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Abstract

We develop a stabilizer free weak Galerkin (SFWG) finite element method for Brinkman

equations. The main idea is to use high order polynomials to compute the discrete weak

gradient and then the stabilizing term is removed from the numerical formulation. The

SFWG scheme is very simple and easy to implement on polygonal meshes. We prove

the well-posedness of the scheme and derive optimal order error estimates in energy and

L2 norm. The error results are independent of the permeability tensor, hence the SFWG

method is stable and accurate for both the Stokes and Darcy dominated problems. Finally,

we present some numerical experiments to verify the efficiency and stability of the SFWG

method.

Mathematics subject classification: 65N30, 65N15.

Key words: Brinkman equations, Weak Galerkin method, Stabilizer free, Discrete weak

differential operators.

1. Introduction

In this paper, we consider the following Brinkman model: Seek unknown fluid velocity u

and pressure p satisfying

−µ∆u+ µκ−1u+∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = g on ∂Ω, (1.3)

where Ω ∈ Rd is a polygonal (d = 2) or polyhedral domain (d = 3), µ is the fluid viscosity coeffi-

cient and κ denotes the permeability tensor of the porous medium, f represents the momentum

source term, and the boundary value g satisfies the compatibility condition
∫

∂Ω
g · n = 0.
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For simplicity, we consider the Brinkman equations with boundary condition g = 0 and

take the viscosity coefficient µ to be 1. Assume that the permeability κ is piecewise constant

and there exist two constants λ1, λ2 > 0 such that

λ1ξ
tξ ≤ ξtκ−1ξ ≤ λ2ξ

tξ, ∀ ξ ∈ Rd,

where ξ is a column vector and ξt is the transpose of ξ. We consider that λ1 is the unit size

and λ2 may be the case of large size.

The Brinkman equations (1.1)-(1.3) can be seen as a modified version of Darcy’s law ob-

tained by adding viscous forces to the Navier-Stokes equations [5]. This model has been ap-

plied in many fields, such as power engineering, petroleum industry, geology, geophysics, and

so on [4, 9, 10, 20]. Mathematically speaking, the Brinkman equations have different properties

due to the varying permeability tensor κ. When κ is very large, the Brinkman equations are

similar to Stokes equations. Conversely, when κ is small and close to zero, the equations are

similar to Darcy equations. Therefore, the numerical method designed for Brinkman equations

should be efficient and stable for both the Stokes and Darcy equations. To achieve this goal,

one natural attempt is to directly apply the existing stable Stokes elements (e.g. Mini-element,

P2 − P0 element, nonconforming Crouzeix-Raviart element) or the stable Darcy element (e.g.

Raviart-Thomas element) to the Brinkman equations. However, numerical experiments in [22]

show that when applying stable Darcy element the convergence would deteriorate when κ is

relatively large and vice versa. To overcome this difficulty, many recent studies have attempted

to develop suitable modified elements for Brinkman equations. For instance, Burman et al. [6]

add stabilizing terms penalizing the jumps on the normal component of the velocity field. Jun-

tunen et al. [15] generalize the classical Mini-element, and obtain a stable finite element method

for varying permeability. An H(div)-conforming element is applied to a geometric multi-grid

method [16] based on the DG method. In recent years, some new numerical approaches have

been developed for Brinkman equations, for example, virtual element methods [7], hybridiz-

able discontinuous Galerkin method [18, 19], mixed discontinuous Galerkin method [28], weak

Galerkin methods [14, 24, 36], and so on.

The weak Galerkin (WG) finite element method is first proposed by Wang and Ye [29] for the

second-order elliptic equations. They introduced the weak differential operators to approximate

the classical differential operators in the variational form. A unified study on WG methods

with other discontinuous Galerkin methods for solving partial differential equations has been

presented in [11, 12]. The discrete weak gradient is computed by the RTk or BDMk elements,

which limits the finite element partition to triangular meshes. In order to extend the partition

to polygonal meshes, a stabilizing term is added to the WG scheme in [30]. This stabilized

WG finite element method has been applied to various equations, see [13, 21, 23, 25–27, 31, 32].

However, such a stabilizing term also increases the difficulty of theoretical analysis and the

complexity of algorithm implementation. Therefore, efforts have been made to remove the

stabilizing term from the numerical scheme. A popular and efficient strategy is to raise the

degree of the polynomial that approximates the weak gradient [33]. The specific degree of

polynomial depends on the number of edges of polygonal meshes. Such a stabilizer free WG

method has been applied to Stokes equations [8], parabolic equations [2,37], wave equations [17],

biharmonic equations [34], and so on.

