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Abstract

Given the measurement matrix A and the observation signal y, the central purpose

of compressed sensing is to find the most sparse solution of the underdetermined linear

system y = Ax+ z, where x is the s-sparse signal to be recovered and z is the noise vector.

Zhou and Yu [Front. Appl. Math. Stat., 5 (2019), Article 14] recently proposed a novel

non-convex weighted ℓr − ℓ1 minimization method for effective sparse recovery. In this

paper, under newly coherence-based conditions, we study the non-convex weighted ℓr − ℓ1
minimization in reconstructing sparse signals that are contaminated by different noises.

Concretely, the results reveal that if the coherence µ of measurement matrix A fulfills

µ < κ(s; r, α, N), s > 1, α
1

r N
1

2 < 1,

then any s-sparse signals in the noisy scenarios could be ensured to be reconstructed

robustly by solving weighted ℓr − ℓ1 minimization non-convex optimization problem. Fur-

thermore, some central remarks are presented to clear that the reconstruction assurance is

much weaker than the existing ones. To the best of our knowledge, this is the first mutual

coherence-based sufficient condition for such approach.
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1. Introduction

Compressed sensing [3, 8] has recently triggered much interest in signal and imaging pro-

cessing, statistics and applied mathematics. The crucial aim is to recover a high-dimensional

sparse signal from a small quantity of linear measurements. Generally, one thinks about the

linear model

y = Ax+ z, (1.1)

where A ∈ R
m×N is the measurement matrix with m ≪ N , z ∈ R

m is the noise vector and

x ∈ R
N is an s-sparse (i.e. the number of nonzero elements of x is not more than s) vector to be

recovered. Two widely utilized types of noises are the bounded ℓ2 noise [9,15] and the Dantzig

selector noise [4], respectively. Throughout the article, we suppose that the columns of A are

standardized, i.e. for all i, A⊤
i Ai = 1, where Ai, 1 ≤ i ≤ N , denotes the i-th column of A.

Because the linear model (1.1) is an underdetermined linear system, it is impossible to

stably reconstruct x based on A, z and y. Fortunately, it is possible to stably reconstruct

s-sparse signal x from (1.1) with a few appropriately exploiting sparse reconstruction methods

under suitable assumptions regarding A and z. There are two extensively applied frameworks to

describe such assumptions concerning A, which are separately the restricted isometry property

(RIP) [3] and the mutual coherence determined as [10, 12]

µ = max
1≤i<j≤N

|〈Ai, Aj〉|. (1.2)

For a more general definition of coherence, i.e. the block-coherence, see [13].

It is well known that ℓ1 minimization method [7], viewed as a convex extension of ℓ0 min-

imization method, presents an efficient approach for recovering s-sparse signal in numerous

contexts. The ℓ0 minimization method and the ℓ1 minimization method are respectively

min
x̃∈RN

‖x̃‖0

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ,

min
x̃∈RN

‖x̃‖1

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ.

Here ‖x̃‖0 represents the number of non-zero coordinates in x̃. In recent years, one alternative

approach of estimating the s-sparse signal in the references [6, 11, 14, 24, 25, 29] is to solve the

following ℓr minimization model:

min
x̃∈RN

‖x̃‖rr

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ,
(1.3)

where ‖x̃‖rr =
∑N

i=1 |x̃i|r with x̃i being the i-th entry of x̃, r ∈ (0, 1] and

‖z‖2 =
(

m
∑

i=1

z2i

)
1

2

.

Compared with ℓ1 minimization, although it is more difficult to resolve model (1.3) because of

its noncovexity, there still exist a lot of algorithms to find the local optimal solution of (1.3).
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Besides, it has been showed by [5] that solving the ℓr minimization model with small r can

significantly reduce the number of measurements.

Zhou and Yu [31] recently introduced a novel weighted ℓr − ℓ1 minimization method as

follows:
min
x̃∈RN

‖x̃‖rr − α‖x̃‖r1

s.t. y = Ax̃+ z, ‖z‖2 ≤ ǫ,
(1.4)

where α ∈ [0, 1], 0 < r ≤ 1, ‖x̃‖1 =
∑N

i=1 |x̃i|, and suppose that α 6= 1 in the case of r = 1. It is

obvious that (1.4) degenerates to the traditional ℓr minimization model in the case of α = 0.

Though resolving model (1.4) is harder than resolving model (1.3) for mixed norm in it, a great

number of algorithms also can be employed to solve it, see, e.g. [28, 30, 31]. Furthermore, it

can enhance the ℓ1 minimization in a robust pattern. Because there are effective algorithms for

resolving (1.4), main objective of this paper is to exploit a sufficient condition that can guarantee

the stable recovery of x through resolving (1.4) rather than discussing how to efficiently re-

solving (1.4).

Recently, many literatures [2,28,31] have studied the sufficient conditions for robust recovery

of x via solving model (1.4) based on RIP. Different from former contributions utilizing the RIP

to depict the sufficient condition, this paper makes use of the mutual coherence µ to describe

a new sufficient condition. Actually, under the same conditions, the mutual coherence µ of

a given matrix is easier to calculate than its RIP constant. In addition, it is difficult to verify

the RIP condition within efficient time for a given matrix.

