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Abstract. The fluid particle dynamics method is employed to study the fluid-solid inter-

action problem, which can avoid the explicit implementation of fluid particle boundary

condition and capture the hydrodynamic interaction well. We solve the incompressible

Navier-Stokes equation coupled with the rigid body motion equation in polar or cylin-

drical coordinates. A pressure stabilization scheme is used to solve the system in polar

coordinates for two dimensional case and cylindrical coordinates for three dimensional

case. Our objective is to understand numerically the fluid-solid interaction in rotational

extrusion flow. We numerically verify the correctness of method presented here and

give comparative analysis for different parameters. We present the Jeffery orbit formu-

lation in annular region. Numerical experiments show that the fluid particle dynamics

method is reliable and efficient for numerical simulation of particulate flow in cylindrical

coordinate system.

AMS subject classifications: 76-10

Key words: Fluid particle dynamics method, cylindrical coordinates, incompressible Navier-Stokes,

finite difference, repulsive force.

1. Introduction

The coupling of fluid-solid mechanics is a branch of mechanics generated by the in-

tersection of fluid and solid mechanics. Its important feature is the interaction between

two-phase media, including the deformation or movement of solid structure under the ac-

tion of fluid load, and the influence of solid deformation or movement on flow field. It is

the interaction between fluid and solid structure that produces various fluid-solid coupling

phenomena under different conditions. In fact, such problems appear in various areas, in-

cluding strong wind swing in high-rise buildings construction [18,21], interaction between

blood and heart in bioengineering [27], complex stress and temperature experienced by
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high molecular polymers during processing [2, 17], etc. Therefore, numerical simulations

of fluid-solid coupling is of great importance. However, researchers rarely focus on the

problem of fluid-solid interactions when multiple particles are subjected to rotational ex-

trusion in cylindrical instruments. In this paper, we want to explain and validate part of the

work of the rotary extrusion rheometer – a machine that studies the rheological behavior

of polymers – by studying the fluid-structure interaction in a hollow cylinder.

There are many numerical simulation methods for the coupling problem of incompress-

ible viscous fluid and solid particles e.g. arbitrary Lagrangian-Eulerian method (ALE), ficti-

tious domain method (FDM), immersed boundary method (IBM), and fluid particle dynam-

ics (FPD) method. The ALE method directly simulating the motion of fluid and particles

is based on moving unstructured grids. It needs remeshing and projection [12, 13]. The

fictitious domain method extends the actual computational domain inside or outside of

the desired object to form a fictitious computational domain with a simple shape, so that

a structured grid can be used to solve it efficiently [8]. The fictitious domain method has

evolved different algorithms according to different problems. The distributed Lagrange

multiplier method is proposed in [7]. The immersed boundary method, introduced by Pe-

skin and McQueen [26], is widely used in fluid and solid simulations. It uses non-boundary-

conforming meshes in numerical discretization, and the no-slip condition on the surface of

the immersed object is enforced by adding a volume force to the momentum equation. The

FPD method was proposed by Tanaka and Araki [24]. It is a diffusion interface method,

which can avoid the explicit implementation of fluid-solid boundary condition and cap-

ture the hydrodynamic interaction well. This method has efficient numerical simulation

performance, and has been well verified by numerical experiments [25].

In 2005, the effect of particle size on the lateral migration of particles in rectangular mi-

crochannels with different nozzle shapes at low Reynolds numbers was studied by Staben

et al. [22]. The particle loaded flow in two-dimensional channels was studied in [3] using

the direct numerical simulation method of coupling Navier-Stokes equation and particle

motion equation. In 2008, the motion of elliptical particles with neutral buoyancy in three-

dimensional Poiseuille flow and the rotation and orientation characteristics of particles were

studied in [20] using the fictitious domain method based on Lagrangian multipliers. Nour-

bakhsh et al. [19] studied the movement of three-dimensional deformable droplets in the

plane Poiseuille flow by a finite difference/interface tracking method. Kim et al. [16] inves-

tigated lateral migration of three-dimensional elastic capsules under the plane Poiseuille

flow by the penalty immersion boundary method.

In this paper, we use FPD method to study the interaction between fluid and solid in

cylinder coordinates, which has two important features [4], viz.

(1) The particle is approximated as a highly viscous fluid.

(2) The viscosity profile is described by a smooth interface profile function.

Approximation (1) makes the method free from the solid-fluid boundary condition, signif-

icantly simplifies the treatment of many-body hydrodynamic interactions while satisfying

the incompressible condition without the Stokes approximation. Approximation (2) al-

lows to incorporate an extra degree of freedom in a fluid. Therefore, the Navier-Stokes
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equation can be solved uniformly in the fluid and solid regions, avoiding the realization of

boundary conditions and the case of large number of particles. It greatly reduces the com-

plexity of method without explicitly solving the phase field equation. In our work, we solve

the Navier-Stokes equation in the sense of polar coordinates and cylindrical coordinates.