The purpose of this paper is to establish a stabilizer free weak Galerkin (SFWG) method

for Brinkman equations. Adopting high order piecewise polynomial space to approximate the

weak gradient of velocity, we establish a simple numerical scheme on general polygonal meshes
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without any stabilizing term. Furthermore, we prove the well-posedness of the numerical scheme

and derive the optimal order error estimates. The corresponding energy and L2 error estimates

are independent of the permeability κ, so the SFWG method is suitable for both the Stokes and

Darcy dominated problems. Besides, in programming, the calculation of the stiffness matrix is

simpler and more intuitive since there is no stabilizing term.

The outline of the paper is summarized as follows. In Section 2, we introduce some basic

notations and the weak formulation of Brinkman model. Section 3 is devoted to constructing

the SFWG scheme. Its well-posedness is proved in Section 4. In Section 5, we derive the error

equations for the numerical scheme. And we obtain the error estimates in Section 6. Finally,

in Section 7, we present some numerical experiments to validate the theoretical results.

2. Preliminary

Consider an open bounded domain D with Lipschitz continuous boundary in Rd (d = 2, 3).

For the Sobolev spaces, we use the notations commonly used [1], such as Hk(D)(k ≥ 0), inner

product (· , ·)k,D, norm ‖ · ‖k,D, and semi-norm | · |k,D. In addition, the inner product defined

on ∂D denotes by 〈· , ·〉k,∂D. When D = Ω and k = 0, the subscripts D and k in the norm and

inner product notations are omitted. In particular, we define the function spaces as follows:

[H1
0 (D)]d =

{

u ∈ [H1(D)]d : u|∂D = 0
}

,

L2
0(D) =

{

p ∈ L2(D),

∫

D

pdx = 0

}

.

The space H(div;D) is defined as

H(div;D) =
{

u ∈ [L2(D)]d : ∇ · u ∈ L2(D)
}

,

which is equipped with the norm

‖u‖H(div;D) =
(

‖u‖2D + ‖∇ · u‖2D
)

1

2 .

The weak formulation for the Brinkman equations (1.1)-(1.3) is to find the unknown func-

tions u ∈ [H1
0 (Ω)]

d and p ∈ L2
0(Ω) satisfying

(∇u,∇v) + (κ−1u,v)− (∇ · v, p) = (f ,v), (2.1)

(∇ · u, q) = 0 (2.2)

for all v ∈ [H1
0 (Ω)]

d and q ∈ L2
0(Ω).

3. A Stabilizer Free WG Finite Element Scheme

In this section, we introduce discrete weak differential operators and construct a stabilizer

free WG finite element scheme.

Divide the domain Ω into polygons (d = 2) or polyhedrons (d = 3) satisfying the shape

regular assumptions in [30]. Let Th be the partition above and Eh be the set of all edges or

faces in the partition. Denote the collection of edges or faces located inside the domain Ω by

the set E0
h = Eh\∂Ω. For each T ∈ Th, e ∈ Eh, denote by hT and he the diameter of T and e,

respectively. The size of Th is h = maxT∈Th
hT . For a given integer k ≥ 1, denote by ρ ∈ Pk(T )

that ρ|T is polynomial with degree no more than k.



4 H.N. DANG, H. PENG, Q.L. ZHAI AND R. ZHANG

We define the discrete weak function space for the vector-valued functions as

Vh =
{

v = {v0,vb} : {v0,vb} |T ∈ [Pk(T )]
d × [Pk(e)]

d, ∀T ∈ Th, e ⊂ ∂T
}

.

Here, v0 can be regarded as the value of v inside the cell T and vb can be regarded as the value

of v on the boundary of the cell T . Just to be clear, vb defined on e ∈ Eh has only a single

value. We define a subspace of Vh as

V 0
h = {v : v ∈ Vh,vb = 0 on ∂Ω} .

For the scalar-valued functions, we define

Wh =
{

q : q ∈ L2
0(Ω), q|T ∈ Pk−1(T )

}

.

Then we recall the definitions of the discrete weak gradient operator and the discrete weak

divergence operator in [8]. For a vector-valued function

v = {v0,vb} ∈ Vh + [H1(Ω)]d,

the discrete weak gradient ∇wv is a unique polynomial function in [Pj(T )]
d×d (j > k) on each

cell T satisfying

(∇wv, ι)T = −(v0,∇ · ι)T + 〈vb, ι · n〉∂T , ∀ ι ∈ [Pj(T )]
d×d, (3.1)

where n is the unit outward normal vector to ∂T . We remark that j = ne + k − 1, ne is the

number of edges of polygon T [33]. In particular, we have j = k + 1, when the domain is

partitioned into triangles [3].