Since the Dantzig selector noise is also extensively investigated noise in compressed sensing,

the sufficient condition of stably reconstruction x through

min
x̃∈RN

‖x̃‖rr − α‖x̃‖r1

s.t. y = Ax̃+ z, ‖A⊤z‖∞ ≤ ǫ (1.5)

is also discussed.

Our results show that any s-sparse signal x from (1.1) can be robustly reconstructed through

settling (1.4) or (1.5) provided that the mutual coherence µ of A fulfills µ < κ(s; r, α,N) for

s > 1 and α1/rN1/2 < 1. To our best of knowledge, this is the first sufficient condition for

robust reconstruction of x by solving (1.4) and (1.5) based on mutual coherence. The Gaussian

noise is of special interest in signal and image processing as well as in statistics. Since the

Gaussian noise is essentially bounded, the results can be generalized to it.

This paper is constructed as follows. We begin by providing notations and lemmas that

will be needed in our analysis in Section 2. The main results and its corresponding proofs

are presented in Section 3. Numerical simulations are conducted in Section 4 to contrast the

effectuality of (1.4) and (1.5) with those of (1.3) and its associating Dantzig selector noise case.

We prove the lemmas in Section 5. In Section 6, a conclusion is provided.

2. Preliminaries

We first explicate some necessary notations. Let S represent the support of x, that is,

S = {i ∈ [N ] |xi 6= 0}. For any set T , let xT stand for a vector that keeps the entries indexed

by T of x and 0 otherwise. Let Sc indicate the complement of S, that is, Sc = {1, 2, . . . , N}\S.
For any matrix Φ,Φ⊤ denote the transpose of Φ.
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The concept of s-th r-restricted isometry constant proposed by Chartrand and Staneva [6]

is as follows.

Definition 2.1 ([6, 31]). For 0 < r ≤ 1 and s > 0, one defines the s-th r-restricted isometry

constant of a matrix A ∈ R
m×N to be the smallest number which fulfills

(1 − δs)‖u‖r2 ≤ ‖Au‖rr ≤ (1 + δs)‖u‖r2 (2.1)

for any s-sparse vector u ∈ R
N.

In what follows, we present some auxiliary lemmas that are needed for the proofs of our

main results.

Lemma 2.1 ([1, 20, 26]). For any s-sparse vector u, we get

1− (s− 1)µ ≤ ‖Au‖22
‖u‖22

≤ 1 + (s− 1)µ. (2.2)

Lemma 2.2. For a general vector x (i.e. x is not s-sparse), we have

‖hSc‖rr ≤ ‖hS‖rr + α‖h‖r1 + 2‖xSc‖rr. (2.3)

Lemma 2.3. Let x̂ be the minimizer of (1.4), and stand for the recovery error h = x̂ − x. It

is assumed that A and z in (1.1) fulfill

µ <
1

s− 1 + 2
1

r
−1s

1

r

, (2.4)

and ‖z‖2 ≤ ǫ, separately. Then,

‖hS‖2 ≤ 2ǫ
√

1 + (s− 1)µ

1−
(

s− 1 + 2
1

r
−1s

1

r

)

µ
+

2
1

r
−1µN

1

2α
1

r s
1

2 ‖h‖2
1−

(

s− 1 + 2
1

r
−1s

1

r

)

µ
. (2.5)

Lemma 2.4. Let x̂ be the minimizer of (1.5), and indicate the recovery error h = x̂− x. We

assume A and z in (1.1) meet (2.4) and ‖A⊤z‖∞ ≤ ǫ, respectively. Then,

‖hS‖2 ≤ 2ǫ
√
s

1−
(

s− 1 + 2
1

r
−1s

1

r

)

µ
+

2
1

r
−1µN

1

2α
1

r s
1

2 ‖h‖2
1−

(

s− 1 + 2
1

r
−1s

1

r

)

µ
. (2.6)

3. Main Results

In this part, based on the mutual coherence of A, the sufficient conditions for robust recon-

struction of s-sparse signals x via (1.4) and (1.5) are explored. First of all, a sufficient condition

for robust reconstruction of s-sparse signals x by (1.4) is given, which is stated as follows.

Theorem 3.1. Let x̂ be the solution of (1.4). If A and z in (1.1) fulfill

µ <

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]−1

×
{

s− 1 + 2
1

r
−1s

1

r + 2
2

r
−3α

2

rN −
√

2
2

r
−2α

2

rN(s+ 2
1

r
−1s

1

r ) + 2
4

r
−6α

4

rN2

}

=: κ(s; r, α,N), (3.1)
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and ‖z‖2 ≤ ǫ for s > 1 and α1/rN1/2 < 1, then

‖x̂− x‖2 ≤ Cǫ, (3.2)

where C depends on µ, r,N, α and s, which is determined in (5.22).

Then, a sufficient condition for robust recovery of s-sparse signal x by (1.5) is provided.

Theorem 3.2. Let x̂ be the minimizer of (1.5). If A and z in (1.1) fulfill (3.1) and ‖A⊤z‖∞≤ǫ

for s > 1 and α1/rN1/2 < 1, then

‖x̂− x‖2 ≤ Dǫ, (3.3)

where D relies on µ, r,N, α and s, which is defined in (5.28).

