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Abstract

The aim of this paper is to develop a fast multigrid solver for interpolation-free finite

volume (FV) discretization of anisotropic elliptic interface problems on general bounded

domains that can be described as a union of blocks. We assume that the curved interface

falls exactly on the boundaries of blocks. The transfinite interpolation technique is applied

to generate block-wise distorted quadrilateral meshes, which can resolve the interface with

fine geometric details. By an extensive study of the harmonic average point method,

an interpolation-free nine-point FV scheme is then derived on such multi-block grids for

anisotropic elliptic interface problems with non-homogeneous jump conditions. Moreover,

for the resulting linear algebraic systems from cell-centered FV discretization, a high-order

prolongation operator based fast cascadic multigrid solver is developed and shown to be

robust with respect to both the problem size and the jump of the diffusion coefficients.

Various non-trivial examples including four interface problems and an elliptic problem in

complex domain without interface, all with tens of millions of unknowns, are provided to

show that the proposed multigrid solver is dozens of times faster than the classical algebraic

multigrid method as implemented in the code AMG1R5 by Stüben.

Mathematics subject classification: 65N08, 65N55.
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1. Introduction

In this paper we consider the following anisotropic elliptic interface problem:
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−∇ · (κ∇u) in Ω+ ∪ Ω−, (1.1)

u = uD on ∂Ω, (1.2)

[u] = v on Γ, (1.3)

[κ∇u · n] = w on Γ (1.4)

on a bounded domain Ω = Ω+ ∪ Γ ∪ Ω− ∈ R
2. The subdomains Ω+ and Ω− are separated by

the interface Γ = Ω+ ∩ Ω−. The diffusion coefficient κ is a 2 × 2 symmetric positive definite

matrix whose eigenvalues satisfy λi ≥ λ0 > 0, i = 1, 2, κ+ and κ− are restrictions of κ on Ω+

and Ω−, respectively, that is,

κ =

(

κ11 κ12

κ12 κ22

)

=

{

κ+, ∈ Ω+,

κ−, ∈ Ω−,

in which κ may be discontinuous across the interface and causes a low global regularity of u,

f ∈ C(Ω \ Γ) is a source term. The two jump conditions

v = u+ − u−, w = κ+∇u+ · n− κ−∇u− · n

are known functions across the interface Γ with at least C1 continuity, and n is the unit

normal direction pointing to the outer boundary (see Fig. 1.1). When v = w = 0 and the

diffusion coefficient is continuous (κ+ = κ−), the problem degenerates into an anisotropic

elliptic boundary value problem.

This type of problems occurs widely in the modeling of many physical phenomena such as

crystal growths, Hele-Shaw flows, etc. Mathematically, it usually leads to partial differential

equations with discontinuous or non-smooth solutions across interfaces. Hence, classical nu-

merical methods designed for smooth solutions do not work efficiently. And many new methods

have been developed in the last four decades, which can be roughly classified into two categories

by using either an unfitted mesh (e.g. a uniform Cartesian mesh) or an interface-fitted (also

known as body-fitted or interface conforming) mesh in the discretization of the domain.

In the unfitted mesh approach, the numerical approximation methods are modified locally

near the interface to satisfy the jump conditions, of which two typical ones are the immersed

interface method [31] and immersed finite element method [32]. The most attractive feature

of the unfitted mesh approach is the easiness of the mesh generation, which is convenient

for moving interface problems. Recent progress on the unfitted mesh approach can be found

in [16, 18].

In this work, we focus on the interface-fitted mesh approach, which can be divided into

three types: completely unstructured grid, locally unstructured grid, and semi-structured grid.

Fig. 1.1. An illustration of a general bounded domain with a curved interface.
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The completely unstructured mesh generator is time consuming as it needs to modify the mesh

for the whole domain, not just near the interface. The locally unstructured mesh generator [9]

modifies just the mesh near the interface thus is more efficient than that of a completely

unstructured grid. However, this local modification may damage the mesh quality near the

interface and cause problems for fast solvers. In this paper, we are interested in the semi-

structured and interface-fitted mesh approach, which can be regarded as a grid formed by

splicing several blocks of structured grids with interface falling exactly on the boundaries of

certain blocks.

The emphasis of this paper is to develop an efficient multigrid (MG) solver for the large scale

anisotropic elliptic interface problems with strong discontinuity defined across the interface.

There are at least three main challenges for such problems:

• The linear system of equations with millions of unknowns makes it impossible to use the

direct solvers that need huge memories and unacceptable long time computations.

• The strong discontinuity in diffusion coefficients often leads to ill-conditioned system of

linear equations for which iterative solvers would take too long to converge.

• Irregular geometries lead to either irregular grids or irregular discretizing points, which

would worsen thecondition of the linear system and reduce the robustness of MG methods.

These challenges preclude standard MG methods, and many MG methods have been developed

for addressing those challenges.

For elliptic interface problems with homogeneous jump conditions, Alcouffe et al. [4] pro-

posed the first vertex-centered MG method for strongly discontinuous coefficients in 1981, in

which diffusion coefficients are used in the design of interpolation operators. Wesseling et al. [48]

developed the first cell-centered MG method by designing constant prolongation and restriction

operators. Then Khalil et al. [28] gave a comparison between vertex-centered and cell-centered

MG methods, which showed that the former were more robust and needed fewer iterations

when convergent but the latter used less storage because of the constant transfer operators. In

1999, V-cycle MG method for two-dimensional elliptic equations with discontinuous constant

coefficients was proposed by Kwak [30], in which new prolongation operators with energy bound

were presented. In 2000, interface preserving coarsening algorithms were presented for com-

plex interface problems by Wan et al. [46], thus only an easy linear interpolation operator was

needed. Also in 2000, MG on the interface for mortar mixed finite element methods for elliptic

problems was developed by Wheeler et al. [49], which reduced the algebraic system to a posi-

tive definite interface problem in the mortar spaces and then solved the problem using an MG

algorithm on the interface with conjugate gradient smoothing. In 2001, an MG algorithm was

presented for the mortar element method for the P1 nonconforming element by Xu et al. [52],

in which the optimality of W-cycle MG was proved and a variable V-cycle MG pre-conditioner

was constructed. In 2002, a cascadic multigrid (CMG) method for elliptic problems with strong

material jumps is proposed and analyzed by Braess et al. [7], in which non-matching grids at in-

terfaces between the sub-domains are allowed and treated by mortar elements. In 2008, uniform

convergent MG methods for linear finite element (FE) approximation of second-order elliptic

boundary value problems with strongly discontinuous coefficients were proposed by Xu [51]. In

2012, cell-centered MG methods for elliptic problems on semi-structured triangular grids with

constant coefficients and discontinuous coefficients were proposed by Salinas [41, 42] and then

further investigated for local Fourier analysis in [40]. In 2015, some two-level mortar domain
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decomposition preconditioners for heterogeneous elliptic problems were investigated in [5]. In

2019, a local Fourier analysis for cell-centered MG method with discontinuous coefficients was

proposed by Kumar et al. [29]. Also in 2019, geometric MG algorithms for the immersed finite

element methods for elliptic problems with the interface were developed by Jo et al. [26], in

which the transfer operators between levels were carefully defined. And this work was further

developed for the semi-uniform grid [27] by introducing uniform grids as the auxiliary spaces.