The discrete weak divergence ∇w · v is a unique polynomial function in Pk−1(T ) on each

cell T satisfying

(∇w · v, ρ)T = −(v0,∇ρ)T + 〈vb, qn〉∂T , ∀ ρ ∈ Pk−1(T ). (3.2)

We are now in the position to construct an SFWG numerical scheme for (1.1)-(1.3). For

simplicity of notations, we introduce two bilinear forms a(· , ·) and b(· , ·) as follows:

a(v,w) = (∇wv,∇ww) + (κ−1v0,w0),

b(v, q) = (∇w · v, q).

With these preparations, we give the SFWG numerical scheme.

Algorithm 3.1: SFWG Numerical Scheme.

Find uh = {u0,ub} ∈ V 0
h and ph ∈ Wh such that

(∇wuh,∇wv) + (κ−1u0,v0)− (∇w · v, ph) = (f ,v0), (3.3)

(∇w · uh, q) = 0 (3.4)

for all v = {v0,vb} ∈ V 0
h and q ∈ Wh.
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4. Stability and Solvability

In order to discuss the well-posedness of SFWG scheme, we first define a tri-bar norm. For

any v = {v0,vb} ∈ Vh + [H1(Ω)]d,

|||v|||2 = a(v,v) = ‖∇wv‖
2 +

∥

∥κ− 1

2v0

∥

∥

2
. (4.1)

We also need another discrete H1 norm ‖ · ‖1,h in V 0
h given by [24]

‖v‖21,h = ‖∇wv‖
2 +

∑

T∈Th

h−1
T ‖v0 − vb‖

2
∂T . (4.2)

For any q ∈ Wh, we use the following norm ||| · |||1 in the rest of this paper:

|||q|||21 =
∑

T∈Th

∥

∥κ
1

2∇q
∥

∥

2

T
+ h−1

∑

e∈E0

h

‖⌈q⌉‖2e, (4.3)

where ⌈q⌉ is defined as follows: If e ⊂ E0
h is shared by T1 and T2, and n1 and n2 are the unit

outward normal vectors of T1 and T2 to e, then denote by ⌈q⌉ = q|T1
n1 + q|T2

n2.

Lemma 4.1 ([8, Lemma 4.1]). For any v = {v0,vb} ∈ Vh and T ∈ Th, it holds

h−1
T ‖v0 − vb‖

2
∂T ≤ C‖∇wv‖

2
T , (4.4)

where C is a positive constant.

According to (4.2) and Lemma 4.1, over all cell T , then it is straightforward to show that

‖v‖21,h ≤ C‖∇wv‖
2 ≤ C|||v|||2. (4.5)

Lemma 4.2. ||| · ||| defined in (4.1) provides a norm in Vh.

Proof. It is obvious that ||| · ||| defines a semi-norm in Vh. Then, assume |||v||| = 0 for a v ∈ Vh,

we have

‖∇wv‖
2 +

∥

∥κ− 1

2v0

∥

∥

2
= 0,

which implies ∇wv = 0 and v0 = 0 on each cell. According to (4.4), we obtain v0 = vb = 0,

which completes the proof. �

From the definition of the norm |||·||| and the Cauchy-Schwarz inequality, the following lemma

holds true.

Lemma 4.3. For any v,w ∈ Vh, we have

|a(v,w)| ≤ |||v||||||w|||.

Lemma 4.4. For any nonzero q ∈ Wh, let F (q) = {−κ∇q, h−1⌈q⌉ne} be the artificial flux of q

(see [24]), we have

b
(

F (q), q
)

|||q|||1
= |||q|||1. (4.6)

Furthermore, there exists a positive constant C such that

‖F (q)‖1,h ≤ Ch−1|||q|||1. (4.7)
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Proof. (4.6) can be verified directly by the definition of ||| · |||1. We only need to prove the

estimate (4.7). From the proof [24, Lemma 3.2], we have

‖∇wF (q)‖2 ≤ Ch−2|||q|||21.

Taking v = F (q) in (4.5), we obtain

‖F (q)‖21,h ≤ C‖∇wF (q)‖2.

Combining the estimates above, we complete the proof of (4.7). �

Lemma 4.4 yields the following inf-sup condition:

sup
v∈Vh

b(v, q)

‖v‖1,h
≥ Ch|||q|||1, ∀ q ∈ Wh. (4.8)

Lemma 4.5. The stabilizer free weak Galerkin finite element scheme (3.3)-(3.4) has a unique

solution.

Proof. Consider the corresponding homogeneous equation f = 0, let v = uh in (3.3) and

q = ph in (3.4). Subtracting these two equations, we have

|||uh|||
2 = a(uh,uh) = 0,

which implies uh = 0.