Remark 3.1. From Theorems 3.1 and 3.2, we can observe that any s-sparse signal x corrupted

by the bounded ℓ2 noise or Dantzig selector noise can be robustly reconstructed through (1.4)

and (1.5), separately, if the matrix A satisfies condition (3.1), and the associating reconstruc-

tion error can be controlled by (3.2) and (3.3), separately. This reveals the effectiveness of

reconstructing s-sparse signals by methods (1.4) and (1.5) from a theoretical point of view.

Remark 3.2. For the model degradation, when r = 1 and α 6= 1, the mutual coherence

condition (2.4) is the same as [1, Theorems 2.1, 2.2].

Remark 3.3. We now study the error bound of Theorem 3.1 and the literature [31]. The

curves of the error bound noise constant (i.e. C) of Theorem 3.1 and the literature [31] with

respect to the parameter r are given in Fig. 3.1. Observation of the figure shows that our

established error bound noise constant is smaller than that of the literature [31] when r takes

values between 0.4 and 0.6.
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Fig. 3.1. Comparison error bound noise constant.

Remark 3.4. The literature has presented the relationship between RIP and mutual coher-

ence. It follows from [18] that δs ≤ (s − 1)µ. Moreover, the monotone property on δs can be

found in [16, 17]: δs ≤ δt, if s ≤ t ≤ N . With the above connections, the results regarding RIP

in literature can also be characterized with respect to mutual coherence. Recently, Zhou [30]

provided the RIP-based exploration result for the non-convex weighted ℓr − ℓ1 minimization

issue (1.4). He evidenced that if the measurement matrix A meets δ2s < τ/
√

τ2 + γ for s ≥ 2

with

τ =

(

s− αsr

s+ αsr

)
1

r

, γ =
2

2

r
−2

s

[

(1 + α− α2r)−
2

r (s+ 1) + 1
]

,
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then a stable and robust reconstruction can be ensured for any (nearly) sparse signal through

the weighted ℓr−ℓ1 minimization approach. Utilizing the above relationship, the corresponding

coherence condition is

µ <
τ

(2s− 1)
√

τ2 + γ
. (3.4)

In Fig. 3.2, we give upper bounds for the coherence conditions of (3.1) and (3.4). Images of

the variation of coherence with r are plotted in Fig. 3.2(a), where α = 0.9, N = 64, s = 0.5.

Fig. 3.2(b) plots the curve between coherence and the parameter α, where r = 0.7. In Fig. 3.2(c),

the curve between coherence and sparsity s is depicted, where r = 0.9, α = 0.9. Observing the

figure, we can know that when r ∈ (0.55, 1), α ∈ (0.3, 1), s ∈ (15, 256), condition that we obtain

is weaker than that of Zhou [30].
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Fig. 3.2. Comparison coherence conditions (3.4) and (3.1).

4. Numerical Experiments

To testify the validity of the model and our obtained coherence theory, we first conduct

an experiment on the construction of the measurement matrix, followed by some comparative

experiments of models. In the experiment, the length of the vector and the number of samples

are fixed as N = 256 and m = 128, separately.

4.1. Measurement matrix construction

In accordance with the obtained Theorems 3.1 and 3.2, the method (1.4) or (1.5) will

carry out robustness provided that the measurement matrix A fulfills the assumption (3.1).

Instinctively, when those matrices whose mutual coherence is smaller than its upper bound

κ(s; r, α,N) (for known s) are chosen, this assumption will be satisfied without difficulty. Fur-

thermore, Welch [23] also showed that the mutual coherence of all matrices A is contained by

a lower boundary that is at present said to be the Welch bound defined as

µ(A) ≥
√

N −m

m(N − 1)
. (4.1)

Hence, it is natural for us to devise the measurement matrix whose mutual coherence can

achieve the Welch bound. Until now a variety of approaches are capable of being utilized to

produce these matrices, and we refer readers to [21, 22, 27]. The article utilizes the alternating

projection (AP) approach to produce the wanted measurement matrices which have small co-

herence introduced by Tropp et al. [19]. In order to verify the capability of this AP approach,
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we have conducted experiments on Gaussian, Bernoulli and partial Fourier random matrices,

respectively. Figs. 4.1(a)-(c) respectively give the coherence comparisons of these three types of

matrices before and after processing using the AP method, where di, i ∈ {1, 2, . . . ,m}, stands
for the i-th column of the matrix. It is not difficult to find that the coherence for these three

types of matrices processed by the AP method is very close to the Welch lower bound. In the

subsequent experiments, we will use the AP method to produce the wanted measurement ma-

trix based on coherence and choose the Gaussian random matrix as the matrix to be processed

by the AP method.
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Fig. 4.1. Coherence comparisons.

