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Abstract

The second-order serendipity virtual element method is studied for the semilinear

pseudo-parabolic equations on curved domains in this paper. Nonhomogeneous Dirichlet

boundary conditions are taken into account, the existence and uniqueness are investigated

for the weak solution of the nonhomogeneous initial-boundary value problem. The Nitsche-

based projection method is adopted to impose the boundary conditions in a weak way.

The interpolation operator is used to deal with the nonlinear term. The Crank-Nicolson

scheme is employed to discretize the temporal variable. There are two main features of

the proposed scheme: (i) the internal degrees of freedom are avoided no matter what type

of mesh is utilized, and (ii) the Jacobian is simple to calculate when Newton’s iteration

method is applied to solve the fully discrete scheme. The error estimates are established

for the discrete schemes and the theoretical results are illustrated through some numerical

examples.

Mathematics subject classification: 65M15, 65M60.
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1. Introduction

Pseudo-parabolic equations are a vital class of mathematical physics equations and can

describe a huge amount of physical evolution processes, including non-steady infiltration in

fissured rocks [5], the two-temperature theory in thermodynamics [31], phase separation by

spinodal decomposition [26] and so forth. In [1], a more detailed survey on the applications of

pseudo-parabolic equations is provided.

The focus of this work is the following semilinear pseudo-parabolic equation with nonhomo-

geneous initial-boundary value conditions:

a(x)ut −∇ ·
(
b(x)∇(ut + u)

)
+ c(u) = f(x, t), (x, t) ∈ Ω× (0, T ], (1.1a)

u = g(x, t), (x, t) ∈ ∂Ω× (0, T ], (1.1b)

u(x, 0) = u0(x), x ∈ Ω, (1.1c)
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where Ω is a convex bounded open subset of R2 and a finite number of curves {(∂Ω)i}
NΩ

i=1 consti-

tute its boundary ∂Ω. Each curve (∂Ω)i is assumed to be sufficiently smooth and the boundary

∂Ω is supposed to be Lipschitz. T denotes the finite terminal time. The source function f ,

boundary value g and initial value u0 are given data. The coefficients a and b depend only

on x, c(u) is the nonlinear term.

Due to the complexity of the shape of the domain Ω as well as the presence of nonlinear

term c(u), it is difficult or even impossible to give the exact solution to (1.1) in an explicit way.

Therefore, efficient and accurate numerical methods should be considered. Some typical numer-

ical schemes for linear pseudo-parabolic equations include finite difference schemes [16], finite

volume element methods [38], finite element methods [36] and mixed finite element methods [23].

For nonlinear pseudo-parabolic equations, various numerical methods, including characteristic

finite element methods [19], conforming and nonconforming finite element methods [27,33] and

discontinuous Galerkin methods [29, 37], have been developed. A more comprehensive survey

of numerical methods for various types of pseudo-parabolic equations can be found in [1]. In

recent years, numerical methods that can deal with polygonal or polyhedral meshes have be-

come important issues in the field of scientific computing, and such methods have been used

to numerically solve pseudo-parabolic equations, including weak Galerkin methods [17], hybrid

high-order methods [34] and virtual element methods [35].

The above-mentioned virtual element method (VEM) can be deemed as an extension of

the finite element method towards meshes with general polygonal or polyhedral elements, and

it has been used to numerically approximate a wide range of nonlinear initial-boundary value

problems. In the framework of VEM, the common strategy to deal with nonlinear terms is

to use L2-projection operator, and this idea has already been applied to semilinear parabolic

problem [2], Swift-Hohenberg equation [15], nonlocal model [4], nonlinear Schrödinger equa-

tion [22] and so forth. Recently, the idea of using interpolation operator to deal with nonlinear

terms was proposed in [18]. In this idea, the features of the serendipity virtual element method

(SVEM) are fully utilized, and a new way of numerically solving nonlinear evolution equations

is provided in VEM framework.

SVEM [6] is a novel variant of VEM and its aim is to decrease the amount of internal-

moment degrees of freedom. We focus on the second-order SVEM in this paper. The first

motivation of our interest is that internal degrees of freedom are completely avoided without

the need to consider the relationship between the degree of polynomials adopted in SVEM and

the shape of the mesh elements. Indeed, as stated in [6,18], for higher order SVEM and certain

types of meshes, some additional internal degrees of freedom may be needed. The second mo-

tivation is that when we adopt the idea in [18] to approximate nonlinear term c(u) in (1.1) by

interpolation operator and solve the nonlinear system by Newton’s iteration, the calculation of

Jacobian is convenient. It is well known that Newton’s iteration is of second-order convergence,

so it is often used to solve nonlinear problems. However, if we use the L2-projection operator to

deal with nonlinear terms as in [2], the calculation of Jacobian is complex and time-consuming.

The main reason is that the L2-projection operator involves the integral on the mesh elements,

which makes the form of Jacobian complicated.

Iso-parametric finite elements [21] are popular for partial differential equations on curved

domains. This kind of methods relies on the reference element technique, which is not avail-

able in VEM or SVEM due to the use of general polygonal or polyhedral meshes [30]. Thus,

the iso-parametric idea cannot be easily generalized to VEM or SVEM. Here, we will use the

Nitsche-based projection method, which was first proposed in [9] and then extended into the
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framework of VEM in [7, 8]. The boundary conditions are imposed by the Nitsche-based pro-

jection method which was first proposed in [9] and then extended into the framework of VEM

in [7, 8]. To implement the Nitsche-based projection method, we need to know the gradient

of functions in virtual element space. But this information is not explicitly known in VEM

or SVEM. In this work, for the gradient of functions in the second-order serendipity virtual

element space, we replace it with its L2-projection. Based on trace inequalities, inverse in-

equalities and some other lemmas, we prove that when the penalty parameter is sufficiently

large, the bilinear form provided by the Nitsche-based projection method is continuous and

coercive. It is worth noting that, when ∂Ω is not curved, the Nitsche-based projection method

in this work is essentially the same as the Nitsche’s method in [32]. However, the variational

method in [32] cannot be easily generalized to this work. The reason lies in the fact that VEM

or SVEM does not satisfy the Galerkin orthogonality, which is the key tool in the variational

method. Therefore, we employ the classical method based on the energy projection for error

analysis.

The present paper is structured as follows. The existence and uniqueness of the weak so-

lution of (1.1) are briefly analyzed in Section 2. We present in Section 3 some basic settings

of the second-order SVEM and describe the construction of the numerical schemes (including

semi-discrete and fully discrete schemes). Error estimates for discrete schemes in regard to

L2-norm and an energy norm are derived in Section 4. Some numerical examples confirming

the error analysis are reported in Section 5. Finally, some conclusions are given in Section 6.

2. Existence and Uniqueness of the Weak Solution

Based on the Galerkin method, we analyse the existence and uniqueness of the weak solution

of (1.1) in this section.

2.1. Some notations

For indices s ≥ 1 and p ≥ 1, the seminorm and norm in Sobolev space W s,p(ω) are rep-

resented by |·|s,p,ω and ‖·‖s,p,ω, respectively. Herein, ω ⊂ R
2 is a bounded domain. When

p = 2,W s,2(ω) is written as Hs(ω), and |·|s,ω and ‖·‖s,ω are used for the seminorm and norm

in Hs(ω), respectively. H−1(Ω) is used to denote the dual space of the zero boundary value

space H1
0 (Ω). ‖·‖ω and (· , ·)ω are used to represent the L2-norm and inner product in L2(ω),

respectively. The space of the traces of the Hs(ω)-functions is denoted as Hs−1/2(∂ω). We also

adopt the standard definitions for the Bochner space Lq[0,T;H ] with norm ‖·‖Lq[0,T;H], where

H is a Hilbert space, T is a positive real number and the index q ≥ 1.

2.2. Existence and uniqueness

To carry out the analysis in this subsection, we make the following assumption.

Assumption 2.1. The coefficients and data in (1.1) satisfy

(A1) a and b belong to L∞(Ω) and it is assumed that

a⋆ ≤ a(x) ≤ a⋆, b⋆ ≤ b(x) ≤ b⋆, ∀x ∈ Ω, (2.1)

where the constants a⋆, a
⋆, b⋆ and b⋆ are all positive.
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(A2) g and gt belong to H1/2(∂Ω) for any t ∈ (0, T ), f ∈ L2[0, T ;L2(Ω)], u0 ∈ H1(Ω).

(A3) c(u) is Lipschitz continuous in respect of u, for any u ∈ R.

By the assumption (A2), it is well-known that for any t ∈ [0, T ], there is a function G ∈

L2[0, T ;H1(Ω)] satisfying G|∂Ω = g and Gt ∈ L2[0, T ;H−1(Ω)], see [14]. Thus by setting

ǔ = u−G, we can transform (1.1) into the following problem:

a(x)ǔt −∇ ·
(
b(x)∇(ǔt + ǔ)

)
+ c(ǔ+G) = f̌(x, t), (x, t) ∈ Ω× (0, T ], (2.2a)

ǔ = 0, (x, t) ∈ ∂Ω× (0, T ], (2.2b)

ǔ(x, 0) = ǔ0(x), x ∈ Ω, (2.2c)

where

f̌ = f − aGt +∇ ·
(
b∇(Gt +G)

)
, ǔ0 = u0 −G(0).

We remark here that we need to assume Gt ∈ L2[0, T ;H1(Ω)] additionally to let (2.2a) make

sense.

Let us now define two bilinear forms

A(v̌, w̌) =
(
a(x)v̌, w̌

)
Ω
, ∀ v̌, w̌ ∈ L2(Ω),

B(v̌, w̌) =
(
b(x)∇v̌,∇w̌

)
Ω
, ∀ v̌, w̌ ∈ H1(Ω).

Then, it is easy to obtain the following coercivity and continuity of A(· , ·) and B(· , ·):

|A(v̌, w̌)| ≤ a⋆‖v̌‖Ω‖w̌‖Ω, a⋆‖v̌‖
2
Ω ≤ A(v̌, v̌), (2.3)

|B(v̌, w̌)| ≤ b⋆|v̌|1,Ω|w̌|1,Ω, b⋆|v̌|
2
1,Ω ≤ B(v̌, v̌). (2.4)

The variational form of (2.2) is given by finding ǔ∈L∞[0, T ;H1
0(Ω)] with ǔt∈L

2[0, T ;H1
0 (Ω)]

such that for a.e. t ∈ (0, T ),

A(ǔt, v̌) +B(ǔt, v̌) +B(ǔ, v̌) +
(
c(ǔ+G), v̌

)
Ω
= (f̌ , v̌)Ω, ∀ v̌ ∈ H1

0 (Ω), (2.5)

ǔ(0) = ǔ0. (2.6)

Then the weak solution for the original problem (1.1) is defined as u = ǔ+G.

Theorem 2.1. Suppose c(G) ∈ L2[0, T ;L2(Ω)] and Assumption 2.1 holds, then the problem

(1.1) has a unique weak solution u such that

u ∈ L∞
[
0, T ;H1

0 (Ω)
]
∪ L2[0, T ;H1(Ω)], ut ∈ L2[0, T ;H1(Ω)]

with the stability estimate

‖u‖L∞[0,t;H1(Ω)] + ‖ut‖L2[0,t;H1(Ω)]

≤ Č
(
‖u0‖1,Ω + ‖G(0)‖1,Ω + ‖f‖L2[0,t;L2(Ω)]

+ ‖Gt‖L2[0,t;H1(Ω)] + ‖G‖L2[0,t;H1(Ω)] + ‖c(G)‖L2[0,t;L2(Ω)]

)
, (2.7)

where Č is a positive constant independent of u and ut.

Proof. The following steps comprise the proof.



Second-order SVEM for Semilinear Pseudo-parabolic Equations 5

Step 1. Galerkin approximation. Let {w̌k}∞k=1 be the orthogonal basis of H1
0 (Ω). It is

well known that {
√
λ̌kw̌k}∞k=1 constitute an orthonormal basis for L2(Ω), where λ̌k is the

k-th eigenvalue with respect to the operator determined by the bilinear form B(· , ·), see [25,

Lemma 5]. Construct an approximate solution ǔm for (2.5) and (2.6) of the form

ǔm =

m∑

k=1

αk
m(t)w̌k

such that for k = 1, 2, . . . ,m,

A(ǔm,t, w̌k) +B(ǔm,t, w̌k) +B(ǔm, w̌k) +
(
c(ǔm +G), w̌k

)
Ω
= (f̌ , w̌k)Ω, (2.8)

ǔm(0) = ǔm0, (2.9)

where ǔm0 is a function in H1
0 (Ω) which strongly converges to ǔ0 when m→ ∞.