Therefore, the computational domain is a regular rectangle or cuboid. Meanwhile more

calculations of position and orientation of the rigid body are needed when the reference

coordinate system is changed. The finite difference discretization in staggered marker-and-

cell (MAC) grid is used in space. To obtain the motion of a rigid body in an incompressible

fluid, we update the translational and angular velocities describing the rigid body, accord-

ing to the solution obtained from Navier-Stokes equation. In the two dimensional case, we

present Jeffery orbit equation in annular region in polar coordinates.

The rest of the paper is organized as follows. In Section 2, we introduce FPD method for

the system composed of Navier-Stokes equation and particle motion equation in cylindrical

coordinates. A stabilized time discretization and finite difference scheme are employed.

Numerical verification and analysis in two dimensions are given and the numerical exper-

iments presented in Section 3 deal with the particulate flow in rotational extrusion flow.

Section 4 contains a few final remarks.

2. Mathematical Methods

2.1. Fluid particle dynamics method

The FPD method is a hybrid method [28,29], in which rigid bodies are approximated as

non-deformable, highly viscous fluid particles with a viscosity ηs much larger than the fluid

viscosity ηl . Two sets of variables are employed — viz. on-lattice variables including the

velocity field ~u(~x), the pressure field p(~x), the composition field φ(~x), and the viscosity

field η(~x), and off-lattice variables, including the particle’s center of mass position G j ,

the particle’s orientation d(~x), the particle’s center-of-mass velocity ~Vj , and the particle’s

angular velocity ~ω j . The density of rigid body and fluid may be different. The densities are

obtained when the position of the particle’s is updated. For simplicity, we assume that the

corresponding densities are equal to ρ.

The Reynolds number is defined by Re = ρUD/ηl , where U is characteristic velocity

and D characteristic length. Since the solid is approximated by a highly viscous fluid, the

velocity field can be obtained by solving the dimensionless Navier-Stokes equation (2.1) in

the whole domain Ω,

Re

�

∂ ~u

∂ t
+ (~u · ∇)~u

�

+∇p =∇ ·
�

η
�

∇~u+∇~ut
��

+ ~f in Ω,

∇ · ~u = 0 in Ω,

(2.1)

where ~f is the external force. The position of the rigid body can be determined by its

orientation d(~x) and the center of mass position G j , or by the composition field

φ(~x) =
1

2

§

tanh

�

d(~x)

ξ

�

+ 1

ª

,
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where ξ is a small length scale characterizing the fluid-solid interfacial thickness and d(~x)

is the signed distance to the fluid-solid interface, which is positive inside and negative

outside the solid body. This means φ = 1 in the solid region and φ = 0 in the fluid region.

At the interface between fluid and solid, there is a transition layer with 0 < φ < 1. The

thickness of this transition layer is determined by ξ. There are several different definitions

of viscosity. Here we use the linear interpolation function from [24], viz.

η(φ) = (1−φ)ηl +φηs,

which corresponds to a non-slip fluid-solid boundary condition. Therefore, we obtain η =

ηs inside the solid body, η = ηl outside the body and ηl < η < ηs in the transition layer.

We define the viscosity ratio Rη = ηs/ηl . In the reference [25], it is shown that the flow

will not enter the inside of the solid and the flow pattern is similar to that around the

solid when Rη = 50. In addition, the size of the particle’s should be large enough for the

interface thickness, which is the general requirement of diffusion interface method. Once

these criteria are satisfied, the flow within the solid region is almost the same as that within

an exact rigid body. Therefore, the average velocity ~u(~x) in the particle’s area can be taken

as the translational velocity ~Vj of the particle, and the average of flow angular velocity

~ν ≡
1

2
∇× ~u

can be used to calculate the angular velocity ~ω j of the particle.

The general algorithm of the FPD method is stated as follows: Given initial conditions of

the particle’s center-of-mass position G0
j
, orientation d0

j
(~x) and flow field ~u0(~x). Assuming

that Gn
j
, dn

j
(~x) and ~un(~x) are known, at the time-step n we proceed as follows:

Step 1. Calculate the composition field φn(~x) and viscosity field ηn(φn).

Step 2. Solve Navier-Stokes equation and obtain ~un+1(~x).

Step 3. Calculate the particle’s center-of-mass velocity ~V n
j

and angular velocity ~ωn
j

by

~V n
j
=

∫

φ(~x)~un(~x)dV

�∫

φ(~x)dV

�−1

,

~ωn
j =

∫

φ(~x)~νn(~x)dV

�∫

φ(~x)dV

�−1

.