In 2020, based on a novel prolongation operator for the unfitted finite element space and an

interface smoother, an MG method with more robustness for large jumps in the diffusion co-

efficients was developed. In 2021, a robust MG method for the 1D immersed finite element

method (IFEM) was developed by Wang et al. [47], in which a rigorous theoretical analysis for

the MG method based on the IFEM was given.

For elliptic interface problems with nonhomogeneous jump conditions, new geometric MG

methods were developed by Adams et al. [3] for the maximum principle preserving immersed

interface method in 2002, which was improved in [1] by giving a new interpolator for grid

points near the immersed interface and a new restrictor that guarantees the coarse-grid matri-

ces are M-matrices. And a comparison of these two methods with algebraic MG was presented

in [2]. In 2003, an algebraic MG solver was applied to the three-dimensional interface problems

by Deng et al. [15]. In 2006, a standard MG solver was applied to solve the linear problem

resulting from FV method for the solution of the two-dimensional elliptic equation by Oever-

mann et al. [35], and an algebraic MG was applied to the three-dimensional case [36]. In 2007,

the algebraic MG method was employed for a coupling interface method under the Cartesian

grid for solving elliptic complex interface problems in arbitrary dimensions by Chern et al. [11].

In 2008, a Krylov-accelerated interface MG approach was proposed for the piecewise-polynomial

interface method for elliptic problems with complex interfaces between high-contrast materials

by Chen et al. [10]. In 2012, an easy-to-implement MG method led by new Lagrange multi-

plier spaces that achieve near-optimal efficiency was proposed by Hellrung et al. [22], which

can achieve near-optimal efficiency for irregular domains. Also in 2012, an MG approach with

a suitable definition of the restriction operator is provided for the one-dimensional second-order

accurate Ghost Fluid Method by Coco et al. [12], and extensions to 2D and 3D cases were

given in [14]. Once again in 2012, a quasi-algebraic MG approach to fracture problems based

on extended finite elements was proposed by Hiriyur et al. [23]. In 2014, the bilinear and linear

immersed finite element solutions generated from the algebraic MG solver for both stationary

and moving interface problems were discussed by Feng et al. [19]. In 2020, an optimal MG

solver for arbitrary order extended finite element methods based on two discontinuous Galerkin

schemes were studied by Xiao et al. [50]. In 2021, an optimal MG algorithm for combining

P1-Q1 finite element approximations of interface problems based on local anisotropic fitting

meshes was proposed by Hu et al. [25].

Cascadic multigrid (CMG) method proposed by Deuflhard and Bornemann [6] is a variant

of the MG without any coarse grid correction step, where instead of starting from the finest

grid, the solution is first computed on the coarsest grid and the recursively interpolated and

relaxed on finer grids (see Fig. 1.2). Based on a new Richardson extrapolation formula for

the linear FE solution, an extrapolation cascadic multigrid (EXCMG) method was first pro-

posed by Chen et al. [8] to solve the 2D Poisson equation with the linear FE discretization.

For the EXCMG method, to obtain a better initial guess of the iterative solution on the next

finer grid, numerical solutions on the two-level of grids (current and previous grids) are needed

(whereas only one-level of the numerical solution is needed in the CMG method). The EX-
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Fig. 1.2. Four kinds of multigrid methods [37].

CMG algorithm has been successfully applied to smooth problems with finite difference (FD)

and FE discretization in two- and three-dimension [24, 37, 38]. However, as far as we know,

the EXCMG algorithm has mainly been used for solving the linear system resulting from the

vertex-centered FD or FE discretization of two- and three-dimensional smooth problems. It is

of more importance to solve general cell-centered FV schemes for elliptic interface problems.

In this paper, we develop a new EXCMG method combined with a cell-centered finite

volume (FV) scheme for solving two-dimensional anisotropic elliptic interface problems with

strongly discontinuous coefficients and nonhomogeneous jump conditions defined along an in-

terface. Firstly, the irregular geometry of the interface is overcome by separating the domain

into quadrilateral blocks with edges aligned with the interface. And the transfinite interpola-

tion (TFI) method first proposed by Gordon et al. [17,20,21] is applied to generate structured

body-fitting quadrilateral grids, which receives its name due to how a function belonging to this

class is able to match the primitive function at a nondenumerable number of points. Then, for

the discontinuity across the interface, we generalize the homogenization function proposed by

Terekhov et al. [45] to the nonhomogeneous case and derive a cell-centered interpolation-free

FV discretization for elliptic interface problems. Finally, for the large scale linear system re-

sulting from cell-centered FV discretization, we design a new constant block-wise prolongation

operator by the Lagrangian interpolation and extend the EXCMG algorithm to non-nested and

semi-structured grids and non-smooth problems.

The rest of the paper is organized as follows. Section 2 gives a brief review of the mesh gene-

ration algorithm based on the TFI method and the description of the FV discretization for the

anisotropic elliptic interface problems. In Section 3, we present the prolongation operator and

EXCMG algorithm in detail. Section 4 contains the numerical results to demonstrate the high

efficiency and accuracy of the proposed method. And conclusions are given in the final section.

2. Body-Fitting Quadrilateral Mesh Generator

In this section, we introduce the interface-fitted mesh generator based on the transfinite

interpolation method. We first describe the algorithm for a single quadrilateral block and

then give a unified mesh generation algorithm. In addition, one oblique interface example is

presented to illustrate the algorithm.
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2.1. Transfinite interpolation in a single quadrilateral block

Interpolation generally refers to a given finite number of points and finding the curve passing

through these points. The interpolation object of transfinite interpolation is a curve, that is,

infinite points, which is also the source of the word “transfinite”. Transfinite interpolation

generates grids by performing interpolation using boundary curves [17, 21].

Let B(ξ, η) be a curved quadrilateral domain where the grid needs to be generated, and

BL(η) = B(0, η),BR(η) = B(1, η),BD(ξ) = B(ξ, 0) and BU (ξ) = B(ξ, 1) be the four boundaries

of B , in which (ξ, η) ∈ [0, 1]× [0, 1] (See Fig. 2.1). Then B(ξ, η) can be expressed by boundaries

based on the following formula:

B(ξ, η) = (1− ξ)BL(η) + ξBR(η) + (1 − η)BD(ξ) + ηBU (ξ)− ξηBU (1)

− (1− ξ)ηBU (0)− (1− η)ξBD(1)− (1 − ξ)(1− η)BD(0). (2.1)

Finally, an algorithm for mesh generation on single curved quadrilateral domain is given in

Algorithm 2.1.