It is obvious that (2.8) and (2.9) form an ordinary differential equation system with regard

to {αk
m(t)}mk=1. The coercivity and continuity of A(· , ·) and B(· , ·) together with the Lipschitz

continuity of c give the existence of a solution ǔm which satisfies (2.8) and (2.9), see [3, Theo-

rem 4.2.2].

Step 2. A priori estimates. Multiplying the k-th equation of (2.8) by αk
m(t), summing up

for k = 1, 2, . . . ,m and integrating from 0 to t, we find that

A
(
ǔm(t), ǔm(t)

)
+B

(
ǔm(t), ǔm(t)

)

= A
(
ǔm(0), ǔm(0)

)
+B

(
ǔm(0), ǔm(0)

)
+ 2

∫ t

0

(
f̌ , ǔm(t)

)
Ω
dt

− 2

∫ t

0

B
(
ǔm(t), ǔm(t)

)
dt− 2

∫ t

0

(
c
(
ǔm(t) +G

)
, ǔm(t)

)
Ω
dt.

Then by the coercivity and continuity of A(· , ·) and B(· , ·), we have

‖ǔm(t)‖21,Ω ≤ C1

(
‖ǔm(0)‖21,Ω +

∫ t

0

(
f̌ , ǔm(t)

)
Ω
dt+

∫ t

0

|ǔm(t)|21,Ωdt

+

∫ t

0

(
c
(
ǔm(t) +G

)
, ǔm(t)

)
Ω
dt

)
, (2.10)

where C1 is a positive constant that only depends on a⋆, a
⋆, b⋆ and b⋆. From (2.9), we know

that

‖ǔm(0)‖21,Ω ≤ C2‖ǔ0‖
2
1,Ω (2.11)

with a positive constant C2 independent of m. By the Cauchy-Schwarz inequality and Green’s

formula, it holds

∫ t

0

(
f̌ , ǔm(t)

)
Ω
dt =

∫ t

0

((
f, ǔm(t)

)
Ω
−
(
aGt, ǔm(t)

)
Ω
−
(
b∇(Gt +G),∇ǔm(t)

)
Ω

)
dt

≤

∫ t

0

(
‖f‖Ω + a⋆‖Gt‖Ω + b⋆|Gt +G|1,Ω

)
‖ǔm(t)‖1,Ωdt

≤ C3

∫ t

0

(
‖f‖Ω + a⋆‖Gt‖Ω + b⋆|Gt +G|1,Ω

)2
dt+

∫ t

0

‖ǔm(t)‖21,Ωdt, (2.12)
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in which the positive constant C3 is irrelevant to m. According to the Lipschitz continuity of c,

we obtain

∫ t

0

(
c
(
ǔm(t) +G

)
, ǔm(t)

)
Ω
dt

=

∫ t

0

(
c
(
ǔm(t) +G

)
− c(G), ǔm(t)

)
Ω
dt

+

∫ t

0

(
c(G), ǔm(t)

)
Ω
dt

≤ Lc

∫ t

0

‖ǔm(t)‖21,Ωdt+ C4

∫ t

0

‖c(G)‖2Ωdt, (2.13)

where Lc denotes the Lipschitz constant for c and C4 is a positive constant that only depends

on Lc. Therefore, using (2.11)-(2.13), we arrive at

‖ǔm(t)‖21,Ω ≤ C1

(
C2‖ǔ0‖

2
1,Ω+C3

∫ t

0

(
‖f‖Ω+a

⋆‖Gt‖Ω+b
⋆|Gt+G|1,Ω

)2
dt+C4

∫ t

0

‖c(G)‖2Ωdt

)

+ (2C1 + C1Lc)

∫ t

0

‖ǔm(t)‖21,Ωdt.

Applying further the continuous Grönwall’s lemma [28] gives

‖ǔm(t)‖21,Ω ≤ e(2C1+C1Lc)tC1

(
C2‖ǔ0‖

2
1,Ω + C3

∫ t

0

(
‖f‖Ω + a⋆‖Gt‖Ω + b⋆|Gt +G|1,Ω

)2
dt

+ C4

∫ t

0

‖c(G)‖2Ωdt

)

≤ Č1

(
‖ǔ0‖

2
1,Ω +

∫ t

0

(
‖f‖2Ω + ‖Gt‖

2
1,Ω + ‖G‖21,Ω + ‖c(G)‖2Ω

)
dt

)
(2.14)

with a positive constant Č1 independent ofm. The Eq. (2.14) gives the boundedness of {ǔm}∞m=1

in L∞[0, T ;H1
0(Ω)].

Similarly, multiplying the k-th equation of (2.8) by (αk
m(t))′, summing up for k = 1, 2, . . . ,m,

and integrating from 0 to t, it holds

∫ t

0

(
A(ǔm,t, ǔm,t) +B(ǔm,t, ǔm,t)

)
dt

≤ B
(
ǔm(0), ǔm(0)

)
+

∫ t

0

(
f̌ , ǔm,t

)
Ω
dt−

∫ t

0

(
c(ǔm +G), ǔm,t

)
Ω
dt,

then by similar analysis as in (2.11)-(2.13), we have

∫ t

0

‖ǔm,t‖
2
1,Ωdt ≤ Č2

(
‖ǔ0‖

2
1,Ω +

∫ t

0

(
‖f‖2Ω + ‖Gt‖

2
1,Ω + ‖G‖21,Ω + ‖c(G)‖2Ω

)
dt

)
, (2.15)

where the estimate (2.14) is used and Č2 is a positive constant independent of m. Thus,

{ǔm,t}∞m=1 is bounded in L2[0, T ;H1
0 (Ω)].

Step 3. Existence. The estimates (2.14) and (2.15) give the existence of sub-sequences

{ǔml
}∞l=1, {ǔmk,t}

∞
k=1, which satisfy that ǔml

→ǔ weak-star in L∞[0, T ;H1
0(Ω)] and ǔmk,t → ǔt
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in L2[0, T ;H1
0 (Ω)] weakly. By the compactness lemma (see [3, Lemma A.15.1]) and a similar

argument as [25, Theorem 6], we deduce that the weak solution ǔ for (2.2) exists with ǔ ∈

L∞[0, T ;H1
0(Ω)] and ǔt ∈ L2[0, T ;H1

0 (Ω)]. Furthermore, the existence for weak solution of

(1.1) follows from the relation u = ǔ+G.

Step 4. Uniqueness. Assume that u1 = ǔ1 + G and u2 = ǔ2 + G are two weak solutions

for (1.1). Then we see that ě = u1 − u2 = ǔ1 − ǔ2 satisfies that for any t ∈ (0, T ),

A(ět, v̌) +B(ět, v̌) +B(ě, v̌) +
(
c(ǔ1 +G)− c(ǔ2 +G), v̌

)
Ω
= 0, ∀ v̌ ∈ H1

0 (Ω), (2.16)

ě(0) = 0. (2.17)

Taking v̌ = ě in (2.16) and integrating on (0, t), we have

A
(
ě(t), ě(t)

)
+B

(
ě(t), ě(t)

)

= A
(
ě(0), ě(0)

)
+B

(
ě(0), ě(0)

)
− 2

∫ t

0

B(ě, ě)dt

− 2

∫ t

0

(
c(ǔ1 +G)− c(ǔ2 +G), ě

)
Ω
dt.

Then by (2.17), the Lipschitz continuity of c, the coercivity and continuity of A(· , ·) and B(· , ·),

we get

‖ě(t)‖21,Ω ≤ Ĉ

∫ t

0

‖e(t)‖21,Ωdt,

in which Ĉ is a positive constant that only depends on a⋆, a
⋆, b⋆ and b⋆. The continuous

Grönwall’s lemma gives

‖ě(t)‖21,Ω ≤ 0,

thus ě = 0 and it is shown that the weak solution for (1.1) is unique.

Step 5. Stability. Taking v̌ in (2.5) as ǔ and employing the similar analysis as in (2.11)-

(2.14), we arrive at

‖ǔ(t)‖1,Ω ≤ Č1

(
‖u0‖1,Ω + ‖G(0)‖1,Ω + ‖f‖L2[0,t;L2(Ω)] + ‖Gt‖L2[0,t;H1(Ω)]

+ ‖G‖L2[0,t;H1(Ω)] + ‖c(G)‖L2[0,t;L2(Ω)]

)
. (2.18)

Taking the place of v̌ with ǔt in (2.5), we can similarly obtain

‖ǔt‖L2[0,t;H1(Ω)] ≤ Č2

(
‖u0‖1,Ω + ‖G(0)‖1,Ω + ‖f‖L2[0,t;L2(Ω)] + ‖Gt‖L2[0,t;H1(Ω)]

+ ‖G‖L2[0,t;H1(Ω)] + ‖c(G)‖L2[0,t;L2(Ω)]

)
. (2.19)

Then the stability estimate (2.7) can be derived by (2.18), (2.19) and the triangular inequality.

The proof is complete. �

3. Numerical Schemes

In this section, we introduce the second-order serendipity virtual element space, construct

some discrete bilinear forms, propose semi-discrete and fully discrete schemes based on them.
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3.1. Second-order serendipity virtual element space

For the curved domain Ω, in order to approximate it, we introduce a sequence of polygonal

domains Ωh whose vertices are assumed to be located on ∂Ω. Herein, the subscript h (0 < h < 1)

is used to show how close Ωh is to Ω. The smaller the value of h is, the closer Ωh and Ω are.

Convexity of Ω implies that Ωh is also convex and Ωh ⊂ Ω. For each Ωh, we decompose it

with a polygonal mesh Th⋆ where the subscript h⋆ represents the size of the polygonal mesh,

i.e. h⋆ := maxE∈Th⋆ hE (hE is the diameter of the polygon E). For the sake of simplicity, we

set h⋆ = h. We assume that the mesh Th satisfies some shape regularity, see [6,18]. Taking the

circle domain as an example, we show Ω,Ωh and Th in Fig. 3.1.

For any point x ∈ ∂Ωh, which is the boundary of Ωh, it is assumed that there exists

a nonnegative function ρ(x) satisfying

x+ ρ(x)n ∈ ∂Ω,

where n typifies the outward unit normal on ∂Ωh. From [7–9], we know that

ρ(x) ≤ CΩh
2, (3.1)

in which the positive constant CΩ does not depend on h.

Following [6], for any element E ∈ Th, we introduce an auxiliary space

Ṽ (E) :=
{
v ∈ H1(E) : ∆v ∈ P2(E), v|∂E ∈ C0(∂E), v|e ∈ P2(e), ∀ e ⊂ ∂E

}
,

where C0(∂E) is the continuous function space on ∂E and Pm(ω) denotes the space of polyno-

mials of degree m on ω (ω = E, e) with the integer m ≥ 0.

Let the number of edges of E be denoted as Ne
E. It is well known that the number of vertices

of E is also equal to Ne
E . Define an operator SE : Ṽ (E) → R

2Ne
E such that

[SEv]i =

{
v(Vi), if 1 ≤ i ≤ Ne

E ,

v
(

V
e
i−Ne

E

)
, if Ne

E + 1 ≤ i ≤ 2Ne
E ,

(3.2)

where Vj (1 ≤ j ≤ Ne
E) is the j-th vertex of E and V

e
j (1 ≤ j ≤ Ne

E) is the midpoint of j-th

edge of E. Employ the symbol (· , ·)
R

2Ne
E

to represent the Euclidean scalar product in R
2Ne

E ,

then we can define the operator ΠE
S : Ṽ (E) → P2(E) as

(
SE

(
ΠE

S v
)
,SEp

)
R

2Ne
E
= (SEv,SEp)

R
2Ne

E
, ∀ p ∈ P2(E).