4.2. Model comparison

To solve the issue (1.4), it is first transformed into the below unrestricted form

min
x̃∈RN

λ
(

‖x̃‖rr − α‖x̃‖r1
)

+
1

2
‖y −Ax̃‖22, (4.2)

where λ denotes the regularization parameter with λ > 0. Zhou and Yu [31] pointed out that

the issue can be settled via combining an iteratively reweighted least square (IRLS) approach

and a difference for convex functions method (DCA). In the external circle, one can employ

the IRLS to approach the item ‖x̃‖rr, and take advantage of a reweighted 1 norm of iterative to

close in ‖x̃‖r1, that is,

x̃k+1 = arg min
x̃∈RN

λ‖W kx̃‖22 − αλνk‖x̃‖1 +
1

2
‖y −Ax̃‖22, (4.3)

where

W k = diag
{

(

(xk
i )

2 + εk
)

r

4
− 1

2

}

, νk = ‖x̃k‖r−1
1 .

For the inner loop adopted to address (4.3), it can be regarded as a discrepancy minimization

issue for a pair of convex functions, namely, goal function

I(x) =

(

1

2
‖y −Ax̃‖22 + λ‖W kx̃‖22

)

− αλνk‖x̃‖1 =: J(x̃)− L(x̃).

L(x̃) is linearized as L(x̃k+1,n) + 〈yk+1,n, x̃ − x̃k+1,n〉 with yk+1,n ∈ ∂L(x̃k+1,n) and replace

L(x) with its approximation. Therefore,

x̃k+1,n+1 = arg min
x̃∈RN

1

2
‖y −Ax̃‖22 + λ‖W kx̃‖22
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−
(

αλνk‖x̃k+1,n‖1 + 〈αλνksign(x̃k+1,n), x̃−x̃k+1,n〉
)

= arg min
x̃∈RN

1

2
‖y −Ax̃‖22 + λ‖W kx̃‖22 − 〈αλνksign(x̃k+1,n), x̃〉

=
(

A⊤A+ 2λ(W k)⊤W k
)−1(

A⊤y + αλνksign(x̃k+1,n)
)

(4.4)

with sign(·) represents the sign function.

4.2.1. Experiments on random synthetic data

First, we consider choosing an appropriate regularization parameter λ. Without loss of gener-

ality, the signal with sparsity s = 25 is taken as the test signal, and Fig. 4.2 demonstrates the

specific results from experiments. Here, we fix α = 0.2. As can be seen from the figure, it is

more appropriate to choose λ = 1× 10−3.

In the following experiments, the reconstruction capability of the weighted ℓr−ℓ1 minimiza-

tion approach (1.4) is compared with that of the ℓr minimization approach (1.3). Additionally,

unless specified, we take r = 0.5 and α = 1. First of all, we conduct experiments on randomly

generated data. Under different noise scenarios, the signal to noise ratio (SNR) of two methods

varies with the sparsity s as indicated in Fig. 4.3, where SNR= 20 log(‖x‖2/‖x̂−x‖2). Observ-

ing the figure, we can see that the weighted ℓr − ℓ1 minimization method performs better than

the ℓr minimization method.
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Fig. 4.2. Choice of regularization parameter λ.
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4.2.2. Experiments on grey image recovery

In this subsection, we will apply the model (1.4) as well as the model (1.3) to the topic of grey

image reconstruction. To appraise the quality of the reconstructed pictures, the peak signal-

to-noise ratio (PSNR) and the structural similarity (SSIM) targets are employed. For SSIM

target, we refer readers to [22]. The PSNR target is defined by

PSNR = 10 log10
2552 ×m×N

‖X − X̃‖2F
,

where X represents the primitive picture with size m × N and X̃ indicates the reconstructed

picture with size m×N .

Before comparing the model performance, we necessarily choose an appropriate regular-

ization parameter λ since it is significant in the algorithm on (1.4). For this purpose, the

associating algorithm of (1.4) is utilized to the reconstruction of classical Lena picture (dis-

played in Fig. 4.7(a)) under different values of λ. The relationship between λ and the PSNR

and SSIM results is drawn in Fig. 4.4. It is recommended to take λ = 10−4. The curves for

model (1.4) between PSNR and SSIM in relation to parameters r and α in different values of α

and r, respectively, are depicted in Figs. 4.5 and 4.6. Looking at the images it is clear that the

choice of r = 0.2, 0.6, α = 0.1, 0.2, 0.4, 0.5, 0.8 or r = 0.5, α = 0.1, 0.2, 0.4 or r = 1.0, α = 0.1, 0.2

is appropriate. In the following, put λ = 10−4. The reconstruction capability of the Lena

picture and one of its part is drawn in Fig. 4.7 and Fig. 4.8. Observe that the reconstruction

proceeding is not conducted first-hand regarding the entire Lena picture, but concerning its

little non-intersecting parts. Specifically, the former Lena picture is first partitioned into 256

-6 -4 -2 0 
log10 λ

0

10

20

30

P
S

N
R

(d
B

)

-6 -4 -2 0 
log10 λ

0

0.2

0.4

0.6

0.8

1

S
S

IM

Fig. 4.4. PSNR and SSIM performance of algorithm of (1.4) under different λ.
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Fig. 4.5. PSNR and SSIM performance of algorithm of (1.4) under different r.
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Fig. 4.6. PSNR and SSIM performance of algorithm of (1.4) under different α.

(a) Lena picture (256 × 256) (b) Reconstructed Lena picture

Fig. 4.7. Reconstruction of Lena picture with r = 0.6 and α = 0.2. In (b), the derived PSNR and

SSIM results are separately 27.97 dB and 0.840.