(2.2)

Step 4. Update the particle’s center-of-mass position Gn+1
j

and orientation dn+1
j
(~x)

Gn+1
j = Gn

j +∆t ~V n
j ,

dn+1
j (~x) = dn

j (~x) +∆t ~ωn
j × dn

j (~x).

Step 5. Let n= n+ 1 and go to Step 1.
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Now we consider the collision between rigid body and boundary or between rigid bod-

ies. We assume that the collision is smooth — i.e. at the contact point the velocities of rigid

bodies coincide. The only preventive measure that needs to be taken is to avoid the overlap

of rigid body occupied areas [5,7]. In order to achieve this goal, we make adjustments in

Step 3 by introducing an intermediate variable ~V ∗n
j

, ~ω∗n
j

and the repulsive force F j.

Firstly, the central velocity and the angular velocity of rigid body are calculated by

~V ∗nj =

∫

φ(~x)~un(~r)dV

�∫

φ(~x)dV

�−1

,

~ω∗nj =

∫

φ(~x)~νn(~r)dV

�∫

φ(~x)dV

�−1

.

(2.3)

Secondly, the equations for rigid body motion are

M j

~V n
j
− ~V ∗n

j

∆t
= F j ,

I j

~ωn
j
− ~ω∗n

j

∆t
+ ~ω∗nj × I j ~ω

∗n
j = T j ,

(2.4)

where M j is the mass of the j-th rigid body, I j the inertia tensor of the j-th rigid body, F j

a short range repulsive force acting on the j-th rigid body introduced to avoid the overlap of

the rigid body occupied areas, and T j the torque of the repulsive force F j acting on the j-th

rigid body. The definitions of repulsive force F j and torque T j are given in [6, Appendix A].

Then we make a cycle in Steps 3 and 4 of the FPD algorithm until the repulsive force F j

between rigid body and the boundary or between the rigid bodies becomes zero.

2.2. Navier-Stokes equation solver

In this paper, we solve the Navier-Stokes equation (2.1) in cylindrical coordinates. The

finite difference discretization is used in space. In cylindrical domain,

Ω=
�

(r,θ , z) | 0≤ r ≤ R, 0≤ θ ≤ 2π, 0≤ z ≤ L
	

,

we have

∇=

�

∂

∂ r
,
1

r

∂

∂ θ
,
∂

∂ z

�

,

∇2 =
1

r

∂

∂ r

�

r
∂

∂ r

�

+
1

r2

∂ 2

∂ θ2
+
∂ 2

∂ z2
,

∇ · ~u =
1

r

∂ (rur)

∂ r
+

1

r

∂ uθ

∂ θ
+
∂ uz

∂ z
.

2.2.1. Time-discretization

We solve Navier-Stokes equation by a numerical method based on the pressure stabilization

scheme in [9]. The divergence free condition is replaced by
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∇ · ~u−τ∇2pt = 0,

where τ is a small parameter and pt is the time derivative of the pressure. For simplicity,

we assume ~f = 0. Given the initial condition ~u0 and p−1 = p0 = 0, we compute ~un+1 firstly

and then solve pn+1. For n≥ 0, and (r,θ , z) ∈ Ω, the semi-implicit scheme is

Re

�

~un+1 − ~un

∆t
+ (~un · ∇) ~un+1 +

1

2
(∇ · ~un)~un+1

�

= −∇
�

2pn − pn−1
�

+∇ ·
�

ηn+1D
�

~un+1
��

,

∇2
�

pn+1 − pn
�

=
1

∆t
Re∇ · ~un+1.

For n≥ 2, the semi-implicit scheme is

Re

�

3~un+1 − 4~un + ~un−1

2∆t
+
�

~u∗,n+1 · ∇
�

~un+1

�

= −∇

�

pn +
4

3
ψn −

1

3
ψn−1

�

+∇ ·
�

ηn+1D
�

~un+1
��

,

∇2ψn+1 =
3

2∆t
Re∇ · ~un+1,

pn+1 = pn +ψn+1 −ηn+1∇ · ~un+1,

where (·)∗,n+1 = 2(·)n − (·)n−1, ψn = pn − pn−1, and D(~u) =∇~u+∇~ut .

2.2.2. Space-discretization

The finite difference scheme on a uniformly MAC grid [11] is employed in the computa-

tional domain Ω, where the pressure p is discretized on an integer grid, while the velocity

components ur ,uθ ,uz are defined on the half-integer grid p(i, j, k),ur (i+1/2, j, k),uθ (i, j+

1/2, k), and uz(i, j, k+1/2), cf. Fig. 1. The structure of the staggered MAC grid is consistent

��

�

�

��

��

��

��

��
� �

�

Figure 1: Staggered grids.
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with the central difference scheme, which enables the decoupling of velocity and pressure,

bringing great convenience and precision to computation [29]. The discretization of the

differential operator is shown in Appendix B.