(a) (b) (c)

Fig. 3.1. Curved domain Ω (a), polygonal domain Ωh (b), and polygonal mesh Th (c).
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Utilizing the operator ΠE
S , the local serendipity virtual element space V (E) is defined as

V (E) :=
{
vh ∈ Ṽ (E) : (vh, p)E =

(
ΠE

S vh, p
)
E
, ∀ p ∈ P2(E)

}
.

Take the local degrees of freedom for V (E) as

(D1) The values of vh at the Ne
E vertexes of E.

(D2) The value of vh at the midpoint of e, for any e ⊂ ∂E.

In [6], it is proven that (D1) and (D2) are unisolvent for V (E) and it is easy to check that ΠE
S

is computable using (D1) and (D2). Recall the standard L2-projection operators ΠE
0 and ΠE

1

for scalar and vector, respectively, and their definitions are as follows:

(w, p)E =
(
ΠE

0 w, p
)
E
, ∀w ∈ L2 (E) , ∀ p ∈ P2(E), (3.3)

(w,p)E =
(
ΠE

1 w,p
)
E
, ∀w ∈

[
L2(E)

]2
, ∀p ∈ [P1(E)]2. (3.4)

From the definition of V (E), we observe that for functions in V (E), the L2-projection operator

ΠE
0 = ΠE

S , and for the gradient of functions in V (E), the L2-projection operator ΠE
1 can be

computed by ΠE
S . Some properties of ΠE

0 and ΠE
1 are recalled in the following lemma.

Lemma 3.1 ([11]). If a function v ∈ H3(E) for any E ∈ Th, we have

∥∥ΠE
0 v
∥∥
E
≤ ‖v‖E , (3.5)

∥∥ΠE
1 ∇v

∥∥
E
≤ ‖∇v‖E , (3.6)

∥∥∇v −ΠE
1 ∇v

∥∥
E
≤ C̃∗h

s−1
E |v|s,E , s ∈ {2, 3}, (3.7)

∥∥v −ΠE
0 v
∥∥
E
+ hE

∣∣v −ΠE
0 v
∣∣
1,E

+ h2E
∣∣v −ΠE

0 v
∣∣
2,E

≤ C∗h
s
E |v|s,E , s ∈ {2, 3}, (3.8)

where C̃∗ and C∗ are two positive constants irrelevant to hE.

We construct the second-order global serendipity virtual element space VS as

VS :=
{
vh ∈ H1(Ωh) : vh|E ∈ V (E), ∀E ∈ Th

}
, (3.9)

and for VS , the global degrees of freedom are defined by the coupling of the local ones (D1)

and (D2).

Let the amount of vertices and edges of Th be Nv and Ne, respectively. Obviously, the

amount of global degrees of freedom NS equals Ne + Nv. We use dofi to represent the i-th

global degree of freedom, then the interpolation operator IS can be defined as

dofi(ψ) = dofi(ISψ), i = 1, 2, . . . , NS , (3.10)

where ψ is a regular function. The following approximation properties hold true for IS .

Lemma 3.2 ([13, 18]). If a function ψ ∈ H3(E), ∀E ∈ Th, we have

‖ψ − ISψ‖E + hE |ψ − ISψ|1,E ≤ CIh
s
E |ψ|s,E , s ∈ {2, 3}, (3.11)

where CI is a positive constant irrelevant to hE.
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3.2. Discrete bilinear forms

For any vh and wh in VS , we first construct a discrete bilinear form Ah(· , ·) to approxi-

mate the inner product (avh, wh)Ωh
. For any E ∈ Th, define a local bilinear form AE

h (· , ·) on

V (E)× V (E) with the form

AE
h (vh, wh) :=

(
aΠE

0 vh,Π
E
0 wh

)
E
+ āh2E

(
SE

(
vh −ΠE

0 vh
)
,SE

(
wh −ΠE

0 wh

))
R

2Ne
E
,

where

ā =
1

|E|

∫

E

a(x)dx,

and the operators SE and ΠE
0 are defined in (3.2) and (3.3), respectively. Then Ah(· , ·) is

constructed as

Ah(vh, wh) :=
∑

E∈Th

AE
h (vh, wh), ∀ vh, wh ∈ VS .

We next construct a discrete bilinear form Bh(· , ·) to approximate (b∇vh,∇wh)Ωh
. Define

a local bilinear form BE
h (· , ·) on V (E)× V (E) as

BE
h (vh, wh) :=

(
bΠE

1 ∇vh,Π
E
1 ∇wh

)
E
+ b̄
(
SE

(
vh −ΠE

0 vh
)
,SE

(
wh −ΠE

0 wh

))
R

2Ne
E
,

where

b̄ =
1

|E|

∫

E

b(x)dx,

and ΠE
1 is defined in (3.4). We then construct Bh(· , ·) as

Bh(vh, wh) :=
∑

E∈Th

BE
h (vh, wh), ∀ vh, wh ∈ VS .

To deal with the nonlinear term c(u), we further need to define a discrete bilinear form

Ch(· , ·) which is used to approximate the inner product (vh, wh)Ωh
. Similarly, define a local

bilinear form CE
h (· , ·) on V (E)× V (E) with the form

CE
h (vh, wh) :=

(
ΠE

0 vh,Π
E
0 wh

)
E
+ h2E

(
SE

(
vh −ΠE

0 vh
)
,SE

(
wh − ΠE

0 wh

))
R

2Ne
E
,

and Ch(· , ·) is constructed as

Ch(vh, wh) :=
∑

E∈Th

CE
h (vh, wh), ∀ vh, wh ∈ VS .

Introduce a discrete inner product 〈· , ·〉∂Ωh
on L2(∂Ωh) with the form

〈z1, z2〉∂Ωh
=
∑

e∈Eb
h

∫

e

z1z2ds,

where Eb
h represents the set of boundary edges of Th. We further define a piecewise operator

Π1 which is defined as

(Π1v)|E = ΠE
1 (v|E), ∀v ∈

[
L2(Ωh)

]2
, ∀E ∈ Th.

We now construct a discrete bilinear form Nh(· , ·) according to the Nitsche-based projection

method [7, 8]. Based on Bh(· , ·), we define Nh(· , ·) as

Nh(vh, wh) := Bh(vh, wh)− 〈b(Π1∇vh) · n, wh〉∂Ωh
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− 〈vh, b(Π1∇wh) · n〉∂Ωh
+ γ
〈
vh, h̄

−1wh

〉
∂Ωh

− 〈ρ(Π1∇vh) · n, b(Π1∇wh) · n〉∂Ωh
+ γ
〈
ρ(Π1∇vh) · n, h̄

−1wh

〉
∂Ωh

,

where γ is a penalty parameter and h̄ is a piecewise function which is defined as h̄|e = he for

any e ∈ Eb
h (he denotes the length of e).

Based on Lemmas 3.3 and 3.4, we will analyze the coercivity and continuity of Ah(· , ·),

Bh(· , ·), Ch(· , ·) and Nh(· , ·) in Theorem 3.1. Before that, introduce an energy norm ‖·‖N for

VS with the form

‖vh‖
2
N := |vh|

2
1,Ωh

+ |vh|
2
∂Ωh

, ∀ vh ∈ VS , (3.12)

where

|vh|
2
∂Ωh

:=
∑

e∈Eb
h

h−1
e ‖vh‖

2
e.

We find that if ‖vh‖N = 0, then vh equals a constant in Ωh and vh = 0 on ∂Ωh. Hence vh ≡ 0

in Ωh. Obviously, ‖·‖N defines a norm on VS .

Lemma 3.3 ([13, 18]). For any E ∈ Th and any vh ∈ V (E), we have the following inverse

inequality and norm equivalence:

‖∇vh‖E ≤ Cinh
−1
E ‖vh‖E, (3.13)

Cd
eqh

2
E

(
SE(vh),SE(vh)

)
R

2Ne
E
≤ ‖vh‖

2
E ≤ Cu

eqh
2
E

(
SE(vh),SE(vh)

)
R

2Ne
E
, (3.14)

where the positive constants Cin, C
d
eq and Cu

eq are irrelevant to hE.

Lemma 3.4 ([10]). We have the following trace inequality for any E ∈ Th:

‖p‖∂E ≤ Cdth
− 1

2

E ‖p‖E, ∀p ∈ [P1(E)]2, (3.15)

in which the positive constant Cdt is irrelevant to hE.

Theorem 3.1. Ah(· , ·), Bh(· , ·) and Ch(· , ·) are coercive and bounded. If penalty parameter γ

satisfies that

γ > γ0 =
2(b⋆Cdt)

2

b⋆ min
{
1, (Cu

eq)
−1(C−1

in )2
} ,

and h (h ≤ 1) is sufficiently small such that

h
(
b⋆CΩC

2
dt + γCΩCdt

)
<

1

2
b⋆ min

{
1, (Cu

eq)
−1(C−1

in )2
}
,

γhCΩCdt < γ − γ0,

then Nh(· , ·) is coercive and bounded as well.

Proof. The analysis for Ah(· , ·) and Ch(· , ·) is similar, so we only show the analysis process

for Ah(· , ·). By (2.1), (3.5) and (3.14), we have for any vh, wh ∈ V (E),

∣∣AE
h (vh, wh)

∣∣ ≤ a⋆
(∥∥ΠE

0 vh
∥∥
E

∥∥ΠE
0 wh

∥∥
E
+
(
Cd

eq

)−1∥∥vh −ΠE
0 vh

∥∥
E

∥∥wh −ΠE
0 wh

∥∥
E

)

≤ a⋆ max
{
1,
(
Cd

eq

)−1
}
‖vh‖E‖wh‖E , (3.16)

AE
h (vh, vh) ≥ a⋆

(∥∥ΠE
0 vh

∥∥2
E
+
(
Cu

eq

)−1∥∥vh −ΠE
0 vh

∥∥2
E

)

≥ a⋆ min
{
1,
(
Cu

eq

)−1
}
‖vh‖

2
E. (3.17)
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Applying the Cauchy-Schwarz inequality, (3.16) and (3.17) yields the following continuity and

coercivity of Ah(· , ·):

|Ah(vh, wh)| ≤ a⋆ max
{
1,
(
Cd

eq

)−1
}
‖vh‖Ωh

‖wh‖Ωh
, ∀ vh, wh ∈ VS , (3.18)

Ah(vh, vh) ≥ a⋆ min
{
1,
(
Cu

eq

)−1
}
‖vh‖

2
Ωh
, ∀ vh ∈ VS . (3.19)

Next, we analyze Bh(· , ·). For any vh ∈ V (E) ⊂ H1(E), we have the following approximation

results [10]: ∥∥vh −ΠE
0 vh

∥∥
E
≤ C∇hE |vh|1,E . (3.20)

From (2.1), (3.6), (3.14) and (3.20), we find
∣∣BE

h (vh, wh)
∣∣ ≤ b⋆

(∥∥ΠE
1 ∇vh

∥∥
E

∥∥ΠE
1 ∇wh

∥∥
E
+
(
Cd

eq

)−1
h−2
E

∥∥vh −ΠE
0 vh

∥∥
E

∥∥wh −ΠE
0 wh

∥∥
E

)

≤ b⋆ max
{
1,
(
Cd

eq

)−1
C2

∇

}
|vh|1,E |wh|1,E . (3.21)

The following property of ΠE
1 follows from its definition in (3.4):
∥∥∇vh −ΠE

1 ∇vh
∥∥
E
≤
∥∥∇vh −∇ΠE

0 vh
∥∥
E
. (3.22)

Employing (2.1), (3.13), (3.14) and (3.22), we have

BE
h (vh, vh) ≥ b⋆

(∥∥ΠE
1 ∇vh

∥∥2
E
+
(
Cu

eq

)−1
h−2
E

∥∥vh −ΠE
0 vh

∥∥2
E

)

≥ b⋆

(∥∥ΠE
1 ∇vh

∥∥2
E
+
(
Cu

eq

)−1(
C−1

in

)2∥∥∇vh −∇ΠE
0 vh

∥∥2
E

)

≥ b⋆

(∥∥ΠE
1 ∇vh

∥∥2
E
+
(
Cu

eq

)−1(
C−1

in

)2∥∥∇vh −ΠE
1 ∇vh

∥∥2
E

)

≥ b⋆min
{
1,
(
Cu

eq

)−1(
C−1

in

)2}
|vh|

2
1,E . (3.23)