Taking v = F (ph), where F (·) is defined in Lemma 4.4. It follows from uh = 0 and f = 0

that

0 = b
(

F (ph), ph
)

= |||ph|||
2
1. (4.9)

Thus, ph = 0 and we obtain the solvability of SFWG scheme. �

5. Error Equations

In this section, we derive the equations of the error between the numerical solution and

the exact solution. For each T ∈ Th, let Qh,Qh and Qh be the L2 projection operators onto

[Pk(T )]
d, [Pj(T )]

d×d and Pk−1(T ) defined in [8]. First, we recall the commutative properties of

the projection operators.

Lemma 5.1 ([8]). For the projection operators Qh,Qh and Qh, the following properties hold

true:

∇w · (Qhv) = Qh(∇ · v), ∀v ∈ H(div; Ω),

∇wv = Qh(∇v), ∀v ∈ [H1(Ω)]d.

Let u and p be the exact solution of Brinkman equations (1.1)-(1.3), uh = {u0,ub} and ph

be the numerical solution of SFWG algorithm (3.3)-(3.4). Define

eh = {e0, eb} = {Q0u− u0, Qbu− ub} = Qhu− uh, εh = Qhp− ph

be the error functions, we shall derive the error equations for eh and εh.
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Lemma 5.2. For any v = {v0,vb} ∈ V 0
h and q ∈ Wh, the following equations hold true:

a(eh,v)− b(v, εh) = l1(u,v) − l2(p,v)− l3(u,v), (5.1)

b(eh, q) = 0, (5.2)

where

l1(u,v) =
∑

T∈Th

〈(∇u−Qh∇u) · n,v0 − vb〉∂T ,

l2(p,v) =
∑

T∈Th

〈(p−Qhp)n,v0 − vb〉∂T ,

l3(u,v) =
∑

T∈Th

(

∇w(u−Qhu),∇wvh

)

T
.

Proof. Testing (1.1) by v0 gives

−(∆u,v0) +
(

κ−1u,v0

)

+ (∇p,v0) = (f ,v0).

By the definitions of projection operators Qh and Qh, the definitions of the weak differential

operators ∇w and ∇w·, and Lemma 5.1, we get

−(∆u,v0) =
∑

T∈Th

(

(∇u,∇v0)T − 〈∇u · n,v0〉∂T
)

=
∑

T∈Th

(

(Qh∇u,∇v0)T − 〈∇u · n,v0〉∂T
)

=
∑

T∈Th

(

−
(

v0,∇ · (Qh∇u)
)

T
+ 〈v0, (Qh∇u−∇u) · n〉∂T

)

=
∑

T∈Th

(

(∇wvh,Qh∇u)T + 〈v0 − vb, (Qh∇u−∇u) · n〉∂T
)

=
∑

T∈Th

(

(∇wvh,∇wu)T + 〈v0 − vb, (Qh∇u−∇u) · n〉∂T
)

.

From the definition of l1(· , ·) and l3(· , ·), it follows that

−(∆u,v0) =
∑

T∈Th

(

∇wvh,∇w(Qhu)
)

T
− l1(u,v) + l3(u,v). (5.3)

Similarly, we have

(∇p,v0) = −
∑

T∈Th

(Qhp,∇w · vh)T + l2(p,v),

(

κ−1u,v0

)

=
(

u, κ−1v0

)

=
(

Q0u, κ
−1v0

)

=
(

κ−1Q0u,v0

)

.

Using the definition of a(· , ·) and b(· , ·) and the above equations, we obtain

a(Qhu,v)− b(v,Qhp)− l1(u,v) + l2(p,v) + l3(u,v) = (f ,v0). (5.4)

Since the numerical solution (uh; ph) ∈ V 0
h × Wh satisfies (3.3), subtracting it from (5.4), we

arrive at

a(eh,v)− b(v, εh)− l1(u,v) + l2(p,v) + l3(u,v) = 0,

which completes the proof of (5.1).
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Similarly, testing (1.2) by q ∈ Wh yields

0 = (∇ · u, q) =
(

Qh(∇ · u), q
)

=
(

∇w · (Qhu), q
)

= b(Qhu, q). (5.5)

Combining with (3.4), we obtain (5.2) and complete the proof of this lemma. �

6. Error Estimates

The goal of this section is to present the error results of the numerical scheme (3.3)-(3.4).

Firstly, we discuss the error estimate in the energy norm.

Theorem 6.1. Let (u; p) ∈ [H1
0 (Ω) ∩ Hk+1(Ω)]d × (L2

0(Ω) ∩ Hk(Ω)) be the exact solution of

Brinkman equations (1.1)-(1.3) and (uh; ph) ∈ V 0
h ×Wh be the solution of (3.3)-(3.4). Then,

there exists a constant C such that

|||eh|||+ h|||εh|||1 ≤ Chk(‖u‖k+1 + ‖p‖k). (6.1)

Proof. Letting v = eh in (5.1) and q = εh in (5.2), then adding the two equations, we have

|||eh|||
2 = l1(u, eh)− l2(p, eh)− l3(u, eh).