2.3. Calculation of position and orientation of the rigid body

The standard ellipsoid equation in three dimensions is

x2
1

a2
+

y2
1

b2
+

z2
1

c2
= 1,

where ellipsoid and coordinate axes are parallel. We use this equation in order to de-

scribe the ellipsoid equation after motion. We call the real Cartesian coordinate system

O − x1 y1z1 as the source coordinate system, and the final coordinate system O − x2 y2z2

as the target coordinate system. The source coordinate system should be transformed to

the target coordinate system through a coordinate transformation. We first consider the

rotation transformation as shown in Fig. 2.

��

��

��

��

��
��

�2 �1�′

�′

�1

�1

�′

�
2

�
2�

Figure 2: 3D coordinate rotation transformation.

We can achieve the conversion from O− X1Y1Z1 to O− X2Y2Z2 through three rotations





X2

Y2

Z2



= R (ǫ)





X1

Y1

Z1



,

where

R (ǫ) = R1 (ǫX )R2 (ǫY )R3 (ǫZ) ,

and

R1 (ǫX ) =





1 0 0

0 cosǫX sinǫX

0 − sinǫX cosǫX



 , R2 (ǫY ) =





cosǫY 0 − sinǫY

0 1 0

sinǫY 0 cosǫY



 ,
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R3 (ǫZ) =





cosǫZ sinǫZ 0

− sinǫZ cosǫZ 0

0 0 1



 .

In our experiment, we should additionally consider the relationship between Cartesian co-

ordinate and cylindrical coordinate — i.e. the angle ǫ0 involved in Fig. 3.

o

( � � �

�

�

�

�

�

�

�

�0

Figure 3: Schematic of coordinate transformation.

The transformation from the source coordinate system to the target coordinate system

in the experiment is as follows:





x2

y2

z2



= R3 (−ǫ0)R(ǫchange)R3 (ǫ0)





x1

y1

z1



 ,

where R(ǫchange) = R1(ǫr)R2(ǫθ )R3(ǫz), the ǫr denotes the rotational angle of the rigid

body relative to the ~r axis, the ǫθ denotes the rotational angle of the rigid body relative to

the ~θ axis and the ǫz denotes the rotational angle of the rigid body relative to the ~z axis.

And ǫr , ǫθ and ǫz can be calculated by Eq. (2.2). Then the space position equation of the

ellipsoid rigid body can be written as

(x2 − Gx)
2

a2
+
(y2 − Gy)

2

b2
+
(z2 − Gz)

2

c2
= 1,

where (Gx , Gy , Gz) is the position coordinate of the center of mass of the rigid body in the

source space, so that the position information of the rigid body can be determined.

3. Numerical Experiments

We firstly verify the reliability of the scheme presented in the above section. Secondly,

we study the fluid-solid interaction in the annular region in two dimension and then we

simulate the fluid-solid interaction in rotational extrusion flow in three dimension.
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3.1. Steady spiral flow

We consider the Couette flow between two concentric rings as shown in Fig. 4.

�

�1

�1 1

�

Figure 4: Schematic of Couette flow in slit between two concentric rings.

Assuming that the inner wall speed is Ω1 and the outer wall speed Ω2 = 0, the fluid is

driven by the rotation of the inner wall and there is no slip on the wall. Then the maximum

velocity on the inner wall is uθ = R1Ω1, the minimum velocity on the outer wall is uθ = 0,

and the velocity at any radius is ~u= (0,uθ (r)).

According to [1], the driving force for fluid motion is generated by the rotation of the

wall — i.e.

1

r2

∂
�

r2τrθ

�

∂ r
= 0.

The shear stress τrθ = c/r2 is introduced, where c is the integral constant. Furthermore,

for power-law fluids, we have

τrθ =
c

r2
= K

�

r
d

dr

�

uθ

r

��n

,

where K is a constant. It is easy to obtain that any velocity of the fluid along the radial

direction in the flow field generated by the inner wall rotation can be expressed as

uθ (r) = rΩ1

1− (R2/r)
2/n

1− (R1/R2)
−2/n

.

For comparison, as in Fig. 4, the computational domain is

Ω=
�

(r,θ) | R1 ≤ r ≤ R2, 0≤ θ ≤ 2π
	

.