Algorithm 2.1:Mesh Generation Algorithm for Single Curved Quadrilateral Domain.

Step 1. Determine the numbers Nξ and Nη of grid nodes in two coordinate directions.

Step 2. Obtain all boundary nodes

BL

(

i

Nη

)

, BR

(

i

Nη

)

, BD

(

j

Nξ

)

, BU

(

j

Nξ

)

, i = 1, . . . , Nη, j = 1, . . . , Nξ.

Step 3. Obtain by (2.1) all mesh nodes

B

(

j

Nξ
,

i

Nη

)

, i = 1, . . . Nη, j = 1, . . .Nξ.

(a) Logical domain (b) Physical domain

Fig. 2.1. Illustration of TFI projection.

2.2. A unified mesh generation algorithm

For the application to irregular geometry of the interface, we need the following assumption.
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Assumption 2.1. The solution domain can be divided into several non-overlapping curved

quadrilateral subdomains naturally conformal with the material interface.

Remark 2.1. Assumption 2.1 may not be satisfied for the extremely irregular geometries, but

it is suitable for general cases since the edge can be curved which makes it quite flexible.

With this assumption, irregular geometries of boundary and interface can be easily con-

quered by simply applying mesh generation algorithm to each curved quadrilateral subdomains.

A unified mesh generation algorithm for complex domain with curved interface and boundary

is given in Algorithm 2.2. An example for mesh generation of a rectangle domain with oblique

interface is given in Fig. 2.2.

Algorithm 2.2: Mesh Generation Algorithm for Complex Domain with Curved

Interface and Boundary.

Step 1. Decompose the domain into several non-overlapping curved quadrilateral

subdomains naturally conformal with the problem boundary and interface.

Step 2. Generate structured body-fitting quadrilateral mesh for each subdomain by

using Algorithm 2.1.

(a) Oblique interface (b) Divided (c) Block mesh

Fig. 2.2. Illustration of mesh generation process.

3. Interpolation-Free FV Schemes for Elliptic Interface Problems

3.1. Preliminaries

According to Algorithm 2.2, the interface Γ is always located on the edges of mesh cells,

which means that there is no mixed material cell. For each inner cell that has no intersection

point with the boundary, there are four common-faced cells. And by introducing edge centers

on the boundary as stencil points for cells having intersection points with boundary, five stencil

points are available for all cells (See Fig. 3.1).

We denote the cell and the cell center by K and L, the vertex by A and B, and cell edge

by σ. If σ is a common edge of cells K and L, and its vertices are A and B, then we denote

σ = K|L = BA.

Let KA,σ be the adjacent cell of K that intersects with edge σ on only one point A. And let

KB,σ be the adjacent cell of K that intersects with edge σ on only one point B (see Fig. 3.2).
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(a) Inner cell (b) Boundary cell

Fig. 3.1. Five-point stencil for cell-centered discretization.

Fig. 3.2. Some notations for stencil.

Let J be the set of all cells, ε the set of all cell-edges, εint the set of all cell-edges not on ∂Ω, εext
the set of all cell-edges on ∂Ω, and εK the set of all edges of cell K. Denote h = supK∈J d(K),

where d(K) is the diameter of cell K.

By integrating the Eq. (1.1) over cell K and using Green formula, we obtain

∑

σ∈εK

FK,σ =

∫

K

f(x)dx, (3.1)

where FK,σ is the continuous normal flux through σ, defined by

FK,σ = −

∫

σ

κ(x)∇u(x) · ~n(x)dl = −

∫

σ

∇u(x) · κT
K~nK,σdl (3.2)

with ~nK,σ being the unit outward normal vector on the edge σ of cell K (see Fig. 3.3). Next

we consider how to discretize the continuous flux numerically.

3.2. Handling discontinuities using a homogenization technique

Firstly, we propose a homogenization technique to deal with the discontinuity on the material

interface. The idea of homogenization was first proposed by Terekhov et al. in [45] to deal with

the diffusion problem, which can be used to approximate directional derivatives in heterogeneous
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(a) Before homogenization (b) After homogenization

Fig. 3.3. Some notations for edge σ.

media. In this paper, we extend it to the elliptic interface problem with non-homogenous

jumping conditions using a much simpler deduction.

Assume that gradients of u are constant in each cell. By the jump conditions (1.3)-(1.4),

we have

∇uK · ~tσ = ∇uL · ~tσ + δK,L, (3.3)

κK∇uK · ~nK,σ + κL∇uL · ~nL,σ = ξσ, (3.4)

where κK and κL are values of κ on σ from cells K and L, respectively, ~tσ is the unit tangent

vector on the edge σ,

δK,L =















0, σ /∈ Γ,

∇vσ · ~tσ, K ∈ Ω+, L ∈ Ω−,

−∇vσ · ~tσ, K ∈ Ω−, L ∈ Ω+,

ξσ =















0, σ /∈ Γ,

−wσ, K ∈ Ω+, L ∈ Ω−,

wσ , K ∈ Ω−, L ∈ Ω+,

∇vσ and wσ are the average value of ∇v(x) and w(x) on σ, respectively. Rewriting (3.3) and

(3.4) into matrix form, we can obtain

∇uL = TL,K∇uK + CL,K , (3.5)

where

TL,K =
(

[

~tσ,−κT
L~nL,σ

]T
)−1 (

[

~tσ, κ
T
K~nK,σ

]T
)

is called as homogenization matrix, and

CL,K = −
(

[

~tσ,−κT
L~nL,σ

]T
)−1

[δK,L, ξσ]
T

is called as homogenization constant vector.
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Secondly, we will show how to distort the space geometry to overcome the discontinuity

caused by interface based on the homogenization technique. Denote the edge center of σ as I,

u(I)|K = limx→I,x∈K u(x) and u(I)|L = limx→I,x∈L u(x) be the limit value of u(I) from cells

K and L, respectively.

Based on multivariate Taylor expansion, we have

u(L) = u(L)− u(I)|L + u(I)|L − u(I)|K + u(I)|K − u(K) + u(K)

= ∇uL ·
−→
IL+ ηK,L +∇uK ·

−→
KI + u(K)

= (TL,K∇uK + CL,K) ·
−→
IL+ ηK,L +∇uK ·

−→
KI + u(K)

= ∇uK ·
(−→
KI + T T

L,K

−→
IL

)

+
(

ηK,L + CL,K ·
−→
IL

)

+ u(K), (3.6)

where

ηK,L =















0, σ /∈ Γ,

−v(I), K ∈ Ω+, L ∈ Ω−,

v(I), K ∈ Ω−, L ∈ Ω+.