From the estimates (A.6)-(A.8), we obtain

|||eh|||
2 ≤ Chk(‖u‖k+1 + ‖p‖k)|||eh|||.

The derivation of the pressure estimate is similar to that in [24], which is

h|||εh|||1 ≤ Chk(‖u‖k+1 + ‖p‖k),

which gives estimate of |||εh|||1. The proof is complete. �

In order to derive L2 error estimate for the velocity, we consider the following dual problem:

Find (φ; η) ∈ [H2(Ω)]d ×H1(Ω) satisfying

−∆φ+ κ−1φ+∇η = e0 in Ω, (6.2)

∇ · φ = 0 in Ω, (6.3)

φ = 0 on ∂Ω. (6.4)

Assume that the following regularity condition holds:

‖φ‖2 + ‖η‖1 ≤ C‖e0‖. (6.5)

Theorem 6.2. Let (u; p) ∈ [H1
0 (Ω) ∩ Hk+1(Ω)]d × (L2

0(Ω) ∩ Hk(Ω)) be the exact solution of

Brinkman equations (1.1)-(1.3) and (uh; ph) ∈ V 0
h ×Wh be the solution of (3.3)-(3.4). Then,

there exists a constant C such that

‖e0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k). (6.6)

Proof. Testing (6.2) by e0, we get

‖e0‖
2 = (e0, e0) = −(∆φ, e0) + (κ−1φ, e0) + (∇η, e0). (6.7)
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According to the proof of Lemma 5.2, it is easy to derive that

−(∆φ, e0) =
∑

T∈Th

(

∇weh,∇w(Qhφ)
)

T
− l1(φ, eh) + l3(φ, eh),

(∇η, e0) = −
∑

T∈Th

(Qhη,∇w · eh)T + l2(η, eh).

It follows from the Eqs. (5.2) and (6.3) that

b(eh,Qhη) = 0, b(Qhφ, εh) = 0.

Substituting these two equations into (6.7), we arrive at

‖e0‖
2 = a(Qhφ, eh)− b(eh,Qhη)− l1(φ, eh) + l2(η, eh) + l3(φ, eh)

= a(Qhφ, eh)− b(Qhφ, εh)− l1(φ, eh) + l2(η, eh) + l3(φ, eh).

Taking v = Qhφ in Lemma 5.2 yields

‖e0‖
2 = l1(u, Qhφ)− l2(p,Qhφ)− l3(u, Qhφ)−

(

l1(φ, eh)− l2(η, eh)− l3(φ, eh)
)

.

Next, we estimate the terms on the right-hand side of the above equation one by one. It

follows from Lemma A.3 that

|l1(φ, eh)− l2(η, eh)− l3(φ, eh)| ≤ Ch(‖φ‖2 + ‖η‖1)|||eh|||.

For l1(u, Qhφ), using the definition of Qb, the trace inequality (A.4) and the projection in-

equalities (A.1)-(A.2) gives

|l1(u, Qhφ)| =

∣

∣

∣

∣

∑

T∈Th

〈(∇u−Qh∇u) · n, Q0φ−Qbφ〉∂T

∣

∣

∣

∣

≤ C

(

∑

T∈Th

hT ‖∇u−Qh∇u‖2∂T

)
1

2

(

∑

T∈Th

h−1
T ‖Q0φ−Qbφ‖

2
∂T

)
1

2

≤ C

(

∑

T∈Th

hT ‖∇u−Qh∇u‖2∂T

)
1

2

(

∑

T∈Th

h−1
T ‖Q0φ− φ‖2∂T

)
1

2

≤ Chk+1‖u‖k+1‖φ‖2.

Similarly, we have

|l2(p,Qhφ)| =

∣

∣

∣

∣

∑

T∈Th

〈(p−Qhp)n, Q0φ−Qbφ〉∂T

∣

∣

∣

∣

≤ Chk+1‖p‖k‖φ‖2.

Finally, we estimate l3(u, Qhφ). Besides the projection operators defined in the previous

section, we need another L2 projection operator. Denote by Q̂h the projection operator from

[L2(T )]d×d onto [P1(T )]
d×d. For any q ∈ P1(T ), we have

(

Q̂h∇φ, q
)

T
= (∇φ, q)T = −(φ,∇ · q)T + 〈φ, qn〉∂T = (∇wφ, q)T =

(

Q̂h∇wφ, q
)

T
,
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which implies Q̂h∇φ = Q̂h∇wφ on each cell T . Then, according to the definition of ∇w and

the fact that k ≥ 1, we have

(

∇w(u−Qhu), Q̂h∇φ
)