By (3.21), (3.23) and Cauchy-Schwarz inequality, the continuity and coercivity of Bh(· , ·) can

be derived
∣∣Bh(vh, wh)

∣∣ ≤ b⋆ max
{
1,
(
Cd

eq

)−1
C2

∇

}
|vh|1,Ωh

|wh|1,Ωh
, ∀ vh, wh ∈ VS , (3.24)

Bh(vh, vh) ≥ b⋆ min
{
1,
(
Cu

eq

)−1(
C−1

in

)2}
|vh|

2
1,Ωh

, ∀ vh ∈ VS . (3.25)

At last, we give the analysis of Nh(· , ·). Before proceeding further, we derive some estimates

for the boundary terms in Nh(· , ·). Using (2.1), (3.6) and (3.15), we have
∣∣〈b(Π1∇vh) · n, wh〉∂Ωh

∣∣ ≤ b⋆
∑

e∈Eb
h

h
1
2
e ‖Π1∇vh‖eh

− 1
2

e ‖wh‖e

≤ b⋆

(
∑

e∈Eb
h

he‖Π1∇vh‖
2
e

) 1
2

|wh|∂Ωh

≤ b⋆Cdt|vh|1,Ωh
|wh|∂Ωh

. (3.26)

Similar to (3.26), noticing (3.1), we find
∣∣〈ρ(Π1∇vh) · n, b(Π1∇wh) · n〉∂Ωh

∣∣

≤ b⋆h2h−1CΩ

(
∑

e∈Eb
h

he‖Π1∇vh‖
2
e

) 1
2
(
∑

e∈Eb
h

he‖Π1∇wh‖
2
e

) 1
2

≤ b⋆hCΩC
2
dt|vh|1,Ωh

|wh|1,Ωh
, (3.27)
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γ
∣∣∣
〈
ρ(Π1∇vh) · n, h̄

−1wh

〉
∂Ωh

∣∣∣

≤ γh2h−1CΩ

(
∑

e∈Eb
h

he‖Π1∇vh‖
2
e

) 1
2
(
∑

e∈Eb
h

h−1
e ‖wh‖

2
e

) 1
2

≤ γhCΩCdt|vh|1,Ωh
|wh|∂Ωh

. (3.28)

Based on (3.24) and (3.26)-(3.28), and noticing h ≤ 1, we obtain the following continuity of

Nh(· , ·) for any vh, wh ∈ VS :

|Nh(vh, wh)| ≤ max
{
b⋆, b⋆

(
Cd

eq

)−1
C2

∇, b
⋆Cdt, b

⋆CΩC
2
dt, γCΩCdt, γ

}
‖vh‖N ‖wh‖N . (3.29)

From (3.25) and (3.26)-(3.28), we have

Nh(vh, vh) ≥ b⋆min
{
1,
(
Cu

eq

)−1(
C−1

in

)2}
|vh|

2
1,Ωh

− 2b⋆Cdt|vh|1,Ωh
|vh|∂Ωh

+ γ|vh|
2
∂Ωh

− b⋆hCΩC
2
dt|vh|

2
1,Ωh

− γhCΩCdt|vh|1,Ωh
|vh|∂Ωh

,

then using the modified Young’s inequality yields

Nh(vh, vh) ≥
(
b⋆ min

{
1,
(
Cu

eq

)−1(
C−1

in

)2}
− b⋆Cdtε− h

(
b⋆CΩC

2
dt + γCΩCdt

))
|vh|

2
1,Ωh

+
(
γ − b⋆Cdtε

−1 − γhCΩCdt

)
|vh|

2
∂Ωh

.

Choose ε as

ε =
b⋆ min

{
1, (Cu

eq)
−1(C−1

in )2
}

2b⋆Cdt
,

and using the assumption about γ and h and the setting of γ0, we finally get the coercivity of

Nh(· , ·) as follows:

Nh(vh, vh) ≥ CN ‖vh‖
2
N , ∀ vh ∈ VS , (3.30)

where

CN := min

{
1

2
b⋆ min

{
1,
(
Cu

eq

)−1(
C−1

in

)2}
− h

(
b⋆CΩC

2
dt + γCΩCdt

)
, γ − γ0 − γhCΩCdt

}
.

The proof is complete. �

3.3. Semi-discrete scheme

For the semi-discrete scheme, we define it by finding uh ∈ L2[0, T ;VS ] with uh,t∈L2[0, T ;VS ]

satisfying that for any vh ∈ VS ,
{
Ah(uh,t, vh) +Nh(uh,t, vh) +Nh(uh, vh) + Ch

(
ISc(uh), vh

)
= LN (t; vh),

uh(0) = ISu0,
(3.31)

where ISu0 represents the interpolation of u0 which is defined in (3.10) and the linear form

LN (t; vh) is defined as

LN (t; vh) :=
∑

E∈Th

∫

E

(
ΠE

0 f(t)
)
vhdx− 〈ĝt(t) + ĝ(t), b(Π1∇vh) · n〉∂Ωh

+ γ
〈
ĝt(t) + ĝ(t), h̄−1vh

〉
∂Ωh

,

where ĝ(t) = g(x+ ρ(x)n, t) with ĝt(t) = gt(x+ ρ(x)n, t).
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Express a function ϕh ∈ VS as

ϕh =

NS∑

i=1

dofi(ϕh)φi,

in which φi represents the i-th global basis function. Then, according to [18], the nonlinear

term Ch(ISc(uh), vh) can be written as

Ch
(
ISc(uh), vh

)
= Ch

(
NS∑

i=1

dofi

(
ISc(uh)

)
φi, vh

)

=

NS∑

i=1

dofi

(
c(uh)

)
Ch(φi, vh)

=

NS∑

i=1

c
(
dofi(uh)

)
Ch(φi, vh).

If we further introduce matrix and vector notations as follows:

A = [Ai,j ] = Ah(φi, φj), i, j = 1, 2, . . . , NS ,

N = [Ni,j ] = Nh(φi, φj), i, j = 1, 2, . . . , NS ,

C = [Ci,j ] = Ch(φi, φj), i, j = 1, 2, . . . , NS ,

u = [u1, u2, · · · , uNS
]T, ui = dofi(uh), i = 1, 2, . . . , NS ,

uc = [(uc)1, (uc)2, · · · , (uc)NS
]T, (uc)i = c

(
dofi(uh)

)
, i = 1, 2, . . . , NS ,

L(t) = [L1, L2, · · · , LNS
]T, Li = LN (t;φi), i = 1, 2, . . . , NS ,

then (3.31) is equivalent to the following ordinary differential equation system:

(A+N )
du

dt
+Nu+Cuc = L(t).

From the continuity and coercivity of Ah(· , ·), Ch(· , ·) and Nh(· , ·) given in Theorem 3.1 and the

Lipschitz continuity of c(u), we conclude that for (3.31), the solution exists and is unique [27,28].

3.4. Fully discrete scheme

Divide the interval [0, T ] into NT equidistant subintervals with time step size ∆t = T/NT .

The grid-points tn (n = 0, 1, . . . , NT ) are set to be tn = n∆t. Introduce a linear form Ln
N (vh)

in VS with the form

Ln
N (vh) :=

1

2

∑

E∈Th

∫

E

(
ΠE

0 f(t
n) + ΠE

0 f(t
n−1)

)
vhdx

−
1

∆t

〈
ĝ(tn)− ĝ(tn−1), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

−
1

2

〈
ĝ(tn) + ĝ(tn−1), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

,

then the fully discrete scheme based on the Crank-Nicolson discretization is defined by finding

{unh}
NT

n=1 ⊂ VS such that for any vh ∈ VS ,

Ah

(
unh − un−1

h

∆t
, vh

)
+Nh

(
unh − un−1

h

∆t
, vh

)
+Nh

(
unh + un−1

h

2
, vh

)
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+ Ch

(
ISc(unh) + ISc(u

n−1
h )

2
, vh

)
= Ln

N (vh). (3.32)

The initial value u0h = ISu0. It is obvious that when un−1
h is obtained, we need to solve the

following nonlinear equation to get unh:

Ah

(
unh, vh

)
+Nh

(
unh, vh

)
+

∆t

2
Nh

(
unh, vh

)
+

∆t

2
Ch
(
ISc
(
unh
)
, vh
)
= Ln

r (vh), (3.33)

where

Ln
r (vh) = Ln

N (vh) +Ah

(
un−1
h , vh

)
+Nh

(
un−1
h , vh

)

−
∆t

2
Nh

(
un−1
h , vh

)
−

∆t

2
Ch
(
ISc
(
un−1
h

)
, vh
)
.

Introduce vector notations as follows:

Un =
[
Un
1 , U

n
2 , · · · , U

n
NS

]T
, Un

i = dofi

(
unh
)
, n = 0, 1, . . . , NT ,

Un
c
=
[(
Un
c

)
1
,
(
Un
c

)
2
, · · · ,

(
Un
c

)
NS

]T
,
(
Un
c

)
i
= c
(
dofi

(
unh
))
,

Ln =
[
Ln
1 , L

n
2 , · · · , L

n
NS

]T
, Ln

i = Ln
N (φi),

then (3.33) can be rewritten as

(
A+N +

∆t

2
N

)
Un +

∆t

2
CUn

c

= Ln +

(
A+N −

∆t

2
N

)
Un−1 −

∆t

2
CUn−1

c
. (3.34)

It is clear that when we solve (3.34) by the Newton’s iteration, it is easy to construct the

Jacobian J , and it takes the following form:

J = A+N +
∆t

2
N +

∆t

2
C̃,

where

C̃ =
[
C̃i,j

]
= Ci,jc

′
(
dofj

(
unh
))
, i, j = 1, 2, . . . , NS .

Compared with the idea in [2], the strategy of using the interpolation operator to approximate

nonlinear terms in [18] can simplify the implementation.

4. Error Analysis

In this section, an energy projection operator P is first constructed and then error analysis

for the discrete schemes (3.31) and (3.32) is derived based on the approximation properties of P.

Starting from here, for a positive constant C that does not depend on h, the inequality a ≤ Cb

is simplified to a . b. In addition, to carry out the error analysis, we assume that coefficients

a and b, source function f , boundary value g, initial value u0 and the nonlinear term c are

regular enough such that the weak solution u of (1.1) can satisfy the regularity that we need.
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4.1. The energy projection

The energy projection P : H3/2+ε(Ωh) → VS with ε > 0, is defined by finding Pw ∈ VS such

that

Nh(Pw, vh) = (b∇w,∇vh)Ωh
− 〈b∇w · n, vh〉∂Ωh

− 〈w + ρ∇w · n, b(Π1∇vh) · n〉∂Ωh
+ γ
〈
w + ρ∇w · n, h̄−1vh

〉
∂Ωh

. (4.1)

The well-posedness of P can be obtained from (3.26)-(3.28) and the continuity and coercivity of

Nh(· , ·) in Theorem 3.1. To analyze the approximation properties of P, we recall the following

trace inequalities.

Lemma 4.1 ([10]). If a function v ∈ H1(E) for any E ∈ Th, then we have

‖v‖∂E . h
− 1

2

E ‖v‖E + h
1
2

E |v|1,E . (4.2)

For a function ṽ ∈ H2(E), from the Young’s inequality, we similarly have

‖∇ṽ‖∂E . h
− 1

2

E |ṽ|1,E + h
1
2

E |ṽ|2,E . (4.3)

Lemma 4.2. Assume that the weak solution u of (1.1) satisfies u(·, t) ∈ H3(Ω), then we have

‖u− Pu‖N . h2‖u‖3,Ω. (4.4)

Proof. Set σh = Pu− ISu, then by (3.30) and (4.1), we have

‖σh‖
2
N . Nh(Pu, σh)−Nh(ISu, σh) . Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

where

Q1 =
∣∣(b∇u,∇σh)Ωh

− Bh(ISu, σh)
∣∣,

Q2 =
∣∣〈b (Π1∇ISu−∇u) · n, σh〉∂Ωh

∣∣,
Q3 =

∣∣〈ISu− u, b(Π1∇σh) · n〉∂Ωh

∣∣,
Q4 =

∣∣γ
〈
u− ISu, h̄

−1σh
〉
∂Ωh

∣∣,

Q5 =
∣∣〈ρ(Π1∇ISu−∇u) · n, b(Π1∇σh) · n〉∂Ωh

∣∣,
Q6 =

∣∣γ
〈
ρ(∇u −Π1∇ISu) · n, h̄

−1σh
〉
∂Ωh

∣∣.