In polar coordinates, we have

∇=

�

∂

∂ r
,
1

r

∂

∂ θ

�

,

∇2 =
1

r

∂

∂ r

�

r
∂

∂ r

�

+
1

r2

∂ 2

∂ θ2
,

∇ · ~u =
1

r

∂ (rur)

∂ r
+

1

r

∂ uθ

∂ θ
.
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1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
r

0

0.2

0.4

0.6

0.8

1

u

n=0.40, Numerical solution
n=0.40, Analytical solution
n=0.45, Numerical solution
n=0.45, Analytical solution
n=0.60, Numerical solution
n=0.60, Analytical solution

Figure 5: Numerical and analytical solutions for power law exponent, n=0.4, n=0.45 and n=0.6.

We choose the Bird-Carreau model as the constitutive equation of the power-law fluid [23]

η= η∞ + (η0 −η∞)
�

1+ (λγ̇)2
�(n−1)/2

,

where the strain tensor γ̇ = D(~u) : D(~u), η0 = 7η∞, λ = 0.6, R1 = 1.0, R2 = 1.5 and

Ω1 = 1, the numerical solution of the power-law exponent at n= 0.4, n= 0.45 and n= 0.6

are obtained. The comparisons are shown in Fig. 5 to illustrate the reliability of the Navier-

Stokes solver. It is easily seen that the analytical solution is consistent with the numerical

solution.

3.2. Simulation in two dimension

We consider two dimensional computation in two concentric rings as shown in Fig. 4.

The drag coefficient is defined as CD = F/V [28], where F is a constant external force

and V is the steady velocity of the rigid body under the drag of the force. We simulate

constant force F dragging rigid particles under periodic boundary conditions. The param-

eters fluid viscosity ηl = 0.00001, R1 = 4.75, R2 = 5.75, a = b = 10.0/100, when the

rotation speed is positive, the fluid moves counterclockwise. The mesh grid is nr × nθ =

100,150,200× 3000, the time step is ∆t = 0.01dr. The influence of Reynolds number on

the drag coefficient is shown in Fig. 6. The drag coefficient is goes to a constant as Re varies

from 1 to 100 for a fixed force. The case that we consider is different from the benchmark

where the particle is dragged by a constant external force along x -axis [10], but the overall

results are similar.

Next, we consider the Jeffery orbit in the annular region. We place the rigid body parti-

cle as shown in Fig. 7. The Reynolds number Re = 1.0, the fluid viscosity ηl = 0.001, Rη =

100, the long and short axes of the elliptic rigid body are a = 18.0/100, b = 9.0/100

respectively, and the interface thickness ξ = 0.9/100. The parameters R1 = 0.75, R2 =

1.75, R1Ω1 = 2.0 and R2Ω2 = 2.0. The mesh grid is nr × nθ = 100× 620, the time step is

∆t = 0.01dr. The boundary condition is
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(a)

1 20 50 100
Re

-0.05

0

0.05

C
D

nr × n  = 100 × 3000
nr × n  = 150 × 3000
nr × n  = 200 × 3000

(b)

Figure 6: (a) Circular rigid body particle with radius 10.0/100 is dragged by constant force F = 0.1;
(b) The influence of different Reynolds number on drag coefficient with three different mesh grid.

ur(R1) = 0, uθ (R1) = R1Ω1 on r = R1,

ur(R2) = 0, uθ (R2) = −R2Ω2 on r = R2,

ur(0) = ur(2π), uθ (0) = uθ (2π) on θ = 0, θ = 2π,

∂ p

∂ n

�

�

�

�

∂Ω

= 0 on (r,θ) ∈ ∂Ω,

which represents the inner and outer walls rotating inversely similarly like shear motion.

Fig. 8 shows the fluid structure interaction for different Rη in the shear flow field, and we

get the similar results as in [25]. Jeffery [14], presented the following relation between the

angular velocity ω of the elliptic particle rotation and the current angle θ of the particle

-1.75 -0.75 0 0.75 1.75
-1.75

-0.75

0

0.75

1.75

Figure 7: A particle in annular region.
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-0.3 0 0.3
1

1.25

1.5

(a) Rη = 1

-0.3 0 0.3
1

1.25

1.5

(b) Rη = 100

Figure 8: Flow field around a particle under shear field: (a)Rη = 1, (b)Rη = 100.

under the shear of Stokes equation

ω=
γ̇

2
[−1+ P cos(2θ)],

where γ̇ is the shear rate of shear flow, θ is the angular orientation of the elliptic particle,

P = (1− e2)/(1+ e2), and e is the axial ratio. Fig. 9 shows the relationship between the

angular velocity of the rigid body and the angle of rotation in our case. The fitting function

in Fig. 9 has the form

ω =
γ̇
′

2
[0.45+ P

′

cos(2θ)],

where γ̇
′

= −(R1Ω1 + R2Ω2)/(R2 − R1), and P
′

= 1.25P. Our numerical experiment is not

carried out in a real rectangular shear flow but we can still see that our numerical results

-1.5 -0.5 0 0.5 1.5
/

-1.6

-0.9

-0.2 Our result
Fitting function

Figure 9: Relationship between angular velocity ω of elliptic particle and the angular orientation θ .
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have similar trigonometric function shapes with the Jeffery orbit. These results validate

our fluid structure coupling solver.