T

=
(

∇w(u−Qhu), Q̂h∇wφ
)

T

= −
(

u−Q0u,∇ · (Q̂h∇wφ)
)

T

+
〈

u−Qbu,
(

Q̂h∇wφ
)

· n
〉

∂T
= 0. (6.8)

Then, using the definition of ∇w, Eq. (6.8), the projection inequality (A.2) and the estimate

(A.5), we arrive at
∑

T∈Th

(

∇wφ,∇w(u−Qhu)
)

T

=
∑

T∈Th

(

∇φ,∇w(u−Qhu)
)

T

=
∑

T∈Th

(

∇φ− Q̂h∇φ,∇w(u−Qhu)
)

T

≤

(

∑

T∈Th

‖∇φ− Q̂h∇φ‖2T

)
1

2

(

∑

T∈Th

‖∇w(u−Qhu)‖
2
T

)
1

2

≤ Chk+1‖u‖k+1‖φ‖2.

Thus, for l3(u, Qhφ), we get

|l3(u, Qhφ)| =

∣

∣

∣

∣

∑

T∈Th

(

∇wQhφ,∇w(u−Qhu)
)

T

∣

∣

∣

∣

≤

∣

∣

∣

∣

∑

T∈Th

(

∇w(Qhφ− φ),∇w(u−Qhu)
)

T

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

T∈Th

(

∇wφ,∇w(u−Qhu)
)

T

∣

∣

∣

∣

≤ Chk+1‖u‖k+1‖φ‖2.

Combining (6.5) and (6.1), we obtain

‖e0‖
2 ≤ Chk+1(‖u‖k+1 + ‖p‖k)‖φ‖2 + Ch(‖φ‖2 + ‖η‖1)|||eh|||

≤ Chk+1(‖u‖k+1 + ‖p‖k)‖e0‖+ Ch‖e0‖|||eh|||

≤ Chk+1(‖u‖k+1 + ‖p‖k)‖e0‖,

which completes the proof of the theorem. �

7. Numerical Experiments

In this section, we present several numerical examples to verify the stability and order of

convergence established in Section 6.

Example 7.1. Let Ω = (0, 1)× (0, 1), the exact solution is given as follows:

u =

(

sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)

)

, p = x2y2 −
1

9
.
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Consider the following permeability:

κ−1 = a
(

sin(2πx) + 1.1
)

,

where a is a given positive constant. According to the above parameters, the momentum source

term f and the boundary value g can be calculated.

When k = 1, we use uniform triangular partition as shown in Fig. 7.1(a). Tables 7.1-7.4

show the errors and orders of convergence as µ = 1, 0.01 and a = 1, 104. When k = 2, 3, we

use uniform rectangular partition and polygonal partition as shown in Figs. 7.1(b) and 7.1(c).

Tables 7.5-7.8 show the errors and orders of convergence as µ = 1 and a = 104, we observe that

the numerical experiment results are consistent with the theoretical analysis, and the optimal

convergence orders are achieved. At the same time, the accuracy and stability of the numerical

scheme are verified when the permeability κ is highly varying.

(a) Triangle partition (b) Rectangle partition (c) Arbitrary polygonal partition

Fig. 7.1. Three kinds of partitions as h = 1/8.

Table 7.1: Errors and orders of convergence on triangular partition as k = 1, j = 2, µ = 1, a = 1.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 2.1115e+00 1.0192e-01 9.9680e-01

1/8 1.0768e-01 0.9715 3.5806e-02 1.5108 6.0078e-01 0.7305

1/16 5.3371e-01 1.0126 9.9527e-03 1.8454 3.2312e-01 0.8948

1/32 2.6577e-01 1.0059 2.5628e-03 1.9574 1.6520e-01 0.9679

1/64 1.3273e-01 1.0017 6.4563e-04 1.9889 8.3097e-02 0.9913

1/128 6.6342e-02 1.0005 1.6172e-04 1.9972 4.1613e-02 0.9978

Table 7.2: Errors and orders of convergence on triangular partition as k = 1, j = 2, µ = 0.01, a = 1.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 4.3216e-01 2.5544e-01 2.6404e-02

1/8 2.3379e-01 0.8864 7.8264e-02 1.7066 1.1273e-02 1.2279

1/16 1.2018e-01 0.9599 2.1059e-02 1.8939 4.5551e-03 1.3073

1/32 6.0684e-02 0.9859 5.3940e-03 1.9650 1.9287e-03 1.2399

1/64 3.0442e-02 0.9953 1.3588e-03 1.9890 8.8154e-04 1.1297

1/128 1.5237e-02 0.9985 3.4048e-04 1.9967 4.2468e-04 1.0535
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Table 7.3: Errors and orders of convergence on triangular partition as k = 1, j = 2, µ = 1, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 2.7937e+00 3.0915e-02 8.0996e-01