The term Q1 can be first estimated as

Q1 .
∑

E∈Th

∣∣(b∇u,∇σh)E − BE
h (ISu, σh)

∣∣

=
∑

E∈Th

∣∣(b∇u,∇σh)E − BE
h

(
ISu−ΠE

0 u, σh
)
−
(
b∇ΠE

0 u,Π
E
1 ∇σh

)
E

∣∣

.
∑

E∈Th

∣∣(b∇u−ΠE
1 (b∇u),∇σh

)
E

∣∣+
∣∣BE

h

(
ISu−ΠE

0 u, σh
)∣∣

+
∑

E∈Th

∣∣(b
(
∇u−∇ΠE

0 u
)
,ΠE

1 ∇σh
)
E

∣∣,
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then using (3.6)-(3.8), (3.11) and (3.21) yields

Q1 . h2‖u‖3,Ω‖σh‖N .

By (3.6), (3.15) and (4.3), we have

Q2 .
∑

e∈Eb
h

∥∥ΠEe

1 ∇ISu−∇u
∥∥
e
‖σh‖e

.
∑

e∈Eb
h

(∥∥ΠEe

1 ∇ISu−∇ΠEe

0 u
∥∥
e
+
∥∥∇ΠEe

0 u−∇u
∥∥
e

)
‖σh‖e

.
∑

e∈Eb
h

(∥∥ΠEe

1 ∇ISu−∇ΠEe

0 u
∥∥
Ee

+
∣∣ΠEe

0 u− u
∣∣
1,Ee

)
h
− 1

2
e ‖σh‖e

+
∑

e∈Eb
h

hEe

∣∣ΠEe

0 u− u
∣∣
2,Ee

h
− 1

2
e ‖σh‖e,

where Ee is the unique mesh element satisfying e ⊂ ∂Ee. Utilizing (3.7), (3.8) and (3.11), we

arrive at

Q2 . h2‖u‖3,Ω‖σh‖N .

From (3.15) and (4.3), we see that

Q3 .
∑

e∈Eb
h

‖ISu− u‖e
∥∥ΠEe

1 ∇σh
∥∥
e

.
∑

e∈Eb
h

(
h−1
Ee

‖ISu− u‖Ee
+ |ISu− u|1,Ee

)
‖ΠEe

1 ∇σh‖Ee
,

then applying (3.6) and (3.11), we obtain

Q3 . h2‖u‖3,Ω‖σh‖N .

Similar to Q3, we can bound Q4 as

Q4 .
∑

e∈Eb
h

(
h−1
Ee

‖ISu− u‖Ee
+ |ISu− u|1,Ee

)
h
− 1

2
e ‖σh‖Ee

. h2‖u‖3,Ω‖σh‖N .

Noticing that ρ . h2 ≤ h, we can estimate Q5 as

Q5 .
∑

e∈Eb
h

h
∥∥ΠEe

1 ∇ISu−∇u
∥∥
e

∥∥ΠEe

1 ∇σh
∥∥
e

.
∑

e∈Eb
h

(∥∥ΠEe

1 ∇u−∇u
∥∥
Ee

+ |u− ISu|1,Ee

)∥∥ΠEe

1 ∇σh
∥∥
Ee

+
∑

e∈Eb
h

(∣∣ΠEe

0 u− u
∣∣
1,Ee

+ hEe

∣∣ΠEe

0 u− u
∣∣
2,Ee

) ∥∥ΠEe

1 ∇σh
∥∥
Ee
,

then applying (3.6)-(3.8) and (3.11), we get

Q5 . h2‖u‖3,Ω‖σh‖N .
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Similarly, Q6 can be bounded as

Q6 .
∑

e∈Eb
h

h
1
2

∥∥∇u−ΠEe

1 ∇ISu
∥∥
e
h
− 1

2
e ‖σh‖e

. h2‖u‖3,Ω‖σh‖N .

On the other hand, from (3.11) and (4.2), it is straightforward to obtain

‖u− ISu‖N . |u− ISu|1,Ωh
+ |u− ISu|∂Ωh

. h2‖u‖3,Ω.

Finally, (4.4) is derived by using the triangular inequality. �

Lemma 4.3. Suppose that for (1.1), the weak solution u satisfies u(·, t) ∈ H3(Ω), then we have

‖u− Pu‖Ωh
. h3‖u‖3,Ω. (4.5)

Proof. Consider the following dual problem with the solution ζ ∈ H2(Ωh) ∩H1
0 (Ωh):

−∇ ·
(
b(x)∇ζ

)
= u− Pu, x ∈ Ωh,

ζ = 0, x ∈ ∂Ωh.

The following regularity bound follows from the convexity of Ωh:

‖ζ‖2,Ωh
. ‖u− Pu‖Ωh

. (4.6)

Let ISζ represent the interpolation of ζ in VS , then we have ISζ|∂Ωh
= 0 by the boundary

condition for ζ and the definition of the global degrees of freedom for VS . In light of (3.11) and

(4.6), we further have

|ζ − ISζ|1,Ωh
. h‖u− Pu‖Ωh

. (4.7)

By the definition of P and Nh(· , ·) and the fact that ISζ|∂Ωh
= 0, we have

‖u− Pu‖2Ωh
=
(
u− Pu,−∇ · (b∇ζ)

)
Ωh

=
(
b∇(u− Pu),∇ζ

)
Ωh

− 〈b∇ζ · n, u− Pu〉∂Ωh

=
(
b∇(u− Pu),∇(ζ − ISζ)

)
Ωh

+
(
b∇(u− Pu),∇ISζ

)
Ωh

− 〈b∇ζ · n, u− Pu〉∂Ωh

=
(
b∇(u− Pu),∇(ζ − ISζ)

)
Ωh

− (b∇Pu,∇ISζ)Ωh
− 〈b∇ζ · n, u− Pu〉∂Ωh

+Nh(Pu, ISζ) + 〈u, b(Π1∇ISζ) · n〉∂Ωh
+ 〈ρ∇u · n, b(Π1∇ISζ) · n〉∂Ωh

. R1 + R2 +R3 +R4,

where

R1 =
∣∣(b∇(u− Pu),∇(ζ − ISζ)

)
Ωh

∣∣,

R2 =
∣∣Bh(Pu, ISζ)− (b∇Pu,∇ISζ)Ωh

∣∣,
R3 =

∣∣〈u− Pu, b(Π1∇ISζ −∇ζ) · n〉∂Ωh

∣∣,
R4 =

∣∣〈ρ(∇u−Π1∇Pu) · n, b(Π1∇ISζ) · n〉∂Ωh

∣∣.

By (4.4) and (4.7), for R1, we have

R1 . |u− Pu|1,Ωh
|ζ − ISζ|1,Ωh
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. ‖u− Pu‖N |ζ − ISζ|1,Ωh
. h3|u|3,Ω‖u− Pu‖Ωh

.

In the same way as the inconsistency error analysis established in [12, Theorem 6.3], R2 can be

bounded as

R2 . h3|u|3,Ω‖u− Pu‖Ωh
.

Based on (3.6), (3.7), (3.15), (4.3), (4.4) and (4.7), we have

R3 .
∑

e∈Eb
h

h
1
2
e

∥∥ΠEe

1 ∇ISζ −∇ζ
∥∥
e
h
− 1

2
e ‖u− Pu‖e

.
∑

e∈Eb
h

h
1
2
e

(∥∥ΠEe

1 ∇ISζ −∇ΠEe

0 ζ
∥∥
e
+
∥∥∇ΠEe

0 ζ −∇ζ
∥∥
e

)
h
− 1

2
e ‖u− Pu‖e

.
∑

e∈Eb
h

(∥∥ΠEe

1 ∇ζ −∇ζ
∥∥
Ee

+ |ISζ − ζ|1,Ee

)
h
− 1

2
e ‖u− Pu‖e

+
∑

e∈Eb
h

(∣∣ΠEe

0 ζ − ζ
∣∣
1,Ee

+ hEe

∣∣ΠEe

0 ζ − ζ
∣∣
2,Ee

)
h
− 1

2
e ‖u− Pu‖e

. h|ζ|2,Ωh
‖u− Pu‖N . h3|u|3,Ω‖u− Pu‖Ωh

.

Similarly, R4 can be estimated as

R4 .
∑

e∈Eb
h

h2h
− 1

2
e

∥∥∇u−ΠEe

1 ∇Pu
∥∥
e
h

1
2
e

∥∥ΠEe

1 ∇ISζ
∥∥
e

.
∑

e∈Eb
h

h
3
2

(∥∥∇u −ΠEe

1 ∇u
∥∥
e
+
∥∥ΠEe

1 ∇u−ΠEe

1 ∇Pu
∥∥
e

)
‖∇ISζ‖Ee

.
∑

e∈Eb
h

h
3
2

(∥∥∇u −∇ΠEe

0 u
∥∥
e
+
∥∥∇ΠEe

0 u−ΠEe

1 ∇u
∥∥
e

)
‖∇ISζ‖Ee

+
∑

e∈Eb
h

h
3
2

∥∥ΠEe

1 ∇u−ΠEe

1 ∇Pu
∥∥
e
‖∇ISζ‖Ee

. h3|u|3,Ω|ISζ|1,Ωh
. h3|u|3,Ω

(
|ISζ − ζ|1,Ωh

+ |ζ|1,Ωh

)
. h3|u|3,Ω‖u− Pu‖Ωh

.

Using the above estimates for R1-R4, we get (4.5).

4.2. Error analysis for the semi-discrete scheme

Some error estimates for terms involving the boundary condition are first derived in this sub-

section, then the error analysis is presented for (3.31) on the basis of approximation properties

(4.4) and (4.5) of the energy projection P.

Lemma 4.4. Assume that the weak solution u of (1.1) satisfies u(·, t) ∈ W 2,∞(Ω), and the

time derivative ut(·, t) is assumed to belong to W 2,∞(Ω) as well, then we have for any vh ∈ VS ,

〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, b(Π1∇vh) · n

〉
∂Ωh

. h3
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
‖vh‖Ωh

, (4.8)

− γ
〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, h̄−1vh

〉
∂Ωh

. h3
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
‖vh‖Ωh

. (4.9)
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Proof. According to Taylor expansion [8] and (3.1), for x ∈ ∂Ωh, it holds

|ĝ(t)− (u+ ρ∇u · n)| =
∣∣u
(
x+ ρ(x)n, t

)
− (u+ ρ∇u · n)

∣∣
. ρ2|u|2,∞,Ω . h4|u|2,∞,Ω, (4.10)

|ĝt(t)− (ut + ρ∇ut · n)| =
∣∣ut
(
x+ ρ(x)n, t

)
− (ut + ρ∇ut · n)

∣∣
. ρ2|ut|2,∞,Ω . h4|ut|2,∞,Ω. (4.11)

Then, by (3.6), (3.13), (4.10) and (4.11), we have

〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, b(Π1∇vh) · n

〉
∂Ωh

.
∑

e∈Eb
h

∥∥ĝt(t) + ĝ(t)−
(
ut + u+ ρ∇(ut + u) · n

)∥∥
e

∥∥ΠEe

1 ∇vh
∥∥
e

.
∑

e∈Eb
h

h4h
1
2
e

(
|u|2,∞,Ω + |ut|2,∞,Ω

)∥∥ΠEe

1 ∇vh
∥∥
e

.
∑

e∈Eb
h

h4
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
‖∇vh‖Ee

. h3
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
‖vh‖Ωh

.

Thus, (4.8) is proven. Employing (4.2) further, we can obtain (4.9) in the following way:

− γ
〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, h̄−1vh

〉
∂Ωh

.
∑

e∈Eb
h

∥∥ĝt(t) + ĝ(t)−
(
ut + u+ ρ∇(ut + u) · n

)∥∥
e
h−1
e ‖vh‖e

.
∑

e∈Eb
h

h4h
1
2
e

(
|u|2,∞,Ω + |ut|2,∞,Ω

)
h−1
e ‖vh‖e

.
∑

e∈Eb
h

h4
(
|u|2,∞,Ω + |ut|2,∞,Ω

)(
h−1
Ee

‖vh‖Ee
+ |vh|1,Ee

)

. h3
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
‖vh‖Ωh

.