Denote L∗ = K + (
−→
KI + T T

L,K

−→
IL) and C∗

K,L = (ηK,L + CL,K ·
−→
IL), we can obtain

u(L) = u(K) +∇uK ·
−−→
KL∗ + C∗

K,L. (3.7)

Similarly, we have

u(KA,σ) = u(K) +∇uK ·
−−−−→
KK∗

A,σ + C∗
K,KA,σ

, (3.8)

u(KB,σ) = u(K) +∇uK ·
−−−−→
KK∗

B,σ + C∗
K,KB,σ

, (3.9)

where K∗
A,σ,K

∗
B,σ, C

∗
K,KA,σ

and C∗
K,KB,σ

have similar definitions as L∗ and C∗
K,L, respectively.

3.3. Discretization of continuous fluxes

Finally, we consider the discretization of continuous flux. Decomposing the co-normal vector

κT
K~nK,σ into two directions

−−−−−−−→
K∗

A,σK
∗
B,σ and

−−→
KL∗, we have

κT
K~nK,σ = αK,σ

−−→
KL∗ + βK,σ

−−−−−−−→
K∗

A,σK
∗
B,σ, (3.10)

where

αK,σ =

(

κT
K~nK,σ,MR

−−−−−−−→
K∗

A,σK
∗
B,σ

)

(−−→
KL∗,MR

−−−−−−−→
K∗

A,σK
∗
B,σ

)

, βK,σ =

(

κT
K~nK,σ,MR

−−→
KL∗

)

(−−−−−−−→
K∗

A,σK
∗
B,σ,MR

−−→
KL∗

)

,

and

MR =

(

0 −1

1 0

)

is rotation matrix. Substituting (3.10) into (3.2) and using (3.7)-(3.9), we can obtain

FK,σ = −

∫

σ

∇u(x) · κT
K~nK,σdl

= −

∫

σ

∇u(x) ·
(

αK,σ

−−→
KL∗ + βK,σ

−−−−−−−→
K∗

A,σK
∗
B,σ

)

dl
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= −

∫

σ

∇u(x) ·
(

αK,σ

−−→
KL∗ + βK,σ

−−−−→
KK∗

B,σ − βK,σ

−−−−→
KK∗

A,σ

)

dl

= αK,σ

(

u(K)− u(L)
)

+ βK,σ

(

u(KA,σ)− u(KB,σ)
)

+ αK,σC
∗
K,L + βK,σ

(

C∗
K,KB,σ

− C∗
K,KA,σ

)

+O(h2). (3.11)

Similarly, we can obtain

FL,σ = αL,σ

(

u(L)− u(K)
)

+ βL,σ

(

u(LB,σ)− u(LA,σ)
)

+ αL,σC
∗
L,K + βL,σ

(

C∗
L,LA,σ

− C∗
L,LB,σ

)

+O(h2). (3.12)

To obtain a conservative discretization for continuous flux, we integrate (3.4) on σ and

obtain

FK,σ = −

∫

σ

ξσdl −FL,σ. (3.13)

The conservative continuous flux F̄K,σ can be obtained by a linear combination of two one-side

fluxes as

F̄K,σ = µ1FK,σ + µ2

(

−

∫

σ

ξσdl −FL,σ

)

, (3.14)

where µ1 = αL,σ/(αK,σ + αL,σ) and µ2 = 1 − µ1. And the conservative continuous flux F̄K,σ

can be written as

F̄K,σ =
2αK,σαL,σ

αK,σ + αL,σ

(

u(K)− u(L)
)

+
αL,σβK,σ

αK,σ + αL,σ

(

u(KA,σ)− u(KB,σ)
)

+
αK,σβL,σ

αK,σ + αL,σ

(

u(LA,σ)− u(LB,σ)
)

+ C̄K,σ +O(h2), (3.15)

where

C̄K,σ =
αK,σαL,σ

αK,σ + αL,σ

(

C∗
K,L − C∗

L,K

)

+
αL,σβK,σ

αK,σ + αL,σ

(

C∗
K,KB,σ

− C∗
K,KA,σ

)

+
αK,σβL,σ

αK,σ + αL,σ

(

C∗
L,LB,σ

− C∗
L,LA,σ

)

−

αK,σ

∫

σ

ξσdl

αK,σ + αL,σ
.

By neglecting the high-order error, we get the following conservative discrete flux FK,σ:

1) for σ ∈ εint,

FK,σ =
2αK,σαL,σ

αK,σ + αL,σ
(uK − uL) +

αL,σβK,σ

αK,σ + αL,σ
(uKA,σ

− uKB,σ
)

+
αK,σβL,σ

αK,σ + αL,σ
(uLA,σ

− uLB,σ
) + C̄K,σ, (3.16)

2) for σ ∈ εext,

FK,σ = αK,σ(uK − uL) + βK,σ(uKA,σ
− uKB,σ

)

+ αK,σC
∗
K,L + βK,σ

(

C∗
K,KB,σ

− C∗
K,KA,σ

)

. (3.17)

Remark 3.1. For the conservative discrete flux, the nonhomogeneous jump conditions are

embedded in the constants C̄K,σ and αK,σC
∗
K,L+βK,σ(C

∗
K,KB,σ

−C∗
K,KA,σ

), thus only the right

hand side of the linear system resulting from the FV discretization should be modified. This

practice was first proposed in [34] but limited in constant diffusion coefficients and only with

first-order accuracy.
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3.4. The interpolation-free FV scheme

The FV scheme of the elliptic interface problem (1.1) is defined as follows:

∑

σ∈εK

FK,σ = m(K)fK , K ∈ J , (3.18)

uK = gK , K ∈ εext, (3.19)

where m(K) is the area of cell K, fK = f(K) and gK = g(K).

Remark 3.2. The cell-centered FV scheme proposed in this section does not introduce aux-

iliary unknowns defined on vertices or edge-centers which usually need to be approximated by

some interpolation schemes. The new FV scheme is free of these interpolation works and the

fixed nine-point stencil makes it efficient and easy to implement.

This scheme often leads to a nonsymmetric nine-diagonal coefficient matrix for general

quadrilateral meshes. Only when the mesh line are orthogonal and the diffusion coefficients

are constant, does the scheme reduce to the standard five-point scheme. And the discontinuity

makes the linear system of low efficiency especially when the scale of the problem is large.

Thus, it is of great importance to developing fast solvers for these problems such as multigrid

methods, which will be described in the following section.

4. The Cell-Centered Extrapolation Cascadic Multigrid Method

In this section, we first discuss some problems caused by the irregularity of geometries and

discontinuity across the interface and construct a new multigrid prolongation operator, then

propose a CEXCMG method for solving the large-scale linear system of equations arising from

interpolation-free FV discretizations of anisotropic elliptic interface problems with homogeneous

jump conditions. This work can be regarded as an extension of our previous work on the

CEXCMG method for solving the large linear system resulting from FV discretizations on the

regular hexahedral mesh of diffusion equations with interfaces that are parallel to the axis [39].