(a) A part Lena picture [21] (b) Reconstructed part (c) Convergence on the part

displayed in Fig. 4.8(a)

Fig. 4.8. Convergence outcome for algorithm with r = 0.6 and α = 0.2. In (b), the gained PSNR

outcome is 35.31dB and SSIM outcome is 0.98. In (c), the relative true iteration error is abbreviated

as RTIE, i.e. RTIE(i) = ‖xk+1 − x‖2/‖x‖2 with x standing for the original signal.

non-intersecting parts, each having dimension 16 × 16, and afterwards reconstruct these little

parts individually. Observe that these small parts are not sparse themselves, but sparse in

terms of some base such as wavelet transform or discrete cosine transform or Fourier transform.

In the present article, the MATLAB command dct2 is utilized for producing the wanted sparse

base and hereafter reconstruct the caused sparse moduli from their a small amount of measure-

ments. In the above image reconstruction experiments, the number of samples is usually fixed

as m = 102. Actually, it can be seen from Fig. 4.9 that the PSNR/SSIM is gradually getting

better as the number of samples increases.
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Fig. 4.9. PSNR|SSIM results of the Lena picture reconstructed by (1.4) under different sampling ratios.

Fig. 4.10. The test pictures with size 256× 256. We number them sequentially from 1 to 20, from left

to right, and from upper apex to base.

With the above preparatory work, we now make use of the models (1.4) and (1.3) to the

reconstruction of additional greys pictures. The 20 commonly used test images, each of size

256× 256, are given in Fig. 4.10, and the PSNR/SSIM results obtained by the two models for

the test images are given in Table 4.1. It is easily observed that model (1.4) carries out better

than model (1.3).

4.2.3. Experiments on FECG signals

Next, we carry out algorithm comparison experiments on real FECG signals exhibited in

Fig. 4.11. It can be seen from Table 4.2 that for most real FECG signals, the weighted

ℓ0.6 − 0.2ℓ1 minimization approach exercises better than the ℓ0.6 minimization method with

respect to signal-to-noise ratio.
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Table 4.1: PSNR|SSIM results of 20 pictures by different models.

1 2 3 4 5

ℓ0.6−0.2ℓ1 32.02|0.922 25.67|0.769 27.99|0.832 22.76|0.638 26.19|0.783

ℓ0.6 31.21|0.898 24.91|0.730 27.30|0.802 22.11|0.600 25.45|0.742

6 7 8 9 10

ℓ0.6−0.2ℓ1 28.26|0.827 25.49|0.813 23.82|0.769 21.95|0.705 28.88|0.782

ℓ0.6 27.50|0.791 24.84|0.779 23.11|0.745 21.14|0.665 28.24|0.748

11 12 13 14 15

ℓ0.6−0.2ℓ1 27.96|0.796 31.54|0.875 23.51|0.679 27.35|0.752 26.66|0.724

ℓ0.6 27.38|0.763 30.45|0.836 22.92|0.644 26.50|0.712 26.01|0.689

16 17 18 19 20

ℓ0.6−0.2ℓ1 23.91|0.737 24.40|0.703 27.09|0.815 28.25|0.837 24.44|0.742

ℓ0.6 23.21|0.701 23.64|0.663 26.33|0.783 26.98|0.799 23.51|0.702

Table 4.2: SNR results by two methods.

a b c d e f g h

ℓ0.6 − 0.2ℓ1 5.071 6.095 5.649 1.655 6.351 5.591 3.031 3.23

ℓ0.6 3.539 4.87 3.869 -0.3962 4.424 5.854 5.499 6.87

Fig. 4.11. All FECG signals. These signals are numbered a through h from top to bottom.

5. Proofs

In this section, we prove the main results. First, we give the proofs of previous lemmas.

Proof of Lemma 2.2. Here we assume that x is a general signal. Since x̂ is the optimal

solution of (1.4) or (1.5), it implies that

‖x‖rr − α‖x‖r1 ≥ ‖x̂‖rr − α‖x̂‖r1.
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Due to h = x̂− x, we get

‖xS‖rr + ‖xSc‖rr − α‖x‖r1 ≥ ‖xS + xSc + hS + hSc‖rr − α‖x+ h‖r1. (5.1)

By using the triangular inequality and the inequality (a+ b)r ≤ ar+ br for nonnegative a and b,

we get

‖xS + xSc + hS + hSc‖rr − α‖x+ h‖r1
≥ ‖xS + hS‖rr + ‖xSc + hSc‖rr − α(‖x‖1 + ‖h‖1)r

≥ ‖xS‖rr − ‖hS‖rr + ‖hSc‖rr − ‖xSc‖rr − α‖x‖r1 − α‖h‖r1. (5.2)

A combination of (5.1) and (5.2) leads to the desired result. �

Proof of Lemma 2.3. Note that x̂ is a minimizer of (1.4) and z fulfills ‖z‖2 ≤ ǫ, by the

equality h = x̂− x and the triangular inequality, then

‖Ah‖2 = ‖A(x̂− x)‖2 ≤ ‖Ax̂− y‖2 + ‖Ax− y‖2 ≤ 2ǫ. (5.3)