1/8 9.7644e-01 1.5165 3.9298e-03 2.9758 7.4012e-01 0.1301

1/16 5.0617e-01 0.9479 1.1969e-03 1.7152 4.4246e-01 0.7422

1/32 2.6126e-01 0.9541 3.7644e-04 1.6687 2.1493e-01 1.0417

1/64 1.3211e-01 0.9837 1.0288e-04 1.8714 9.5725e-02 1.1669

1/128 6.6263e-02 0.9954 2.6397e-05 1.9625 4.3719e-02 1.1306

Table 7.4: Errors and orders of convergence on triangular partition as k = 1, j = 2, µ = 0.01, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 3.0356e-01 3.8087e-02 1.3871e-01

1/8 1.4235e-01 1.0925 1.8206e-02 1.0649 1.1788e-01 0.2347

1/16 9.2281e-02 0.6254 9.7999e-03 0.8936 7.4873e-02 0.6548

1/32 5.4850e-02 0.7506 3.7480e-03 1.3867 3.3981e-02 1.1397

1/64 2.9532e-02 0.8932 1.1167e-03 1.7468 1.1297e-02 1.5888

1/128 1.5115e-02 0.9663 2.9507e-04 1.9201 3.1290e-03 1.8522

Table 7.5: Errors and orders of convergence on rectangular partition as k = 2, j = 5, µ = 1, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 1.5090e+00 1.4271e-02 1.9516e+00

1/8 3.9217e-01 1.9440 1.4107e-03 3.3386 2.1634e-01 3.1733

1/16 1.0623e-01 1.8843 1.8286e-04 2.9476 1.7497e-02 3.6282

1/32 2.7212e-02 1.9649 2.3592e-05 2.9544 1.5721e-03 3.4763

1/64 6.8568e-03 1.9886 2.9630e-06 2.9931 1.6816e-04 3.2248

Table 7.6: Errors and orders of convergence on rectangular partition as k = 3, j = 6, µ = 1, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 3.3980e-01 2.7885e-03 2.2952e-01

1/8 4.7427e-02 2.8409 2.0378e-04 3.7744 1.6021e-02 3.8405

1/16 6.5959e-03 2.8461 1.4658e-05 3.7972 1.0867e-03 3.8820

1/32 8.5343e-04 2.9502 9.6074e-07 3.9314 9.4871e-05 3.5178

1/64 1.0779e-04 2.9850 6.0620e-08 3.9863 8.3708e-06 3.5025

Table 7.7: Errors and orders of convergence on polygonal partition as k = 2, j = 8, µ = 1, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 2.2202e+00 1.3247e-02 2.8494e+00

1/8 5.7055e-01 1.9603 2.2613e-03 2.5504 2.9365e-01 3.2785

1/16 1.4833e-01 1.9436 3.7659e-04 2.5861 3.6338e-02 3.0145

1/32 3.7047e-02 2.0013 5.0255e-05 2.9056 5.2889e-03 2.7804

1/64 9.3813e-03 1.9815 6.3611e-06 2.9819 1.0955e-03 2.2714
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Table 7.8: Errors and orders of convergence on polygonal partition as k = 3, j = 9, µ = 1, a = 104.

h |||eh||| Order ‖eh‖ Order ‖εh‖ Order

1/4 4.7325e-01 2.8616e-03 2.9737e-01

1/8 6.4970e-02 2.8647 2.1876e-04 3.7094 2.3136e-02 3.6840

1/16 7.8459e-03 3.0498 1.7711e-05 3.6266 2.2148e-03 3.3849

1/32 9.6560e-04 3.0224 1.2902e-06 3.7789 2.3085e-04 3.2622

1/64 1.1974e-04 3.0116 9.1288e-08 3.8211 2.4857e-05 3.2152

For all the above cases, we take j = k + 1 for triangular partition and j = n + k − 1 for

other partitions which are consistent with the theoretical analysis. However, through a large

number of numerical experiments, we find that in some cases, j usually does not need to reach

the above value to reach the theoretical optimal convergence order. For triangular partition,

j = k+1 is the optimal choice. For rectangular partition, j = k+2 is the minimum value that

j can take when the optimal order convergence is achieved.

Example 7.2. We use the following data settings in Examples 7.2-7.4:

Ω = (0, 1)× (0, 1), µ = 0.01, f =

(

0

0

)

, g =

(

1

0

)

. (7.1)

Also, taking k = 1 and 128×128 rectangular partition to solve the following examples.

In this example, the permeability coefficient κ is selected as the piecewise constant function

with highly varying. The profile of the permeability inverse is shown in Fig. 7.2(a).