The proof is complete. �

Theorem 4.1. Let u be the solution of (1.1) and uh be the solution of (3.31). Suppose that

u ∈ L2[0, T ;H3(Ω) ∩ W 2,∞(Ω)], ut ∈ L2[0, T ;H3(Ω) ∩ W 2,∞(Ω)], c(u) ∈ L2[0, T ;H3(Ω)],

f ∈ L2[0, T ;H3(Ω)] and u0 ∈ H3(Ω), then for any t with 0 < t < T , the following error

estimates hold:

‖u− uh‖Ωh
. h3

(
‖u0‖3,Ω + ‖ut‖L2[0,t;H3(Ω)] + ‖f‖L2[0,t;H3(Ω)] + ‖u‖L2[0,t;H3(Ω)]

+ ‖c(u)‖L2[0,t;H3(Ω)] + ‖u‖L2[0,t;W 2,∞(Ω)]

+ ‖ut‖L2[0,t;W 2,∞(Ω)] + ‖ut‖L1[0,t;H3(Ω)]

)
, (4.12)

‖u− uh‖N . h3
(
‖u0‖3,Ω + ‖ut‖L2[0,t;H3(Ω)] + ‖f‖L2[0,t;H3(Ω)] + ‖u‖L2[0,t;H3(Ω)]

+ ‖c(u)‖L2[0,t;H3(Ω)] + ‖u‖L2[0,t;W 2,∞(Ω)] + ‖ut‖L2[0,t;W 2,∞(Ω)]

)

+ h2
(
‖u0‖3,Ω + ‖ut‖L1[0,t;H3(Ω)]

)
. (4.13)
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Proof. Utilizing the energy projection P, the error u(t)− uh(t) can be split as

u(t)− uh(t) = u(t)− Pu(t) + Pu(t)− uh(t).

Thanks to Lemmas 4.2 and 4.3, it follows that

‖u− Pu‖N . h2‖u‖3,Ω . h2
(
‖u0‖3,Ω + ‖ut‖L1[0,t;H3(Ω)]

)
, (4.14)

‖u− Pu‖Ωh
. h3‖u‖3,Ω . h3

(
‖u0‖3,Ω + ‖ut‖L1[0,t;H3(Ω)]

)
. (4.15)

For the sake of convenience, we set θ(t) = Pu(t) − uh(t). Based on the semi-discrete scheme

(3.31) and the definition (4.1) of P, a simple calculation gives

Ah(θt, vh) +Nh(θt, vh) +Nh(θ, vh)

= Ah(Put, vh) +Nh(Put, vh) +Nh(Pu, vh) + Ch
(
ISc(uh), vh

)
− LN (t; vh)

= Ah(Put, vh) +
(
b∇(ut + u),∇vh

)
Ωh

− 〈b∇(ut + u) · n, vh〉∂Ωh
+ Ch

(
ISc(uh), vh

)

−
∑

E∈Th

∫

E

(
ΠE

0 f(t)
)
vhdx+

〈
ĝt(t) + ĝ(t), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

−
〈
ut + u+ ρ∇(ut + u) · n, b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

.

For the model problem (1.1), it is easy to verify that its solution u satisfies that for any vh ∈ VS ,

(aut, vh)Ωh
+
(
b∇(ut + u),∇vh

)
Ωh

− 〈b∇(ut + u) · n, vh〉∂Ωh
+
(
c(u), vh

)
Ωh

= (f, vh)Ωh
,

then we have

Ah(θt, vh) +Nh(θt, vh) +Nh(θ, vh) = X1 + X2 + X3 + X4 + X5,

where

X1 = Ah(Put, vh)− (aut, vh)Ωh
,

X2 = Ch
(
ISc
(
uh(t)

)
, vh
)
−
(
c(u), vh

)
Ωh
,

X3 = (f, vh)Ωh
−
∑

E∈Th

∫

E

(
ΠE

0 f(t)
)
vhdx,

X4 = −γ
〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, h̄−1vh

〉
∂Ωh

,

X5 =
〈
ĝt(t) + ĝ(t)−

(
ut + u+ ρ∇(ut + u) · n

)
, b(Π1∇vh) · n

〉
∂Ωh

.

Using (3.5), (3.8) and (4.5), we obtain

X1 =
∑

E∈Th

AE
h (Put, vh)− (aut, vh)E

=
∑

E∈Th

AE
h

(
Put −ΠE

0 ut, vh
)
+
(
aΠE

0 ut,Π
E
0 vh

)
E
− (aut, vh)E

=
∑

E∈Th

AE
h

(
Put −ΠE

0 ut, vh
)
+
(
aΠE

0 ut − aut,Π
E
0 vh

)
E
−
(
aut −ΠE

0 (aut), vh
)
E

. h3‖ut‖3,Ω‖vh‖Ωh
.
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For X2, in [18, Theorem 1], it has been estimated as

X2 .
(
h3‖c(u)‖3,Ω + h3‖u‖3,Ω + ‖u− uh‖Ωh

)
‖vh‖Ωh

.

By (3.8), we can simply estimate X3 as

X3 =
∑

E∈Th

∫

E

(
f(t)−ΠE

0 f(t)
)
vhdx . h3‖f(t)‖3,Ω‖vh‖Ωh

.

The error terms X4 and X5 arise from the deformation of ∂Ω to ∂Ωh and their estimates

are provided in Lemma 4.4. Combining with the above analysis for X1-X3, we arrive at

Ah(θt, vh) +Nh(θt + θ, vh) .
(
h3
(
‖ut‖3,Ω + ‖f(t)‖3,Ω + ‖u‖3,Ω + ‖c(u)‖3,Ω

)

+ h3
(
|u|2,∞,Ω + |ut|2,∞,Ω

)
+ ‖u− uh‖Ωh

)
‖vh‖Ωh

. (4.16)

Taking the place of vh with θt + θ in (4.16) and noticing the coercivity of Ah(· , ·) and Nh(· , ·),

it follows that

d

dt
Ah(θ, θ) . h6

(
‖ut‖

2
3,Ω + ‖f(t)‖23,Ω + ‖u‖23,Ω + ‖c(u)‖23,Ω + |u|22,∞,Ω + |ut|

2
2,∞,Ω

)

+ ‖u− uh‖
2
Ωh

+ ‖θ‖2Ωh
,

then by (4.15), we obtain

d

dt
Ah(θ, θ) . h6

(
‖ut‖

2
3,Ω + ‖f(t)‖23,Ω + ‖u‖23,Ω + ‖c(u)‖23,Ω

+ |u|22,∞,Ω + |ut|
2
2,∞,Ω

)
+ ‖θ‖2Ωh

. (4.17)

Integrating (4.17) on (0, t) and using the continuous Grönwall’s lemma, it holds

‖θ‖Ωh
. h3

(∫ t

0

(
‖ut(τ)‖

2
3,Ω + ‖f(τ)‖23,Ω + ‖u(τ)‖23,Ω +

∥∥c
(
u(τ)

)∥∥2
3,Ω

)
dτ

) 1
2

+ h3
(∫ t

0

(
|ut(τ)|

2
2,∞,Ω + |u(τ)|22,∞,Ω

)
dτ

) 1
2

+ ‖θ(0)‖Ωh
. (4.18)

Based on (3.11) and (4.5), we have

‖θ(0)‖Ωh
= ‖Pu0 − ISu0‖Ωh

≤ ‖Pu0 − u0‖Ωh
+ ‖u0 − ISu0‖Ωh

. h3‖u0‖3,Ω. (4.19)

Applying (4.15), (4.18) and (4.19), we obtain (4.12).

Next, we focus on (4.13). Replacing vh with θt in (4.16), it follows that

d

dt
Nh(θ, θ) . h6

(
‖ut‖

2
3,Ω + ‖f(t)‖23,Ω + ‖u‖23,Ω + ‖c(u)‖23,Ω + |u|22,∞,Ω + |ut|

2
2,∞,Ω

)

+ h6‖u0‖
2
3,Ω + h6

∫ t

0

(
‖ut(τ)‖

2
3,Ω + ‖f(τ)‖23,Ω + ‖u(τ)‖23,Ω

)
dτ

+ h6
∫ t

0

(∥∥c
(
u(τ)

)∥∥2
3,Ω

+ |u(τ)|22,∞,Ω + |ut(τ)|
2
2,∞,Ω

)
dτ.

Integrating the above bound form 0 to t, we have

‖θ‖2N . h6‖u0‖
2
3,Ω + h6

∫ t

0

(
‖ut(τ)‖

2
3,Ω + ‖f(τ)‖23,Ω + ‖u(τ)‖23,Ω

)
dτ + ‖u0 − ISu0‖

2
N
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+ h6
∫ t

0

(∥∥c
(
u(τ)

)∥∥2
3,Ω

+ |u(τ)|22,∞,Ω + |ut(τ)|
2
2,∞,Ω

)
dτ + ‖Pu0 − u0‖

2
N

.h6
∫ t

0

(
‖ut(τ)‖

2
3,Ω + ‖f(τ)‖23,Ω + ‖u(τ)‖23,Ω

)
dτ + h6‖u0‖

2
3,Ω + h4‖u0‖

2
3,Ω

+ h6
∫ t

0

(∥∥c
(
u(τ)

)∥∥2
3,Ω

+ |u(τ)|22,∞,Ω + |ut(τ)|
2
2,∞,Ω

)
dτ,

then, combining with (4.14), we obtain (4.13). �

4.3. Error analysis for the fully discrete scheme

Before carrying out the error analysis for the fully discrete scheme (3.32), we establish some

error estimates for terms involving the boundary condition.

Lemma 4.5. Let u be the weak solution of (1.1). Assume that for n = 0, 1, . . . , NT , there is

a positive constant C∞
u such that maxn−1≤i≤n|u(ti)|2,∞,Ω ≤ C∞

u and ut∈L1[tn−1, tn;W 2,∞(Ω)],

then for any vh ∈ VS , we have
〈

1

∆t

(
ĝ(tn)−ĝ(tn−1)−

(
u(tn)−u(tn−1)+ρ∇

(
u(tn)−u(tn−1)

)
· n
))
, b(Π1∇vh) · n−

γvh

h̄

〉

∂Ωh

.
h3

∆t
‖vh‖Ωh

∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ, (4.20)

〈
1

2

(
ĝ(tn)+ĝ(tn−1)−

(
u(tn)+u(tn−1)+ρ∇

(
u(tn)+u(tn−1)

)
· n
))
, b(Π1∇vh) · n−

γvh

h̄

〉

∂Ωh

. h3 max
n−1≤i≤n

|u(ti)|2,∞,Ω‖vh‖Ωh
. (4.21)

Proof. According to (3.6), (3.13), (3.15) and (4.11), we have
〈

1

∆t

(
ĝ(tn)−ĝ(tn−1)−

(
u(tn)−u(tn−1) + ρ∇

(
u(tn)−u(tn−1)

)
· n
))
, b(Π1∇vh) · n

〉

∂Ωh

=
1

∆t

〈∫ tn

tn−1

ĝt(τ)−
(
ut(τ) + ρ∇ut(τ) · n

)
dτ , b(Π1∇vh) · n

〉

∂Ωh

.
1

∆t

∑

e∈Eb
h

∥∥ΠEe

1 ∇vh
∥∥
e

∫ tn

tn−1

∥∥ĝt(τ) −
(
ut(τ) + ρ∇ut(τ) · n

)∥∥
e
dτ

.
1

∆t

∑

e∈Eb
h

h4h
1
2
e

∥∥ΠEe

1 ∇vh
∥∥
e

∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ

. h3‖vh‖Ωh

1

∆t

∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ. (4.22)

Similarly, employing (4.2) further, it follows that
〈

1

∆t

(
ĝ(tn)− ĝ(tn−1)−

(
u(tn)− u(tn−1) + ρ∇

(
u(tn)− u(tn−1)