Combining with Lemma 2.1, (5.3) and the inequality |〈u, v〉| ≤ ‖u‖2‖v‖2 for 0 6= u, v ∈ R
m,

we get

|〈Ah,AhS〉| ≤ ‖Ah‖2‖AhS‖2 ≤ 2ǫ
√

1 + (s− 1)µ ‖hS‖2. (5.4)

By applying (1.2), it results in

|A⊤
i Aj | ≤ µ, 1 ≤ i < j ≤ N, (5.5)

which implies that

|〈AhS , AhSc〉| =
∣

∣

∣

∣

∣

〈

∑

i∈S

Aihi,
∑

j∈Sc

Ajhj ,

〉∣

∣

∣

∣

∣

≤
∑

i∈S

∑

j∈Sc

|〈Ai, Aj〉| |hi| |hj | ≤ µ

(

∑

i∈S

|hi|
)(

∑

j∈Sc

|hj |
)

= µ‖hS‖1‖hSc‖1 ≤ µs
1

2 ‖hS‖2‖hSc‖r
(a)

≤ µs
1

2 ‖hS‖2
(

‖hS‖rr + α‖h‖r1
)

1

r

(b)

≤ 2
1

r
−1µs

1

2 ‖hS‖2
(

‖hS‖r + α
1

r ‖h‖1
)

(c)

≤ 2
1

r
−1µs

1

2 ‖hS‖2
(

s
1

r
− 1

2 ‖hS‖2 + α
1

r N
1

2 ‖h‖2
)

= 2
1

r
−1µs

1

r ‖hS‖22 + 2
1

r
−1µN

1

2α
1

r s
1

2 ‖hS‖2‖h‖2, (5.6)

where (a) follows from Lemma 2.2, (b) is due to (ar + br)1/r ≤ 21/r−1(a + b) for any a, b ≥ 0,

and (c) is because of the Hölder’s inequality and the Cauchy-Schwarz inequality. By using

Lemma 2.1 together with the triangular inequality, it leads to

|〈Ah,AhS〉| = |〈AhS +AhSc , AhS〉| ≥ |〈AhS , AhS〉| − |〈AhSc , AhS〉|
≥ [1− (s− 1)µ] ‖hS‖22 − |〈AhSc , AhS〉|.
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Plugging (5.6) into the above inequality, we get

|〈Ah,AhS〉| ≥
[

1− (s− 1 + 2
1

r
−1s

1

r )µ
]

‖hS‖22 − 2
1

r
−1µN

1

2α
1

r s
1

2 ‖hS‖2‖h‖2. (5.7)

Combining with (2.4), (5.4) and (5.7), the wanted result follows. �

Proof of Lemma 2.4. For x̂ is a minimizer of (1.5) and z fulfills ‖A⊤z‖∞ ≤ ǫ, by h = x̂− x

and the triangular inequality, we have

‖A⊤Ah‖∞ ≤ ‖A⊤A(x̂− x)‖∞ ≤ ‖A⊤(Ax̂ − y)‖∞ + ‖A⊤(Ax− y)‖∞ ≤ 2ǫ. (5.8)

By applying Hölder inequality, it implies that

|〈Ah,AhS〉| ≤ |〈A⊤Ah, hS〉| ≤ ‖hS‖1‖A⊤Ah‖∞ ≤ s
1

2 ‖hS‖2‖A⊤Ah‖∞.

Putting (5.8) into the above inequality, we get

|〈Ah,AhS〉| ≤ 2ǫs
1

2 ‖hS‖2. (5.9)

A combination of (5.7) and (5.9), we obtain the desired result. �

Proof of Theorem 3.1. Observing that ‖Ai‖2 = 1, i = 1, 2, . . . , N , and (1.2), it leads to

〈Ah,Ah〉 =
N
∑

i=1

N
∑

j=1

〈Aihi, Ajhj〉 =
N
∑

i=1

〈Aihi, Aihi〉+
N
∑

i=1

N
∑

j=1,j 6=i

〈Aihi, Ajhj〉

=

N
∑

i=1

‖Ai‖22|hi|2 +
N
∑

i=1

N
∑

j=1,j 6=i

〈Ai, Aj〉hihj

≥
N
∑

i=1

|hi|2 − µ

N
∑

i=1

N
∑

j=1,j 6=i

|hihj| = ‖h‖22 − µ

(

N
∑

i=1

N
∑

j=1

|hihj | −
N
∑

i=1

|hi|2
)

= (1 + µ)‖h‖22 − µ‖h‖21 = (1 + µ)‖h‖22 − µ(‖hS‖1 + ‖hSc‖1)2

≥ (1 + µ)‖h‖22 − µ(‖hS‖1 + ‖hSc‖r)2

(a)

≥ (1 + µ)‖h‖22 − µ
[

‖hS‖1 +
(

‖hS‖rr + α‖h‖r1
)

1

r

]2

(b)

≥ (1 + µ)‖h‖22 − µ
[

s
1

2 ‖hS‖2 + 2
1

r
−1
(

‖hS‖r + α
1

r ‖h‖1
)]2

(c)

≥ (1 + µ)‖h‖22 − µ
[

s
1

2 ‖hS‖2 + 2
1

r
−1
(

s
1

r
− 1

2 ‖hS‖2 + α
1

r N
1

2 ‖h‖2
)]2

= (1 + µ)‖h‖22 − µ
[(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)

‖hS‖2 + 2
1

r
−1α

1

rN
1

2 ‖h‖2
]2

, (5.10)

where (a) follows from (2.3), (b) is because of the Cauchy-Schwarz inequality and (ar+br)1/r ≤
21/r−1(a+ b) for any a, b ≥ 0, and (c) is thanks to the Hölder inequality.