3.3. Simulation in three dimension

We consider a hollow cylinder with inner radius R1, outer radius R2 and the length L,

cf. Fig. 10. The calculational domain is

Ω=
�

(r,θ , z) | R1 ≤ r ≤ R2, 0≤ θ ≤ 2π, 0≤ z ≤ L
	

.

Note that the Reynolds number Re = 1.0, the fluid viscosity ηl = 0.001, Rη = 100, the

ellipsoid rigid body axis lengths are a = 15/128, b = 10/128, c = 9/128 and interface

thickness ξ = 0.9/128. The parameters R1 = 1.0, R2 = 1.5, R1Ω1 = 15, R2Ω2 = 15 and

L = 6.5, when the rotation speed is positive, the fluid flows counterclockwise. The mesh

size is nr×nθ ×nz = 32×380×410, the time step∆t = 0.01dr. For velocity, the Dirichlet

boundary is used in r direction, the periodic boundary condition is used in θ direction and

zero Neumann boundary condition in the z direction is applied. The boundary conditions

for pressure are [15]

∂ p

∂ n
= 0 on (r,θ) ∈ ∂Ω,

p(0) = pin, p(L) = pout on z = 0, z = L,

where pin and pout are the pressure values at the inlet and outlet of the hollow cylinder. We

take pin = 6.0 and pout = 0 here. There are four different boundary conditions of velocity

according to different rotation modes as shown in Table 1, which include that inner wall

and outer wall both rotate in the same direction or in the opposite direction, or one of walls

does not rotate.

L

r�1

�

�����

������

Figure 10: Hollow cylinder.
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Table 1: Boundary conditions of different rotation modes in 3D.

3D(I) 3D(II) 3D(III) 3D(IV)

on r= R1

ur(R1) = 0 ur(R1) = 0 ur(R1) = 0 ur(R1) = 0

uθ (R1) = R1Ω1 uθ (R1) = 0 uθ (R1) = R1Ω1 uθ (R1) = R1Ω1

uz(R1) = 0 uz(R1) = 0 uz(R1) = 0 uz(R1) = 0

on r= R2

ur(R2) = 0 ur(R2) = 0 ur(R2) = 0 ur(R2) = 0

uθ (R2) = 0 uθ (R2) = R2Ω2 uθ (R2) = R2Ω2 uθ (R2) = −R2Ω2

uz(R2) = 0 uz(R2) = 0 uz(R2) = 0 uz(R2) = 0

on θ = 0

and

on θ = 2π

ur(0) = ur(2π) ur(0) = ur(2π) ur(0) = ur(2π) ur(0) = ur(2π)

uθ (0) = uθ (2π) uθ (0) = uθ (2π) uθ (0) = uθ (2π) uθ (0) = uθ (2π)

uz(0) = uz(2π) uz(0) = uz(2π) uz(0) = uz(2π) uz(0) = uz(2π)

on z= 0

and

on z= L

∂ ur/∂ n = 0 ∂ ur/∂ n = 0 ∂ ur/∂ n= 0 ∂ ur/∂ n = 0

∂ uθ/∂ n= 0 ∂ uθ/∂ n = 0 ∂ uθ/∂ n = 0 ∂ uθ/∂ n = 0

∂ uz/∂ n = 0 ∂ uz/∂ n = 0 ∂ uz/∂ n= 0 ∂ uz/∂ n = 0

3.3.1. Stable rotational extrusion flow

Firstly we discuss the fully developed flow field with boundary condition 3D(I). In Fig. 11,

we present the distribution of the annular velocity uθ with respect to radial ~r at the section

z = 3.0 and the axial velocity uz with respect to radial ~r at the section θ = π. Due to

the existence of pressure difference between the inlet and outlet and the non-slip boundary

condition of the axial velocity uz on the cylinder wall, the flow field distribution of a section

of uz at θ = π looks like a parabola, which is similar to the Poiseuille flow. The annular

velocity uθ in a section of z = 3.0 is similar to that in a two-dimensional ring, and the flow

field distribution is similar to the shear flow, while the radial velocity ur is close to zero.