The profiles of the two components of the velocity and the pressure are plotted in Figs. 7.3(a)-

7.3(c).

(a) Profile of κ−1 in Example 7.2 (b) Profile of κ−1 in Example 7.3 (c) Profile of κ−1 in Example 7.4

Fig. 7.2. Different kinds of profile of κ−1.

(a) First component of u (b) Second component of u (c) Profile of p

Fig. 7.3. Example 7.2: Profiles of the numerical solution.
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Example 7.3. In practice, Brinkman equations are often used to model fluid flows in porous

media. In this example, we choose a vuggy medium with the permeability coefficient κ highly

varying. The profile of the permeability inverse is plotted in Fig. 7.2(b). Note that the exact

solutions are not available for this and the next examples.

The first and the second components of the velocity obtained by SFWG method are pre-

sented in Figs. 7.4(a)-7.4(b). The pressure profile is shown in Fig. 7.4(c). The results are similar

to those obtained by other methods for solving this example.

(a) First component of u (b) Second component of u (c) Profile of p

Fig. 7.4. Example 7.3: Profiles of the numerical solution.

Example 7.4. The Brinkman equations can also be used to model fluid flows in fibrous ma-

terials. A common permeability reverse for fibrous materials is shown in Fig. 7.2(c). The other

input data are the same as before. And the results are plotted in Figs. 7.5(a)-7.5(c).

(a) First component of u (b) Second component of u (c) Profile of p

Fig. 7.5. Example 7.4: Profiles of the numerical solution.

Appendix A. Some Inequality Estimates

In this Appendix, we provide some technical results used in the paper.

Lemma A.1 ([30]). Let Th be a shape regular partition of Ω, v ∈ [Hk+1(Ω)]d and q ∈ Hk(Ω).

Then for 0 ≤ s ≤ 1, we have the following projection inequalities:
∑

T∈Th

h2s
T ‖v −Q0v‖

2
s,T ≤ Ch2(k+1)‖v‖2k+1, (A.1)

∑

T∈Th

h2s
T ‖∇v −Qh(∇v)‖2s,T ≤ Ch2k‖v‖2k+1, (A.2)

∑

T∈Th

h2s
T ‖q −Qhq‖

2
s,T ≤ Ch2k‖q‖2k, (A.3)

where C is a constant independent of the size of mesh h.
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Let T be a cell with e as an edge/face of T . For any function g ∈ H1(T ), the following trace

inequality has been proved to be valid in [30]:

‖g‖2e ≤ C
(

h−1
T ‖g‖2T + hT ‖∇g‖2T

)

. (A.4)

Lemma A.2 ([8]). For any w ∈ [Hk+1(Ω)]d, the following inequality holds true:

‖∇w(w −Qhw)‖ ≤ Chk‖w‖k+1. (A.5)

Lemma A.3. For any w ∈ [Hk+1(Ω)]d, q ∈ Hk(Ω) and v = {v0,vb} ∈ Vh, we have

|l1(w,v)| ≤ Chk‖w‖k+1|||v|||, (A.6)

|l2(q,v)| ≤ Chk‖q‖k|||v|||, (A.7)

|l3(w,v)| ≤ Chk‖w‖k+1|||v|||, (A.8)

where l1(· , ·), l2(· , ·) and l3(· , ·) are defined in Lemma 5.2.

Proof. Using the trace inequality (A.4), the projection inequalities (A.2)-(A.3), and (4.4),

we obtain

|l1(w,v)| =

∣

∣

∣

∣

∑

T∈Th

〈(∇w −Qh∇w) · n,v0 − vb〉∂T

∣

∣

∣

∣

≤ C

(

∑

T∈Th

hT ‖∇w−Qh∇w‖2∂T

)
1

2

(

∑

T∈Th

h−1
T ‖v0 − vb‖

2
∂T

)
1

2

≤ Chk‖w‖k+1‖v‖1,h ≤ Chk‖w‖k+1|||v|||.

Similarly, we have

|l2(q,v)| =

∣

∣

∣

∣

∑

T∈Th

〈(q −Qhq)n,v0 − vb〉∂T

∣

∣

∣

∣

≤ C

(

∑

T∈Th

hT ‖q −Qhq‖
2
∂T

)
1

2

(

∑

T∈Th

h−1
T ‖v0 − vb‖

2
∂T

)
1

2

≤ Chk‖q‖k‖v‖1,h ≤ Chk‖q‖k|||v|||.

By (A.5), summing over all the cells, we get

|l3(w,v)| =

∣

∣

∣

∣

∑

T∈Th

(∇w(w −Qhw),∇wv)T

∣

∣

∣

∣

≤ Chk‖w‖k+1‖v‖1,h ≤ Chk‖w‖k+1|||v|||.

This completes the proof of the lemma. �
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