Set

1−
(

s− 1 + 2
1

r
−1s

1

r

)

µ =: p, s[1 + (s− 1)µ] =: q,
(

1 + 2
1

r
−1s

1

r
−1
)2

q = q̂.

By (2.5), (5.3) and (5.10), it implies that
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4ǫ2 ≥ (1 + µ)‖h‖22

−µ

[

(

s
1

2+2
1

r
−1s

1

r
− 1

2

)

(

2ǫ
√

1 + (s− 1)µ

p
+
2

1

r
−1µN

1

2α
1

r s
1

2

p
‖h‖2

)

+2
1

r
−1N

1

2α
1

r ‖h‖2
]2

= (1 + µ)‖h‖22 −
µ

p2

[

4
(

1 + 2
1

r
−1s

1

r
−1
)2

ǫ2q +
(

2
1

r
−1N

1

2α
1

r (1 + µ)
)2

‖h‖22

+ 2
1

r
+1N

1

2α
1

r ǫ
√
q
(

1 + 2
1

r
−1s

1

r
−1
)

(1 + µ)‖h‖2
]

. (5.11)

By basic calculations, we can get

(1 + µ)
[

p2 − 2
2

r
−2α

2

r N(µ2 + µ)
]

‖h‖22
− 2

1

r
+1N

1

2α
1

r ǫ(1 + µ)µ
√

q̂‖h‖2 − 4(p2 + µq̂)ǫ2 ≤ 0. (5.12)

For the convenience of simplification, define

F (x) = (1 + µ)
[

p2 − 2
2

r
−2α

2

rN(µ2 + µ)
]

x2

− 2
1

r
+1N

1

2α
1

r ǫ(1 + µ)µ
√

q̂x− 4(p2 + µq̂)ǫ2 (5.13)

with x ≥ 0. Hence, (5.12) turns into

F (‖h‖2) ≤ 0. (5.14)

Furthermore, it is not hard to see that

1 + µ > 0, −2
1

r
+1N

1

2α
1

r ǫ(1 + µ)µ
√

q̂ < 0, −4(p2 + µq̂)ǫ2 < 0. (5.15)

Thence, for it is useful for us to discuss F (x), we consider the value of p2−22/r−2α2/rN(µ2+µ).

From the definition of p, it results in

p2 − 2
2

r
−2α

2

rN(µ2 + µ) = 1− 2
(

s− 1 + 2
1

r
−1s

1

r

)

µ

+
(

s− 1 + 2
1

r
−1s

1

r

)2

µ2 − 2
2

r
−2α

2

rN(µ2 + µ)

=

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]

µ2

−
[

2
(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−2α

2

rN
]

µ+ 1. (5.16)

We define again

G(x) =

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]

x2

−
[

2
(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−2α

2

r N
]

x+ 1 (5.17)

with 0 < x < 1. Thereupon, we get

p2 − 2
2

r
−2α

2

r N(µ2 + µ) = G(µ). (5.18)

Put G(x) = 0, it leads to

x =

{

2

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

r N

]}−1
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×
{

2
(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−2α

2

r N

±
{

[

2
(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−2α

2

r N
]2

− 4

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

r N

]}
1

2

}

=

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]−1

×
{

(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−3α

2

rN

±
[

2
2

r
−2α

2

r N
(

s+ 2
1

r
−1s

1

r

)

+ 2
4

r
−6α

4

rN2

]
1

2

}

. (5.19)

Through the curves of the functions (2.4) and (5.19) (see Fig. 5.1, where α = 0.2 and N = 128

which satisfies α1/rN1/2 < 1), we can obtain

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]−1

×
{

(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−3α

2

r N −
[

2
2

r
−2α

2

rN
(

s+ 2
1

r
−1s

1

r

)

+ 2
4

r
−6α

4

r N2

]
1

2

}

=: κ(s; r, α,N) <
1

s− 1 + 2
1

r
−1s

1

r

<

[

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN

]−1

×
{

(

s− 1 + 2
1

r
−1s

1

r

)

+ 2
2

r
−3α

2

rN +

[

2
2

r
−2α

2

r N
(

s+ 2
1

r
−1s

1

r

)

+ 2
4

r
−6α

4

r N2

]
1

2

}

=: θ(s; r, α,N). (5.20)

Combining with (5.18), (5.19) and the fact that

(

s− 1 + 2
1

r
−1s

1

r

)2

− 2
2

r
−2α

2

rN > 0, s > 1, α
1

r N
1

2 < 1,
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Fig. 5.1. Comparison of the magnitudes of three functions κ(s; r, α, N), (2.4) and θ(s; r, α,N) on s and

r for given α and N for (a) s = 5, (b) r = 3/4.
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under the condition µ < κ(s; r, α,N), we get

p2 − 2
2

r
−2α

2

rN(µ2 + µ) > 0. (5.21)