3.3.2. Fluid-rigid body interaction in rotational extrusion flow

We present three-dimensional simulations of fluid-rigid body interaction with four different

boundary conditions. For simplicity, we set the initial velocity uθ = −30.0× r + 45.0 and

uz = 32.0 × (r − 1.0) × (1.5 − r) with boundary condition 3D(I), uθ = 30.0 × r − 30.0

and uz = 32.0 × (r − 1.0) × (1.5 − r) with boundary condition 3D(II), uθ = 15.0 and

uz = 32.0× (r − 1.0)× (1.5 − r) with boundary condition 3D(III) and uθ = −60.0× r +

75.0 and uz = 32.0× (r − 1.0)× (1.5 − r) with boundary condition 3D(IV). The motions

of the mass center of three rigid bodies at different initial positions with four boundary

conditions are shown in Figs. 12(a)-12(d), respectively. We place the first rigid body near

the inner wall, the second rigid body in the middle of the inner and outer walls and place

the third rigid body close to the outer wall. As shown in Fig. 12, the red curve represents the

motion the first rigid body, the green curve represents the second rigid body and the blue

curve represents the third rigid body. As expected, the rigid body makes a spiral motion

in the channel, in which the rigid body in the middle has the maximum axial speed and

moves forward fastest. The degree of spiral of the rigid body motion increases with the
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Figure 11: Fully developed flow field. (a) Annular velocity uθ . (b) Axial velocity uz.

increase of the circular velocity. Different rigid bodies trajectories are caused by different

boundary conditions. The positions and orientations of rigid bodies and surrounding fluid

velocity fields are shown at time t = 0.1953, 1.2891, and 2.0703 with boundary condition

3D(I) are shown in Figs. 13-15, respectively. The variation of angular velocity of the rigid

body motion with boundary condition 3D(I) is shown in Fig. 16, where ωp1 denotes the

rotational angular velocity of the rigid body relative to the ~r axis,ωp2 denotes the rotational

angular velocity of the rigid body relative to the ~θ axis, and ωp3 denotes the rotational

angular velocity of the rigid body relative to the ~z axis. According to the Eqs. (2.3)-(2.4),

the angular velocity of the rigid body is not only related to the average value of the angular

velocity of the fluid, but also related to the torque we introduced at the center of the rigid

body. When the rigid body is close to another rigid body or the rigid body is close to the

wall, the rotation angular velocity will have a sudden change, and the effect of this sudden

change between the two rigid bodies is to make the rigid body turn a certain angle so as to

avoid the overlap of the occupied area, which is the effect of the collision strategy that we

adopt.
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(a) (b)

(c) (d)

Figure 12: Motion of mass center of three rigid bodies at different initial positions with four different
boundary conditions. (a) Boundary condition 3D(I). (b) Boundary condition 3D(II). (c) Boundary
condition 3D(III). (d) Boundary condition 3D(IV).

Figure 13: Position and orientation of rigid bodies and surrounding flow field, t = 0.1953.

Finally, we give the numerical simulation of many rigid bodies advancing in the flow

field. The positions and orientations of the rigid bodies at different time are demonstrated

in Fig. 17, which shows two cases with two different initial conditions. It is observed that if

the rigid bodies are arranged irregularly initially, they are presented more irregularly in the

rotational extrusion flow with time evolution. If the particles are arranged in order initially,

they will move forward regularly in rotational extrusion flow with time increasing. It is not

difficult to observe from these results that the rotating-extrusion rheometer can regulate the

arrangement of particles according to fluid-particle interaction. The initial arrangement of

particles can greatly affect the motions of them.
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Figure 14: Position and orientation of rigid bodies and surrounding flow field, t = 1.2981.

Figure 15: Position and orientation of rigid bodies and surrounding flow field, t = 2.0703.

4. Conclusion

In this paper, we use FPD method to simulate the fluid-solid interaction problem. We

solve the coupled system in polar coordinates and cylindrical coordinates. We use a finite

difference discretization in staggered MAC mesh and a pressure stabilized scheme in time.

Firstly, we obtain the numerical solution of the power-law fluid driven by the Dirichlet

boundary in the annular region. The comparison between the numerical solution and the

analytical solution verifies the reliability of the solver for Navier-Stokes equation. For the

interaction between particle and fluid, we present drag coefficient calculation for circular

particle and Jeffery orbit simulation for elliptical particle to validate our fluid structure

coupling solver. Then, we extend the computational domain to a three-dimensional finite

hollow cylinder. We obtain the stable spiral motion of several ellipsoidal rigid bodies under

the complex boundary conditions of circumferential rotation and axial drag. Finally, we

show the numerical simulations of many rigid particles advancing in the fluid field. It is

observed that FPD method has reliable and efficient performance for numerical simulation

of fluid-solid interaction in cylindrical coordinates. In the future, we will generate our

simulation in parallel computing with large scale particles. We will also consider more

complex fluid-solid interaction, where solid moves more intricately than rigid motion.
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Figure 16: Angular velocity of rotation of rigid body around ~r, ~θ and ~z axes with boundary condition
3D(I).
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Case (I), t=0.0002 Case (II), t=0.0002

Case (I), t=0.24 Case (II), t=0.216

Case (I), t=0.408 Case (II), t=0.432

Case (I), t=0.6 Case (II), t=0.624

Figure 17: Positions and orientations of rigid bodies with two different initial arrangements at different
time.
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Appendix A. Definition of repulsive force and torque

For the repulsive force F j and torque T j, we have

F j =
∑

Fw
j +

N
∑

i=1
i 6= j

F
p

j,i
,

T j =
−−→
G j ~x × F j.