4.1. Some challenges and solutions

The difficulties for designing multigrid method with the occurrence of curved interface for

anisotropic elliptic interface problems can be summarized as the following three aspects:

• Curved boundary and interface prevent us from adopting structured regular meshes, which

brings troubles for designing geometric multigrid methods.

• The nonhomogeneous jump conditions lead to the discontinuity of solutions across the

interface.

• The strongly discontinuous diffusion coefficients make the resulting linear system ex-

tremely ill-conditioned and very difficult to solve.

For the first problem, our solution is to design a new multigrid prolongation operator on

the logical domain by using the TFI method. Thus only some suitable interpolation algorithms

for nested Cartesian grids are needed for consideration. For the second problem, our solution

is to design a fully blocked prolongation operator by increasing the number of interpolation
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points, and requires that the coarsest grids of each block have enough degrees of freedom. For

the third problem, our solution is to develop an effective extrapolation technique to construct

a high-order approximation to the FV solution on the next finer grid, which greatly reduces the

number of required iterations of smoothing.

4.2. A fully blocked prolongation operator

Suppose that the FV solution uh obtained from the Eqs. (3.18)-(3.19) has an asymptotic

error expansion as follows:

uh = u+ S(x)h2 +O(h3), (4.1)

where S(x) is a block-wise smooth function independent of mesh size h. As discussed in the

previous subsection, the FV solution is defined on the distorted grids in order to fit the interface

and boundary. However, the interpolation on the distorted mesh will lead to the costly local

linear system to solve. To overcome this problem, we reverse the TFI projection (see Fig. 4.1)

and consider the interpolation on the logical domain (ξ, η). Then for each subdomain, we have

uh

(

x(ξ, η)
)

= u
(

x(ξ, η)
)

+ S
(

x(ξ, η)
)

h2 +O(h3), (ξ, η) ∈ [0, 1]× [0, 1],

where S(x(ξ, η)) is a smooth function independent of mesh size h.

To make the prolongation operator with at least third-order accuracy and fully blocked,

which means no interaction is involved between every two block, we take an interpolation

element consisting of 3 × 3 neighboring coarse cells into account, and consider how to obtain

values at 6 × 6 cell centers on the refined grid by interpolating the 3 × 3 numerical solutions

on coarse cell (see Fig. 4.2). In Lagrange’s form, the bi-quadratic interpolation polynomial is

given by

wh

(

x(ξ, η)
)

=

3
∑

i=1

3
∑

j=1

Ni,j

(

x(ξ, η)
)

u2h

(

x

(

i− 0.5

3
,
j − 0.5

3

))

.
= P h

2h(u2h), (4.2)

ξ, η =
l

12
, l = 1, 3, 5, . . . , 11,

(a) Physical domain (b) Logical domain

Fig. 4.1. Illustration of reversed TFI projection.
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(a) Coarse mesh (b) Refined mesh

Fig. 4.2. Illustration of an interpolation element in logical domain.

where the Lagrange interpolation basis function Ni,j is defined as follows [33]:

Ni,j

(

x(ξ, η)
)

=
∏

1≤k≤3, k 6=i

ξ − (k−0.5)/3

(i−0.5)/3− (k−0.5)/3

∏

1≤k≤3, k 6=j

η − (k−0.5)/3

(j−0.5)/3− (k−0.5)/3
. (4.3)

Remark 4.1. The fully blocked prolongation operator defined in this subsection uses the bi-

quadratic interpolation on each block. Thus the prolongation operator only introduces inter-

polation error of O(h3). And we only need to handle the second-order term S(x)h2 in the

asymptotic error expansion, which can be eliminated by using an extrapolation technique in

the following subsection.

4.3. The CEXCMG algorithm

In this subsection, we will state the whole procedure of the construction of high-order

approximation to the FV solution Uh, and propose a CEXCMG algorithm for solving the

elliptic interface problem with discontinuous and anisotropic coefficients.

For cell-centered FV solutions u4h and u2h obtained from the Eqs. (3.18)-(3.19), the pro-

longation operator P2h,h is applied as

u4h,h = P2h,h

(

P4h,2h(u4h)
)

, u2h,h = P2h,h(u2h).

Then the high-order approximation is obtained by extrapolation as

u0
h = u2h,h +

1

4
(u2h,h − u4h,h).

Finally, a new CEXCMG algorithm is obtained in Algorithm 4.1.

Remark 4.2. Usually, the number of each level of grids is set as follows:

mk = mL · βL−k, k = 2, 3, . . . , L,

where mL is the number of iterations on the finest grid, β < 2d (d is the dimension of the

computational domain). In such case, it is easy to show that the multigrid complexity of the

CEXCMG method can be obtained.
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Algorithm 4.1: Cell-Centered EXCMG.

1 Solve A0u0 = f0.

2 Solve A1u1 = f1.

3 for k = 2 to L do

4 u0
k := P k

k−1(uk−1) +
1

4

(

P k
k−1(uk−1)− P k

k−1

(

P k−1
k−2 (uk−2)

))

.

5 Compute uk by applying mk smoothing steps to u0
k

uk := SMOOTHmk
(

u0
k, Ak, fk

)

.

6 end

Remark 4.3. In Algorithm 4.1, we take the BiCGStab iteration as the multigrid smoother

instead of the conjugate gradient iteration used in the usual cascadic multigird method [6].

The BiCGStab is more suitable for nonsymmetric linear system resulting from the FV scheme

(3.18)-(3.19).

5. Numerical Experiments

In this section, we will illustrate the efficiency of CEXCMG with the BiCGStab smoother

by comparing with the classical algebraic multigrid (AMG) method as implemented in the code

AMG1R5 by Stüben [44], and present numerical results obtained by these algorithms for five

test examples, which contain two problems with irregular geometry, two problems with orders

of magnitude discontinuity, and one problem on a complex domain without interface. Our code

is written in Fortran 90 and compiled with Intel Visual Fortran Compiler XE 12.1 compiler.

All programs are carried out on a server with Intel(R) Xeon(R) Gold 6248R CPU (3.0 GHz)

and 192 GB RAM.

The order of convergence of the method is computed by

order = log2
‖ uh − u ‖

‖ uh/2 − u ‖
, (5.1)

where ‖ · ‖ denotes some norm (for instance, L2-norm or L∞-norm) and u is the exact solution.

In all of tests the source term and boundary condition are determined by the true solution. For

all tests we take ǫ = 10−12.

5.1. An oblique interface test

In this test, the computational domain Ω is set as [−1, 1]2 which is separated into two

sub-domains Ω− = {x ∈ Ω : y < 2x} and Ω+ = {x ∈ Ω : y > 2x} by an oblique interface

Γ = {y = 2x | (x, y) ∈ Ω} passing through the domain center (0, 0).