Addressing the inequality (5.12) provided that (5.21) holds, we derive that

‖h‖2 ≤
{

(1 + µ)
[

p2 − 2
2

r
−2α

2

rN(µ2 + µ)
]

}−1

×
{

2
1

r N
1

2α
1

r (1 + µ)µ
√

q̂

+

{

2
2

rNα
2

r (1 + µ)2µ2q̂ + 4(1 + µ)
[

p2 − 2
2

r
−2α

2

r N(µ2 + µ)
]

(p2 + µq̂)

}
1

2

}

ǫ

:= Cǫ. (5.22)

The proof is complete. �

Proof of Theorem 3.2. It follows from (5.10) that

〈Ah,Ah〉 ≥ (1 + µ)‖h‖22 − µ
[(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)

‖hS‖2 + 2
1

r
−1α

1

rN
1

2 ‖h‖2
]2

. (5.23)

By Lemma 2.2, (5.8) as well as the Hölder inequality, it results in

〈Ah,Ah〉 = 〈h,A⊤Ah〉
≤ ‖h‖1‖A⊤Ah‖∞
≤ 2ǫ

(

‖hS‖1 + ‖hSc‖1
)

≤ 2ǫ
(

s
1

2 ‖hS‖2 + ‖hSc‖r
)

≤ 2ǫ
(

s
1

2 ‖hS‖2 +
(

‖hS‖rr + α‖h‖r1
)

1

r

)

≤ 2ǫ
(

s
1

2 ‖hS‖2 + 2
1

r
−1
(

‖hS‖r + α
1

r ‖h‖1
)

)

≤ 2ǫ
[(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)

‖hS‖2 + 2
1

r
−1α

1

r N
1

2 ‖h‖2
]

. (5.24)

By (2.6), (5.23) and (5.24), we get

2ǫ

[

(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)

(

2ǫ
√
s

p
+

2
1

r
−1µN

1

2α
1

r s
1

2 ‖h‖2
p

)

+ 2
1

r
−1α

1

rN
1

2 ‖h‖2
]

≥ (1 + µ)‖h‖22 − µ

[

(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)

(

2ǫ
√
s

p
+

2
1

r
−1µN

1

2α
1

r s
1

2 ‖h‖2
p

)

+ 2
1

r
−1α

1

rN
1

2 ‖h‖2
]2

≥ (1 + µ)‖h‖22 −
µ

p2

[

4ǫ2
(

s
1

2 + 2
1

r
−1s

1

r
− 1

2

)2

+ 2
1

r
+1N

1

2α
1

r (1 + µ)ǫ‖h‖2

+ 2
2

r
−2Nα

2

r (1+µ)2‖h‖22
]

. (5.25)
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By simplifying and organizing, we get

(1 + µ)
[

p2 − 2
2

r
−2α

2

rN(µ2 + µ)
]

‖h‖22 − 2
1

rN
1

2α
1

r ǫ(1 + µ)(2µ+ p)‖h‖2

− 4
(

s+ 2
1

r
−1s

1

r

) [

µ
(

s+ 2
1

r
−1s

1

r

)

+ 1
]

ǫ2 ≤ 0. (5.26)

In addition, it is easy to see that

1 + µ > 0,

−2
1

r N
1

2α
1

r ǫ(1 + µ)(2µ+ p) < 0,

−4
(

s+ 2
1

r
−1s

1

r

) [

µ
(

s+ 2
1

r
−1s

1

r

)

+ 1
]

ǫ2 < 0.

(5.27)

It is from the proof of Theorem 3.1 that when µ fulfills µ < κ(s; r, α,N), (5.21) is satisfied.

Solving the inequality (5.26) in the case of the condition µ < κ(s; r, α,N), we gain that

‖h‖2 ≤
{

(1+µ)
[

p2−2
2

r
−2α

2

rN(µ2+µ)
]

}−1

×
{

2
1

r
−1N

1

2α
1

r (1 + µ)(2µ+ p)

+

{

2
2

r
−2Nα

2

r (1 + µ)2(2µ+ p)2 + 4(1 + µ)
[

p2 − 2
2

r
−2α

2

r N(µ2 + µ)
]

×
(

s+ 2
1

r
−1s

1

r

) [

µ
(

s+ 2
1

r
−1s

1

r

)

+ 1
]

}
1

2

}

ǫ := Dǫ. (5.28)

The proof is finished. �

6. Conclusion

In this article, we prove the capability assurance of weighted ℓr − ℓ1 minimization for recon-

structing s-sparse vectors that are probably corrupted by disturbance. This work to a certain

degree stuffs in the gap of coherence, which is one of forceful theoretical means, to compose

adequate assumptions for non-convex weighted ℓr−ℓ1 minimization approach to exactly/stably

reconstruct s-sparse vectors. Observe that our present contribution exclusively composes of re-

laxed reconstruction condition and the corresponding upper bound estimation of reconstruction

error. We will investigate and obtain the tighter condition even optimal ones in the future.
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