For the particle-particle repulsive force, we define

F
p

j,i
=







0, d j,i > R j + Ri +ρ,
1

εp

�

G j −Gi

� �

R j + Ri +ρ − d j,i

�2
, d j,i ≤ R j + Ri +ρ,

where R j is the radius of the j-th particle, d j,i = |G j − Gi| is the distance between the

centers of the j-th particle and i-th particle, ρ is the force range, and εp is a small positive

parameter. For the particle-wall repulsive force, we define

Fw
j =







0, d ′
j
> 2R j +ρ,

1

εw

�

G j −G′
j

��

2R j +ρ − d ′
j

�2
, d ′

j
≤ 2R j +ρ,

where, εw is another small positive parameter, and d ′
j
= |G j −G′

j
| is the distance between

the centers of the j-th particle and the imaginary particle as shown in Fig. 18.

�
′

�

����
��
′

Figure 18: Imaginary particle.
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Appendix B. Spatial discretization of differential operators

The second-order interpolations are used for variables evaluated at different grid points.

For variables (denoted by u) solved on (i + 1/2, j, k), we have

ui, j,k =
ui+1/2, j,k + ui−1/2, j,k

2
,

ui+1/2, j+1/2,k =
ui+1/2, j+1,k + ui+1/2, j,k

2
,

ui+1/2, j,k+1/2 =
ui+1/2, j,k+1 + ui+1/2, j,k

2
.

Similar calculations are used for variables on (i, j+1/2, k) and (i, j, k+1/2). For variables

(denoted by u) solved on (i, j, k), the interpolation on the top boundary, right boundary

and corner point are defined as follows:

ui+1/2, j,k =
ui+1, j,k + ui, j,k

2
, ui, j+1/2,k =

ui, j+1,k + ui, j,k

2
, ui, j,k+1/2 =

ui, j,k+1+ ui, j,k

2
,

ui+1/2, j+1/2,k+1/2 =
ui, j,k + ui+1, j,k + ui, j+1,k + ui, j,k+1

8

+
ui+1, j+1,k + ui, j+1,k+1+ ui+1, j,k+1 + ui+1, j+1,k+1

8
.

Typical finite-difference approximations to derivatives are given as

∇ui+1/2, j,k =
ui+1, j,k − ui, j,k

∆r
, ∇ui, j+1/2,k =

ui, j+1,k − ui, j,k

ri∆θ
, ∇ui, j,k+1/2 =

ui, j,k+1 − ui, j,k

∆z
,

∆ui, j,k =
ri+1/2(ui+1, j,k − ui, j,k)− ri−1/2(ui, j,k − ui−1, j,k)

ri∆r2

+
ui, j+1,k − 2ui, j,k + ui, j−1,k

r2
i
∆θ2

+
ui, j,k+1− 2ui, j,k + ui, j,k−1

∆z2
,

∆ui+1/2, j,k =
ri+1(ui+3/2, j,k − ui+1/2, j,k)− ri(ui+1/2, j,k − ui−1/2, j,k)

ri+1/2∆r2

+
ui+1/2, j+1,k − 2ui+1/2, j,k + ui+1/2, j−1,k

r2
i+1/2

∆θ2

+
ui+1/2, j,k+1 − 2ui+1/2, j,k + ui+1/2, j,k−1

∆z2
,

∆ui, j+1/2,k =
ri+1/2(ui+1, j+1/2,k − ui, j+1/2,k)− ri−1/2(ui, j+1/2,k − ui−1, j+1/2,k)

ri∆r2

+
ui, j+3/2,k − 2ui, j+1/2,k + ui, j−1/2,k

r2
i
∆θ2

+
ui, j+1/2,k+1 − 2ui, j+1/2,k + ui, j+1/2,k−1

∆z2
,

∆ui, j,k+1/2 =
ri+1/2(ui+1, j,k+1/2 − ui, j,k+1/2)− ri−1/2(ui, j,k+1/2 − ui−1, j,k+1/2)

ri∆r2
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+
ui, j+1,k+1/2 − 2ui, j,k+1/2 + ui, j−1,k+1/2

r2
i
∆θ2

+
ui, j,k+3/2 − 2ui, j,k+1/2 + ui, j,k−1/2

∆z2
.
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