We designate the solution as

u(x, y) =

{

x2 − y2, (x, y) ∈ Ω−,

sin(x) cos(y), (x, y) ∈ Ω+,
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and the anisotropic coefficient of the PDE is set as

κ+ =

(

4 2

2 5

)

, κ− = 105κ+.

The mesh generated by TFI is illustrated in Fig. 5.1.

The number of iterations on each level of grids is set to be mk = mL · 4L−k with mL being

taken according to the accuracy requirement (10−10). Table 5.1 shows the number of iterations

on each level of grid, the error ‖uh − u‖, and the difference between the numerical solution

and initial guess ‖uh − u0
h‖. From the table, we can see that the numerical solution obtained

by CEXCMG achieves second-order accuracy in the maximum norm with only 6 iterations on

the finest grid; the difference between the numerical solution and the initial guess ||uh − u0
h|| is

4.39× 10−11 on the finest grid, and the initial guesses are of third-order accuracy. These fully

illustrate the effectiveness of the CEXCMG method.

The CPU time of the CEXCMG and AMG1R5 solver are plotted in Fig. 5.2. We can see

that the CEXCMG method is more than twenty times faster than the AMG1R5 method for

solving the discrete problem with 26214400 degrees of freedom.

Table 5.1: Numerical results obtained by CEXCMG with BiCGStab smoother for oblique interface

test. The total solving time is only 17.93 seconds.

No. of DoFs Iter ‖uh − u‖∞ Order ‖uh − u0
h‖2 Order

25600 198 1.00e-4 1.92 2.12e-6 2.93

102400 375 2.61e-5 1.95 2.71e-7 2.97

409600 384 6.69e-6 1.96 3.43e-8 2.98

1638400 96 1.70e-6 1.98 3.17e-9 3.43

6553600 24 4.29e-7 1.99 3.57e-10 3.15

26214400 6 1.07e-7 2.00 4.39e-11 3.02

Fig. 5.1. Illustration of mesh with oblique interface.
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Fig. 5.2. Comparison of computational times of CEXCMG and AMG1R5 for oblique interface test.

5.2. A curved interface test

In this test, the computational domain Ω is set as [−1, 1]2 which is separated into two sub-

domains Ω− = {(x, y) ∈ Ω : 0.1 sin(pi ∗ y) < x} and Ω+ = {(x, y) ∈ Ω : 0.1 sin(pi ∗ y) > x} by

curved interface Γ = {x = 0.1 sin(pi ∗ y)|(x, y) ∈ Ω}.

We designate the solution as

u(x, y) =

{

ex cos(y), (x, y) ∈ Ω−,

x2 + y2, (x, y) ∈ Ω+,

and the anisotropic coefficient of the PDE is set as a piecewise variable function

κ+ =

(

x2 + y2 + 1 x2 + y2

x2 + y2 x2 + y2 + 2

)

, κ− = 105κ+.

The mesh generated by TFI is illustrated in Fig. 5.3.

The challenge of the example is that the interface is curved. The results in Table 5.2 agree

with our analysis. Fig. 5.4 shows that the CEXCMG method is more than one hundred times

faster than the AMG1R5 method for solving the discrete problem with 26214400 degrees of

freedom.

Table 5.2: Numerical results obtained by CEXCMG with BiCGStab smoother for curved interface test.

The total solving time is only 46.49 seconds.

No. of DoFs Iter ‖uh − u‖∞ Order ‖uh − u0
h‖2 Order

25600 185 9.31e-5 1.97 2.08e-6 2.97

102400 283 2.35e-5 1.98 2.82e-7 2.89

409600 461 5.92e-6 1.99 3.79e-8 2.90

1638400 144 1.48e-6 2.00 4.11e-9 3.20

6553600 36 3.71e-7 2.00 2.24e-10 4.19

26214400 9 9.29e-8 2.00 2.13e-11 3.40
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Fig. 5.3. Illustration of mesh with curved interface.

Fig. 5.4. Comparison of computational times of CEXCMG and AMG1R5 for curved interface test.

5.3. A circle interface test with a strong discontinuity

In this test, the computational domain Ω is set as [−1, 1]2 which is separated into two sub-

domains Ω− = {(x, y) ∈ Ω : x2 + y2 < 0.62} and Ω+ = {(x, y) ∈ Ω : x2 + y2 > 0.62} by a circle

interface Γ = {x2 + y2 = 0.62|(x, y) ∈ Ω}.

We designate the solution as

u(x, y) =

{

sin(x+ y), (x, y) ∈ Ω−,

ex+y, (x, y) ∈ Ω+,

and the anisotropic coefficient of the PDE is set as

κ+ = 1010
(

1 −0.5

−0.5 1

)

, κ− =

(

1 0.5

0.5 1

)

.

The mesh generated by TFI is illustrated in Fig. 5.5.

The challenges of the example are that the interface is a circle, the mesh is multi-blocked

and the diffusion coefficient is of orders of magnitude discontinuity. The results in Table 5.3
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agree with our analysis. Fig. 5.6 shows that the CEXCMG method is more than two hundred

times faster than the AMG1R5 method for solving the discrete problem with 19660800 degrees

of freedom.

Table 5.3: Numerical results obtained by CEXCMG with BiCGStab smoother for strong discontinuity

test with circle interface. The total solving time is only 34.86 seconds.

No. of DoFs Iter ‖uh − u‖∞ Order ‖uh − u0
h‖2 Order

19200 578 8.51e-5 1.97 8.12e-6 2.38

76800 1255 2.15e-5 1.99 1.28e-6 2.66

307200 576 5.40e-6 1.99 1.81e-7 2.83

1228800 144 1.35e-6 2.00 2.11e-8 3.10

4915200 36 3.33e-7 2.02 2.31e-9 3.19

19660800 9 8.11e-8 2.04 2.75e-10 3.08

Fig. 5.5. Illustration of mesh with circle interface.

Fig. 5.6. Comparison of computational times of CEXCMG and AMG1R5 for circle interface test.
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5.4. A rectangular interface test with a strong discontinuity

In this test, the computational domain Ω is set as an ellipse {(x, y)|x2 +4y2 < 52} which is

separated into two sub-domains Ω− = {(x, y) ∈ Ω : |x| < 1, |y| < 1} and Ω+ = {(x, y) ∈ Ω :

|x| > 1, or |y| > 1}.

We designate the solution as

u(x, y) =

{

cos(x) + y, (x, y) ∈ Ω−,

sin(xy), (x, y) ∈ Ω+,

and the anisotropic coefficient of the PDE is set as

κ+ = 105
(

1 −0.5

−0.5 1

)

, κ− = 10−5

(

1 0.5

0.5 1

)

.