)
· n
))
, γh̄−1vh

〉

∂Ωh

=
1

∆t

〈∫ tn

tn−1

ĝt(τ) −
(
ut(τ) + ρ∇ut(τ) · n

)
dτ, γh̄−1vh

〉

∂Ωh
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.
1

∆t

∑

e∈Eb
h

h−1
e ‖vh‖e

∫ tn

tn−1

∥∥ĝt(τ) −
(
ut(τ) + ρ∇ut(τ) · n

)∥∥
e
dτ

.
1

∆t

∑

e∈Eb
h

h4
(
h−1
Ee

‖vh‖Ee
+ |vh|1,Ee

) ∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ

. h3‖vh‖Ωh

1

∆t

∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ. (4.23)

Eqs. (4.22) and (4.23) give the desired result (4.20). The proof for (4.21) can be obtained by

a similar analysis to (4.20). �

Theorem 4.2. Let u be the solution of (1.1) and {unh}
NT

n=1 be the solution of (3.32). Suppose

that ut ∈ L2[0, T ;H3(Ω) ∩W 2,∞(Ω)], uttt ∈ L2[0, T ;H2(Ω)] and u0 ∈ H3(Ω). Assume further

that for n = 1, 2, . . . , NT , there is a positive constant Cmax such that

max
0≤i≤n

{
‖f(ti)‖3,Ω,

∥∥c
(
u(ti)

)∥∥
3,Ω
, ‖u(ti)‖3,Ω, |u(t

i)|2,∞,Ω

}
≤ Cmax,

then for ∆t . 1, the following error estimates hold:

‖u(tn)− unh‖Ωh
. h3

(
‖ut‖L2[0,tn;H3(Ω)] + ‖ut‖L2[0,tn;W 2,∞(Ω)] + max

0≤i≤n
‖f(ti)‖3,Ω

+ max
0≤i≤n

∥∥c
(
u(ti)

)∥∥
3,Ω

+ max
0≤i≤n

‖u(ti)‖3,Ω + max
0≤i≤n

|u(ti)|2,∞,Ω

)

+ (∆t)2‖uttt‖L2[0,tn;H2(Ω)], (4.24)

‖u(tn)− unh‖N . h3
(
‖ut‖L2[0,tn;H3(Ω)] + ‖ut‖L2[0,tn;W 2,∞(Ω)] + max

0≤i≤n
‖f(ti)‖3,Ω

+ max
0≤i≤n

∥∥c
(
u(ti)

)∥∥
3,Ω

+ max
0≤i≤n

‖u(ti)‖3,Ω + max
0≤i≤n

|u(ti)|2,∞,Ω

)

+ (∆t)2‖uttt‖L2[0,tn;H2(Ω)] + h2
(
‖u0‖3,Ω + ‖u(tn)‖3,Ω

)
. (4.25)

Proof. Using the energy projection P, the error u(tn)− unh can be decomposed as

u(tn)− unh = u(tn)− Pu(tn) + Pu(tn)− unh.

Due to Lemmas 4.2 and 4.3, we obtain

‖u(tn)− Pu(tn)‖N . h2‖u(tn)‖3,Ω, n = 1, 2, . . . , NT , (4.26)

‖u(tn)− Pu(tn)‖Ωh
. h3‖u(tn)‖3,Ω, n = 1, 2, . . . , NT . (4.27)

Set θn = Pu(tn) − unh. For the convenience of subsequent analysis, we introduce the following

notations:

η̊n :=
ηn − ηn−1

∆t
, η̄n :=

ηn + ηn−1

2
,

where η ∈ {u, ut, θ, f, ĝ} and ηn = η(tn) for η ∈ {u, ut, f, ĝ}.

On the basis of the definition (4.1) of P and the fully discrete scheme (3.32), a straightforward

calculation yields

Ah

(
θ̊n, vh

)
+Nh

(
θ̊n, vh

)
+Nh

(
θ̄n, vh

)
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= Ah

(
Půn, vh

)
+Nh

(
Půn, vh

)
+Nh

(
Pūn, vh

)

+
1

2
Ch
(
ISc(u

n
h) + ISc(u

n−1
h ), vh

)
− Ln

N (vh)

= Ah(Pů
n, vh)−

(
∇ · (b∇ůn), vh

)
Ωh

−
(
∇ · (b∇ūn), vh

)
Ωh

+
〈̊
ĝn − (ůn + ρ∇ůn · n) , b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

+
〈
¯̂gn − (ūn + ρ∇ūn · n), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

−
1

2

∑

E∈Th

∫

E

(
ΠE

0 f(t
n) + ΠE

0 f(t
n−1)

)
vhdx

+
1

2
Ch
(
ISc(u

n
h) + ISc(u

n−1
h ), vh

)
.

For the solution u of the problem (1.1), it can easily be verified that

(aūnt , vh)Ωh
−
(
∇ · (b∇ūnt ), vh

)
Ωh

−
(
∇ · (b∇ūn), vh

)
Ωh

+
1

2

(
c(un) + c(un−1), vh

)
Ωh

= (f̄n, vh)Ωh
,

then we obtain

Ah

(
θ̊n, vh

)
+Nh

(
θ̊n, vh

)
+Nh

(
θ̄n, vh

)
= Y1 + Y2 + Y3 + Y4 + Y5 + Y6,

where

Y1 = Ah

(
Půn, vh

)
−
(
aūnt , vh

)
Ωh
,

Y2 =
(
∇ ·
(
b∇(ūnt − ůn)

)
, vh
)
Ωh
,

Y3 =
(
f̄n, vh

)
Ωh

−
1

2

∑

E∈Th

∫

E

(
ΠE

0 f
n +ΠE

0 f
n−1
)
vhdx,

Y4 =
1

2
Ch
(
ISc
(
unh
)
+ ISc

(
un−1
h

)
, vh
)
−

1

2

(
c(un) + c(un−1), vh

)
Ωh
,

Y5 =
〈̊
ĝn − (̊un + ρ∇ůn · n), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

,

Y6 =
〈
¯̂gn − (ūn + ρ∇ūn · n), b(Π1∇vh) · n− γh̄−1vh

〉
∂Ωh

.

From (3.5), (3.8) and (4.5), we have

Y1 =
∑

E∈Th

AE
h

(
Půn, vh

)
−
(
aūnt , vh

)
E

=
∑

E∈Th

AE
h

(
Půn −ΠE

0 ů
n, vh

)
+
(
aΠE

0 ů
n,ΠE

0 vh
)
E
−
(
aūnt , vh

)
E

=
∑

E∈Th

AE
h

(
Půn −ΠE

0 ů
n, vh

)
+
(
aΠE

0 ů
n − aůn,ΠE

0 vh
)
E
−
(
aūnt −ΠE

0 (aů
n), vh

)
E

.
(
h3‖ůn‖3,Ω + ‖ůn − ūnt ‖Ωh

)
‖vh‖Ωh

.

It is easy to see that the term ‖ůn‖3,Ω can be bounded as

‖ůn‖3,Ω =
1

∆t

∥∥∥∥
∫ tn

tn−1

ut(τ)dτ

∥∥∥∥
3,Ω

.
1

∆t

∫ tn

tn−1

‖ut(τ)‖3,Ωdτ,
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and we can estimate the term ‖ůn − ūnt ‖Ωh
as

∥∥ůn − ūnt
∥∥
Ωh

=
1

2∆t

∥∥2un − 2un−1 −∆tunt −∆tun−1
t

∥∥
Ωh

≤
1

∆t

∥∥∥∥u
n − un−1 −∆tut

(
1

2
(tn + tn−1)

)∥∥∥∥
Ωh

+

∥∥∥∥ut
(
1

2
(tn + tn−1)

)
−

1

2
unt −

1

2
un−1
t

∥∥∥∥
Ωh

=
1

2∆t

∥∥∥∥∥

∫ tn+tn−1

2

tn−1

(τ − tn−1)2uttt(τ)dτ +

∫ tn

tn+tn−1

2

(τ − tn)2uttt(τ)dτ

∥∥∥∥∥
Ωh

+
1

2

∥∥∥∥∥

∫ tn

tn+tn−1

2

(τ − tn)uttt(τ)dτ −

∫ tn+tn−1

2

tn−1

(τ − tn−1)uttt(τ)dτ

∥∥∥∥∥
Ωh

. ∆t

∫ tn

tn−1

‖uttt(τ)‖Ωdτ .

Therefore,

Y1 .
1

∆t

(
h3
∫ tn

tn−1

‖ut(τ)‖3,Ωdτ + (∆t)2
∫ tn

tn−1

‖uttt(τ)‖Ωdτ

)
‖vh‖Ωh

. (4.28)

Similar to the estimate for ‖ůn − ūnt ‖Ωh
, the following estimation for Y2 can be obtained:

Y2 . ∆t‖vh‖Ωh

∫ tn

tn−1

‖uttt(τ)‖2,Ωdτ. (4.29)

By (3.8), Y3 can be simply bounded as

Y3 . h3‖vh‖Ωh
max

n−1≤i≤n
‖f i‖3,Ω. (4.30)

Employing [18, Theorem 1] again, we have the following estimate for Y4:

Y4 .
(
h3 max

n−1≤i≤n
‖c(ui)‖3,Ω + h3 max

n−1≤i≤n
‖ui‖3,Ω + ‖θn‖Ωh

+ ‖θn−1‖Ωh

)
‖vh‖Ωh

. (4.31)

The error terms Y5 and Y6 result from the deformation of ∂Ω to ∂Ωh and their estimates

have been established in Lemma 4.5. Combining (4.28)-(4.31), we have

Ah

(
θ̊n, vh

)
+Nh

(
θ̊n, vh

)
+Nh

(
θ̄n, vh

)

.
1

∆t

(
h3
(
Zn

1 + Zn
2

)
+ (∆t)2

(
Zn

3 + Zn
4

)
+ h3∆t

(
Zn

5 + Zn
6 + Zn

7 + Zn
8

))
‖vh‖Ωh

+
(
‖θn‖Ωh

+ ‖θn−1‖Ωh

)
‖vh‖Ωh

, (4.32)

where

Zn
1 =

∫ tn

tn−1

‖ut(τ)‖3,Ωdτ, Zn
2 =

∫ tn

tn−1

|ut(τ)|2,∞,Ωdτ,

Zn
3 =

∫ tn

tn−1

‖uttt(τ)‖Ωdτ , Zn
4 =

∫ tn

tn−1

‖uttt(τ)‖2,Ωdτ ,

Zn
5 = max

n−1≤i≤n
‖f i‖3,Ω, Zn

6 = max
n−1≤i≤n

‖c(ui)‖3,Ω,

Zn
7 = max

n−1≤i≤n
‖ui‖3,Ω, Zn

8 = max
n−1≤i≤n

|ui|2,∞,Ω.
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Taking vh in (4.32) as θ̊n + θ̄n and utilizing the coercivity of Ah(· , ·) and Nh(· , ·), we arrive at

Ah(θ
n, θn)−Ah(θ

n−1, θn−1)

.
1

∆t

(
h6
((

Zn
1

)2
+
(
Zn

2

)2)
+ (∆t)4

((
Zn

3

)2
+
(
Zn

4

)2)

+ h6(∆t)2
((

Zn
5

)2
+
(
Zn

6

)2
+
(
Zn

7

)2
+
(
Zn

8

)2))

+∆t
(
‖θn‖2Ωh

+ ‖θn−1‖2Ωh

)
. (4.33)

A repeated application of (4.33) gives

‖θn‖2Ωh
.

1

∆t

n∑

i=1

(
h6
((

Zi
1

)2
+
(
Zi

2

)2)
+ (∆t)4

((
Zi

3

)2
+
(
Zi

4

)2))

+
1

∆t

n∑

i=1

(
h6(∆t)2

((
Zi

5

)2
+
(
Zi

6

)2
+
(
Zi

7

)2
+
(
Zi

8

)2))

+∆t

n∑

i=0

‖θi‖2Ωh
+ ‖θ0‖2Ωh

,

then for ∆t . 1 (which is also required in [20, Theorem 2.1]), applying the discrete Grönwall’s

lemma, (3.11) and (4.5) yields

‖θn‖2Ωh
.

