.9 µ = 1.0

λ = 0.5 λ = 0.1 λ = 0.0

L2 error Order L2 error Order L2 error Order

P 1

100 2.15E-01 – 2.44E-02 – 1.36E-01 –

120 1.36E-01 2.54 1.62E-02 2.25 8.19E-02 2.79

140 9.00E-02 2.66 1.16E-02 2.18 5.27E-02 2.85

160 6.24E-02 2.74 8.71E-03 2.14 3.59E-02 2.89

P 2

100 1.20E-03 – 8.66E-04 – 1.30E-03 –

120 5.71E-04 4.06 4.95E-04 3.07 6.55E-04 3.77

140 3.22E-04 3.71 3.09E-04 3.04 3.82E-04 3.50

160 2.03E-04 3.47 2.06E-04 3.03 2.45E-04 3.32

P 3

60 3.96E-04 – 3.41E-04 – 3.61E-04 –

80 1.26E-04 3.98 1.12E-04 3.86 1.06E-04 4.27

100 5.35E-05 3.83 4.69E-05 3.90 4.28E-05 4.05

120 2.66E-05 3.83 2.29E-05 3.92 2.06E-05 4.00

P 4

20 1.71E-02 – 8.80E-03 – 1.43E-02 –

40 1.50E-04 6.83 1.24E-04 6.15 1.23E-04 6.85

60 1.59E-05 5.54 1.65E-05 4.98 1.64E-05 4.97

80 3.75E-06 5.63 3.61E-06 5.28 3.91E-06 4.99

Fig. 5.1. Interactions of the double solitary-wave problem for Example 5.2 with P 2 polynomials and

100 cells, θ = −0.4, γ = 0.9, µ = 0.9, λ = 0. Top left: T = 0. Top right: T = 0.4. Bottom left: T = 0.5.

Bottom right: T = 0.6.



Optimal Error Estimates of LDG Methods for KdV Type Equations 23

Example 5.3. To illustrate long time behaviors, consider the classical solitary-wave solution

of the nonlinear KdV equation

ut + uux + ǫuxxx = 0, (x, t) ∈ [0, 1]× (0, T ]

with the initial condition

u(x, 0) = A sech2
(
K(x− x0)

)
,

and the exact solution is

u(x, t) = A sech2
(
K(x− x0 − vt)

)
,

where ǫ = 5× 10−4, A = 0.9, v = A/3,K=
√
A/(3ǫ)/2, and x0 = 0.5. Due to exponential decay,

it can be treated as periodic boundary conditions.

Fig. 5.2 displays the error curves with classical upwind and alternating fluxes as well as

generalized numerical fluxes up to T = 50. We use P 2 polynomials with 80 cells. From the

figure, we can see that the growth of errors with generalized numerical fluxes (θ = −0.3, γ = 1.0,

µ = 0.7, λ = −0.1 or θ = −0.4, γ = 0.9, µ = 0.9, λ = 0) is much lower than that with

classical upwind and alternating fluxes (θ = 0.5, γ = 1.0, µ = 1.0, λ = 0). Especially, when

θ = −0.4, γ = 0.9, µ = 0.9, λ = 0, the numerical flux f̂(uh) is downwind-biased, resulting in

an anti-dissipation mechanism to compensate the numerical dissipation of the dispersive term.

This example illustrates that the LDG scheme with generalized fluxes is beneficial for long time

simulations, when some suitable weights are chosen.

Fig. 5.2. Time history of the L2 error for Example 5.3, P 2 polynomials with N = 80.

Example 5.4. In this example, consider the cnoidal-wave solution of the nonlinear KdV equa-

tion

ut + uux + ǫuxxx = 0, (x, t) ∈ [0, 1]× (0, T ]

with periodic boundary conditions and the initial condition

u(x, 0) = a cn2
(
4K(x− x0)

)
.
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The exact solution is

u(x, t) = a cn2
(
4K(x− x0 − vt)

)
,

where ǫ = 1/242, a = 192mǫK2(m), v = 64ǫ(2m − 1)K2(m),m = 0.9, x0 = 0.5. The function

K = K(m) is the complete elliptic integral of the first kind, and the function cn(z) = cn(z : m)

is the Jacobi elliptic function with modulus m.

Fig. 5.3 shows the pointwise values of LDG solutions with generalized numerical fluxes for

a long time T and the exact solution is also provided as a reference. We use P 1 and P 2 poly-

nomials at T = 25. We see that the numerical solutions with classical upwind and alternating

fluxes θ = 0.5, γ = 1.0, µ = 1.0, λ = 0 exhibit visible phase errors, whereas the generalized

numerical fluxes with suitable weights can produce a satisfactory wave resolution for long time

simulations.

Fig. 5.3. Numerical solutions of the cnoidal-wave for Example 5.4 with different weights. Left: P 1

polynomials with 80 cells at T = 25. Right: P 2 polynomials with 40 cells at T = 25.

6. Concluding Remarks

We derive optimal error estimates of the LDG method with generalized numerical fluxes for

nonlinear KdV type equations. The main difficulty for the treatment of the nonlinear term lies

in the construction of modified projections and the relationship between the prime variable and

auxiliary variables. The choice of downwind-biased GLF flux for nonlinear convection term will

produce an anti-dissipation property to compensate the numerical dissipation of the dispersive

term, resulting in a nearly energy conservative scheme with lower error growth and better wave

resolution. The validity of the theoretical results is verified by numerical experiments. In future

work, we will concentrate on the multi-dimensional case.
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