The mesh generated by TFI is illustrated in Fig. 5.7.

The challenges of the example are that the interface is a rectangular, the domain is an ellipse

and the diffusion coefficient is of orders of magnitude discontinuity. The results in Table 5.4

agree with our analysis. From Table 5.5, we can conclude that the runtimes of the mesh

generation part can be ignored compared with the assembling and solving parts. Fig. 5.8 shows

that the CEXCMG method is more than two hundred times faster than the AMG1R5 method

for solving the discrete problem with 28311552 degrees of freedom.

Fig. 5.7. Illustration of mesh with rectangular interface.

Fig. 5.8. Comparison of computational times of CEXCMG and AMG1R5 for rectangular interface test.
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Table 5.4: Numerical results obtained by CEXCMG with BiCGStab smoother for strong discontinuity

test with rectangular interface. The total solving time is only 58.60 seconds.

No. of DoFs Iter ‖uh − u‖∞ Order ‖uh − u0
h‖2 Order

27648 299 5.54e-3 1.99 1.58e-3 3.11

110592 511 1.38e-3 2.00 2.11e-4 2.90

442368 576 3.47e-4 2.00 2.64e-5 3.00

1769472 144 8.68e-5 2.00 3.26e-6 3.02

7077888 36 2.17e-5 2.00 4.03e-7 3.02

28311552 9 5.42e-6 2.00 5.03e-8 3.00

Table 5.5: CPU time (in seconds) for strong discontinuity test with rectangular interface.

No. of DoFs Assemble Solve Mesh

442368 0.5696 0.90 0.0348

1769472 2.3046 3.61 0.1494

7077888 9.8401 15.63 0.5753

28311552 39.1361 58.60 3.0918

5.5. A non-smooth domain test with highly anisotropic coefficients

In this test, the computational domain Ω = Ω1 ∪Ω2 is taken according to [13], where Ω1 is

a circle centered at (−0.25, 0) and radius 0.55, and Ω2 is a circle centered at (0.25, 0) and the

same radius 0.55 (See Fig. 5.9).

We designate the solution as

u(x, y) = sin(x) + y,

and the diffusion coefficient of the PDE is set as

κ+ = κ− =

(

108 0

0 1

)

.

The mesh generated by TFI is illustrated in Fig. 5.9.

The challenge of the example is that the the domain is a union of two circles. The results

in Table 5.6 agree with our analysis. Fig. 5.10 shows that the CEXCMG method is more than

eighty times faster than the AMG1R5 method for solving the discrete problem with 26214400

degrees of freedom.

Table 5.6: Numerical results obtained by CEXCMG with BiCGStab smoother for general domain test

without interface. The total solving time is only 41.36 seconds.

No. of DoFs Iter ‖uh − u‖∞ Order ‖uh − u0
h‖2 Order

25600 193 3.24e-5 1.99 1.00e-6 3.44

102400 344 8.13e-6 2.00 1.95e-7 2.36

409600 564 2.03e-6 2.00 3.90e-8 2.33

1638400 144 5.08e-7 2.00 7.46e-9 2.39

6553600 36 1.27e-7 2.00 4.65e-10 4.00

26214400 9 3.18e-8 2.00 3.99e-11 3.54
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Fig. 5.9. Illustration of mesh on general domain.

Fig. 5.10. Comparison of computational times of CEXCMG and AMG1R5 for general domain test

without interface.

6. Conclusions

In this paper, we develop a new EXCMG method combined with a cell-centered FV scheme

for solving two-dimensional anisotropic elliptic interface problems with strongly discontinuous

coefficients and nonhomogeneous jump conditions defined along an interface. Firstly, the irreg-

ular geometries of the interface are overcome by separating the domain into quadrilateral blocks

with curved edges aligned with the interface. And transfinite interpolation method proposed by

Gordon et al. [21] is applied to generate structured body-fitting quadrilateral grids. Then, for

the discontinuity across the interface, we generalize the homogenization function proposed by

Terekhov [45] to nonhomogeneous cases and derive a cell-centered FV discretization for elliptic

interface problems. Finally, for the large scale linear system resulting from cell-centered FV

discretization, we design a new constant block-wise prolongation operator by the Lagrangian

interpolation and extend the EXCMG algorithm to non-nested grids and non-smooth problems.

Our method can obviously solve elliptic boundary value problems in complex domains [13,43].

Acknowledgements. We would like to thank the Editor and two anonymous reviewers for

their valuable suggestions and careful reading which have helped us to improve the paper.



Finite Volume Scheme and Multigrid Solver 23

K.J. Pan was supported by the National Natural Science Foundation of China (Grant No.

42274101). X.X. Wu was supported by the Fundamental Research Funds for the Central Uni-

versities of Central South University (Grant No. 2020zzts354). H.L. Hu was supported by

the National Natural Science Foundation of China (Grant No. 12071128) and by the Natural

Science Foundation of Hunan Province (Grant No. 2021JJ30434). Z.L. Li was supported by

a Simons Grant No. 633724.

References

[1] L. Adams and T.P. Chartier, New geometric immersed interface multigrid solvers, SIAM J. Sci.

Comput., 25:5 (2004), 1516–1533.

[2] L. Adams and T. Chartier, A comparison of algebraic multigrid and geometric immersed interface

multigrid methods for interface problems, SIAM J. Sci. Comput., 26:3 (2005), 762–784.

[3] L. Adams and Z. Li, The immersed interface/multigrid methods for interface problems, SIAM

J. Sci. Comput., 24:2 (2002), 463–479.

[4] R.E. Alcouffe, A. Brandt, J.E. Dendy, and J.W. Painter, The multi-grid methods for the diffusion

equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput., 2:4 (1981), 430–454.

[5] T. Arbogast and H. Xiao, Two-level mortar domain decomposition preconditioners for heteroge-

neous elliptic problems, Comput. Methods Appl. Mech. Engrg., 292 (2015), 221–242.

[6] F.A. Bornemann and P. Deuflhard, The cascadic multigrid method for elliptic problems, Numer.

Math., 75 (1996), 135–152.

[7] D. Braess, P. Deuflhard, and K. Lipnikov, A subspace cascadic multigrid method for mortar

elements, Computing, 69 (2002), 205–225.

[8] C. Chen, H. Hu, Z.Q. Xie, and C. Li, Analysis of extrapolation cascadic multigrid method (EX-

CMG), Sci. China Ser. A-Math., 51:8 (2008), 1349–1360.

[9] L. Chen, H. Wei, and M. Wen, An interface-fitted mesh generator and virtual element methods

for elliptic interface problems, J. Comput. Phys., 334 (2017), 327–348.

[10] T. Chen and J. Strain, Piecewise-polynomial discretization and Krylov-accelerated multigrid for

elliptic interface problems, J. Comput. Phys., 227:16 (2008), 7503–7542.

[11] I. Chern and Y. Shu, A coupling interface method for elliptic interface problems, J. Comput.

Phys., 225:2 (2007), 2138–2174.

[12] A. Coco and G. Russo, Second order multigrid methods for elliptic problems with discontinuous

coefficients on an arbitrary interface, I: One dimensional problems, Numer. Math. Theory Methods

Appl., 5:1 (2012), 19–42.

[13] A. Coco and G. Russo, Finite-difference ghost-point multigrid methods on Cartesian grids for

elliptic problems in arbitrary domains, J. Comput. Phys., 241 (2013), 464–501.

[14] A. Coco and G. Russo, Second order finite-difference ghost-point multigrid methods for elliptic

problems with discontinuous coefficients on an arbitrary interface, J. Comput. Phys., 361 (2018),

299–330.

[15] S. Deng, K. Ito, and Z. Li, Three-dimensional elliptic solvers for interface problems and applica-

tions, J. Comput. Phys., 184:1 (2003), 215–243.

[16] B. Dong, X. Feng, and Z. Li, An FE-FD method for anisotropic elliptic interface problems, SIAM

J. Sci. Comput., 42:4 (2020), B1041–B1066.

[17] C. Dyken and M.S. Floater, Transfinite mean value interpolation, Comput. Aided Geom. Design,

26:1 (2009), 117–134.

[18] Q. Feng, B. Han, and P. Minev, A high order compact finite difference scheme for elliptic interface

problems with discontinuous and high-contrast coefficients, Appl. Math. Comput., 431 (2022),

127314.

[19] W. Feng, X. He, Y. Lin, and X. Zhang, Immersed finite element method for interface problems

with algebraic multigrid solver, Commun. Comput. Phys., 15:4 (2014), 1045–1067.



24 K.J. PAN, X.X. WU, H.L. HU AND Z.L. LI

[20] A. Garon and M. Delfour, Mesh adaptation based on transfinite mean value interpolation, J. Com-

put. Phys., 407 (2020), 109248.

[21] W.J. Gordon and C.A. Hall, Transfinite element methods: Blending-function interpolation over

arbitrary curved element domains, Numer. Math., 21:2 (1973), 109–129.

[22] J.L. Hellrung, L. Wang, E. Sifakis, and J.F. Teran, A second order virtual node method for

elliptic problems with interfaces and irregular domains in three dimensions, J. Comput. Phys.,

231:4 (2012), 2015–2048.

[23] B. Hiriyur, R. Tuminaro, H. Waisman, E. Boman, and D. Keyes, A quasi-algebraic multigrid

approach to fracture problems based on extended finite elements, SIAM J. Sci. Comput., 34:2

(2012), A603–A626.

[24] H. Hu, Z. Ren, D. He, and K. Pan, On the convergence of an extrapolation cascadic multigrid

method for elliptic problems, Comput. Math. Appl., 74:4 (2017), 759–771.

[25] J. Hu and H. Wang, An optimal multigrid algorithm for the combining P1-Q1 finite element

approximations of interface problems based on local anisotropic fitting meshes, J. Sci. Comput.,

88:1 (2021), 16.

[26] G. Jo and D.Y. Kwak, Geometric multigrid algorithms for elliptic interface problems using struc-

tured grids, Numer. Algorithms, 81:1 (2019), 211–235.

[27] G. Jo and D. Kwak, A semi-uniform multigrid algorithm for solving elliptic interface problems,

Comput. Methods Appl. Math., 21:1 (2021), 127–143.

[28] M. Khalil and P. Wesseling, Vertex-centered and cell-centered multigrid for interface problems,

J. Comput. Phys., 98:1 (1992), 1–10.

[29] P. Kumar, C. Rodrigo, F.J. Gaspar, and C.W. Oosterlee, On local Fourier analysis of multigrid

methods for PDEs with jumping and random coefficients, SIAM J. Sci. Comput., 41:3 (2019),

A1385–A1413.

[30] D. Kwak, V-cycle multigrid for cell-centered finite differences, SIAM J. Sci. Stat. Comput., 21:2

(1999), 552–564.

[31] R.J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discontinuous

coefficients and singular sources, SIAM J. Numer. Anal., 31:4 (1994), 1019–1044.

[32] Z. Li, T. Lin, and X. Wu, New Cartesian grid methods for interface problems using the finite

element formulation, Numer. Math., 96:1 (2003), 61–98.

[33] G. Liu, S. Quek, The Finite Element Method: A Practical Course, Butterworth-Heinemann, 2013.

[34] X. Liu, R.P. Fedkiw, and M. Kang, A boundary condition capturing method for Poisson’s equation

on irregular domains, J. Comput. Phys., 160:1 (2000), 151–178.

[35] M. Oevermann and R. Klein, A Cartesian grid finite volume method for elliptic equations with

variable coefficients and embedded interfaces, J. Comput. Phys., 219:2 (2006), 749–769.

[36] M. Oevermann, C. Scharfenberg, and R. Klein, A sharp interface finite volume method for elliptic

equations on Cartesian grids, J. Comput. Phys., 228:14 (2009), 5184–5206.

[37] K. Pan, D. He, and H. Hu, An extrapolation cascadic multigrid method combined with a fourth-

order compact scheme for 3D Poisson equation, J. Sci. Comput., 70:3 (2017), 1180–1203.

[38] K. Pan, D. He, H. Hu, and Z. Ren, A new extrapolation cascadic multigrid method for three

dimensional elliptic boundary value problems, J. Comput. Phys., 344 (2017), 499–515.

[39] K. Pan, X. Wu, H. Hu, Y. Yu, and Z. Li, A new FV scheme and fast cell-centered multigrid

solver for 3D anisotropic diffusion equations with discontinuous coefficients, J. Comput. Phys.,

449 (2022), 110794.

[40] C. Rodrigo, P. Salinas, F. Gaspar, and F. Lisbona, Local Fourier analysis for cell-centered multigrid

methods on triangular grids, J. Comput. Appl. Math., 259 (2014) 35–47.

[41] P. Salinas, C. Rodrigo, F. Gaspar, and F. Lisbona, Multigrid methods for cell-centered discretiza-

tions on triangular meshes, Numer. Linear Algebra Appl., 20:4 (2013), 626–644.

[42] P. Salinas, C. Rodrigo, F. Gaspar, and F. Lisbona, An efficient cell-centered multigrid method

for problems with discontinuous coefficients on semi-structured triangular grids, Comput. Math.



Finite Volume Scheme and Multigrid Solver 25

Appl., 65:12 (2013), 1978–1989.

[43] K.M. Singh and J.J.R. Williams, A parallel fictitious domain multigrid preconditioner for the solu-

tion of Poisson’s equation in complex geometries, Comput. Methods Appl. Mech. Engrg., 194:45-47

(2005), 4845–4860.
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