1

∆t

n∑

i=1

(
h6
((

Zi
1

)2
+
(
Zi

2

)2)
+ (∆t)4

((
Zi

3

)2
+
(
Zi

4

)2))

+
1

∆t

n∑

i=1

(
h6(∆t)2

((
Zi

5

)2
+
(
Zi

6

)2
+
(
Zi

7

)2
+
(
Zi

8

)2))
+ h6‖u0‖

2
3,Ω. (4.34)

According to the Cauchy-Schwarz inequality, we have

1

∆t

n∑

i=1

h6
((

Zi
1

)2
+
(
Zi

2

)2)

.
1

∆t

n∑

i=1

h6

((∫ ti

ti−1

‖ut(τ)‖3,Ωdτ

)2

+

(∫ ti

ti−1

|ut(τ)|2,∞,Ωdτ

)2
)

. h6
(
‖ut‖

2
L2[0,tn;H3(Ω)] + ‖ut‖

2
L2[0,tn;W 2,∞(Ω)]

)
, (4.35)

1

∆t

n∑

i=1

(∆t)4
((

Zi
3

)2
+
(
Zi

4

)2)

=
1

∆t

n∑

i=1

(∆t)4

((∫ ti

ti−1

‖uttt(τ)‖Ωdτ

)2

+

(∫ ti

ti−1

‖uttt(τ)‖2,Ωdτ

)2
)

. (∆t)4‖uttt‖
2
L2[0,tn;H2(Ω)], (4.36)

and

1

∆t

n∑

i=1

h6(∆t)2
((

Zi
5

)2
+
(
Zi

6

)2
+
(
Zi

7

)2
+
(
Zi

8

)2)

. tnh6
(

max
0≤i≤n

‖f i‖23,Ω + max
0≤i≤n

‖c(ui)‖23,Ω + max
0≤i≤n

‖ui‖23,Ω + max
0≤i≤n

|ui|22,∞,Ω

)
. (4.37)

Substituting (4.35)-(4.37) into (4.34) and noticing (4.27), we can obtain (4.24).
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Replacing vh in (4.32) with ∆tθ̊n and using the coercivity of Ah(· , ·) and Nh(· , ·), we have

Nh(θ
n, θn)−Nh(θ

n−1, θn−1)

.
1

∆t

(
h6
((

Zn
1

)2
+
(
Zn

2

)2)
+ (∆t)4

((
Zn

3

)2
+
(
Zn

4

)2)

+ h6(∆t)2
((

Zn
5

)2
+
(
Zn

6

)2
+
(
Zn

7

)2
+
(
Zn

8

)2))

+ ‖θn‖2Ωh
+ ‖θn−1‖2Ωh

. (4.38)

By repeated application of (4.38), it follows that

‖θn‖2N .
1

∆t

n∑

i=1

(
h6
((

Zi
1

)2
+
(
Zi

2

)2)
+ (∆t)4

((
Zi

3

)2
+
(
Zi

4

)2))

+
1

∆t

n∑

i=1

(
h6(∆t)2

((
Zi

5

)2
+
(
Zi

6

)2
+
(
Zi

7

)2
+
(
Zi

8

)2))

+

n∑

i=0

‖θi‖2Ωh
+ ‖θ0‖2N ,

then, from (4.34)-(4.37), we get

‖θn‖N . h3
(
‖ut‖L2[0,tn;H3(Ω)] + ‖ut‖L2[0,tn;W 2,∞(Ω)] + max

0≤i≤n
‖f(ti)‖3,Ω

+ max
0≤i≤n

∥∥c
(
u(ti)

)∥∥
3,Ω

+ max
0≤i≤n

‖u(ti)‖3,Ω + max
0≤i≤n

|u(ti)|2,∞,Ω

)

+ ‖Pu0 − u0‖N + ‖u0 − ISu0‖N + (∆t)2‖uttt‖L2[0,tn;H2(Ω)].

Now, (4.25) can be derived according to Lemma 4.2 and (4.26). �

5. Numerical Experiments

In this section, four numerical examples are provided to verify the theoretical results in

the case of different nonlinear terms and curved domains. The first one is used to show the

convergence rate of Crank-Nicolson scheme. The second one is used to confirm the convergence

rate of the spatial approximation based on Nitsche-based projection SVEM. Both convergence

rates are verified in the third example. The last one is for the case of using meshes with hanging

nodes. In all experiments, we select the tolerance for the stopping criterion of Newton’s iteration

as 10−6 and we set the penalty parameter γ as 500. The final time T is all set to be 1. We

employ the following approximation errors:

E1 :=

(
∑

E∈Th

∣∣u(T )−ΠE
0 u

NT

h

∣∣2
1,E

+
∑

e∈Eb
h

h−1
e

∥∥u(T )− uNT

h

∥∥2
e

) 1
2

,

E0 :=

(
∑

E∈Th

∥∥u(T )−ΠE
0 u

NT

h

∥∥2
E

) 1
2

.

According to Lemma 3.1, [10, Lemma 2.17] and Theorem 4.2, it is easy to check that

E1 . (∆t)2 + h2, (5.1)

E0 . (∆t)2 + h3. (5.2)

So, E1 and E0 converge with the same orders as ‖u(tn)−unh‖N and ‖u(tn)−unh‖Ωh
respectively.
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Example 5.1. Let a(x) = x + y + 3 and b(x) = x + y + 2. Consider the following initial-

boundary value problem of semilinear pseudo-parabolic equation:

a(x)ut −∇ ·
(
b(x)∇ut + b(x)∇u

)
+ u2 = f(x, t), (x, t) ∈ Ω× (0, T ],

u = g(x, t), (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where

Ω =
{
(x, y) ∈ R

2 | 0 ≤ x ≤ 1, − sin
(
x(1 − x)

)
≤ y ≤ 1 + sin

(
x(1− x)

)}
,

and the data f, g and u0 are chosen in such a way that the exact solution is u = exp(−t)(x3+y3).

Two types of meshes (denoted as MESH1 and MESH2) are employed in this example and the

schematic diagrams are provided in Fig. 5.1. In Table 5.1, for different ∆t, we report the

approximation errors E1 and E0 and calculate the orders of convergence. Due to the relatively

small mesh size, we predict the temporal error dominates and the results listed in Table 5.1

confirm our prediction, i.e. the second-order convergence of the Crank-Nicolson scheme is

observed. Thus, the convergence order for the temporal discretization derived in Theorem 4.2

is illustrated.

Table 5.1: Errors E1 and E0 and the temporal convergence orders for Example 5.1 with fixed h.

MESH1 (with 2500 elements) MESH2 (with 2500 elements)

∆t E1 Order E0 Order ∆t E1 Order E0 Order

1/4 7.5328e-02 1.7830e-03 1/4 6.2723e-02 1.7694e-03

1/6 3.3353e-02 2.0093 7.8947e-04 2.0093 1/6 2.7772e-02 2.0093 7.8344e-04 2.0093

1/8 1.8736e-02 2.0046 4.4349e-04 2.0046 1/8 1.5601e-02 2.0045 4.4011e-04 2.0046

1/10 1.1984e-02 2.0027 2.8366e-04 2.0027 1/10 9.9791e-03 2.0026 2.8150e-04 2.0027
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Fig. 5.1. MESH1 (left) and MESH2 (right) used in Example 5.1.

Example 5.2. Let a(x) = x2 + y2+1 and b(x) = x2 + y2 +5. Take into account the following

initial-boundary value problem of semilinear pseudo-parabolic equation:

a(x)ut −∇ ·
(
b(x)∇ut + b(x)∇u

)
+ u(1− u) = f(x, t), (x, t) ∈ Ω× (0, T ],

u = g(x, t), (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,
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where Ω = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}. The data f , g and u0 are obtained by exact solution

u = exp(−t)
(
x+ y + sin(2πx) sin(2πy)

)
.

Two kinds of meshes (denoted as MESH3 and MESH4) are employed in this test and we show

their schematic diagrams in Fig. 5.2. The time step size ∆t is set to be 1/1000 such that

temporal error is small and the spatial error dominates. In Table 5.2, we list the orders of

convergence for E1 and E0. Therefore, the orders of convergence in the spatial direction derived

in Theorem 4.2 are illustrated.

Table 5.2: Errors E1 and E0 and the spatial convergence orders for Example 5.2 with ∆t = 1/1000.

MESH3 MESH4

h E1 Order E0 Order h E1 Order E0 Order

1.9858e-01 2.0970e-01 5.0590e-03 2.8707e-01 4.1617e-01 1.5184e-02

1.4950e-01 1.1802e-01 2.0249 2.1133e-03 3.0749 2.3845e-01 2.8809e-01 1.9823 8.5620e-03 3.0873

1.0144e-01 5.4187e-02 2.0071 6.4253e-04 3.0700 1.2924e-01 8.5982e-02 1.9740 1.3604e-03 3.0033

6.8146e-02 2.4095e-02 2.0372 1.8756e-04 3.0951 7.7051e-02 2.8637e-02 2.1258 2.5934e-04 3.2047
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Fig. 5.2. MESH3 (left) and MESH4 (right) used in Example 5.2.

Example 5.3. Consider the following semilinear pseudo-parabolic equation:

ut −∆(ut + u) + u3 = f(x, t), (x, t) ∈ Ω× (0, T ],

u = g(x, t), (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω,

where

Ω =

{
(x, y) ∈ R

2 | 0 ≤ x ≤ 1,−
1

3
x(1− x2) ≤ y ≤ 1 +

1

3
x(1 − x2)

}
,

and the data f, g and u0 are gotten by exact solution

u = exp(−t)(x5 + y5 + 4x3y + 2xy + 5).

The meshes (denoted as MESH5 and MESH6) employed are illustrated in Fig. 5.3. Similar

to Examples 5.1 and 5.2, to verify the convergence in temporal (spatial) direction, mesh size
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h (time step size ∆t) is chosen to be small. In Table 5.3, it is easy to see that the second-

order convergence of the Crank-Nicolson scheme is observed. In Table 5.4, the second-order

convergence for E1 and third-order convergence for E0 are also shown. Hence, the predictions

(5.1) and (5.2) are confirmed and the theoretical conclusions in Theorem 4.2 are verified.

Table 5.3: Errors E1 and E0 and the temporal convergence orders for Example 5.3 with fixed h.

MESH5 (with 5000 elements) MESH6 (with 2304 elements)

∆t E1 Order E0 Order ∆t E1 Order E0 Order

1/4 3.6826e-01 1.3706e-02 1/4 3.3518e-01 1.3681e-02

1/8 9.1594e-02 2.0074 3.4089e-03 2.0074 1/8 8.3371e-02 2.0073 3.4029e-03 2.0074

1/12 4.0672e-02 2.0022 1.5136e-03 2.0023 1/12 3.7025e-02 2.0019 1.5110e-03 2.0022

1/16 2.2872e-02 2.0008 8.5115e-04 2.0011 1/16 2.0827e-02 2.0000 8.4972e-04 2.0009

Table 5.4: Errors E1 and E0 and the spatial convergence orders for Example 5.3 with ∆t = 1/1000.

MESH5 MESH6

h E1 Order E0 Order h E1 Order E0 Order

1.8614e-01 9.1154e-03 1.0694e-04 2.3857e-01 2.2539e-02 5.1535e-04

1.2587e-01 4.0697e-03 2.0610 3.1698e-05 3.1078 1.2350e-01 4.6503e-03 2.3970 5.3287e-05 3.4462

9.5083e-02 2.2929e-03 2.0454 1.3481e-05 3.0481 8.3264e-02 1.9664e-03 2.1834 1.4873e-05 3.2373

7.6397e-02 1.4685e-03 2.0364 6.8830e-06 3.0722 6.2814e-02 1.0811e-03 2.1224 6.0664e-06 3.1819

Fig. 5.3. MESH5 (left) and MESH6 (right) used in Example 5.3.

Finally, since VEM can deal with meshes with hanging nodes straightforwardly [24], we give

an example to show its effectiveness.

Example 5.4. Let a(x), b(x),Ω, c(u) and the exact solution u be the same as Example 5.1.

Two types of meshes with hanging nodes (denoted as MESH7 and MESH8) are employed in

this example and their schematic diagrams are plotted in Fig. 5.4. The numerical results are

listed in Tables 5.5 and 5.6. We observe that E1 = O((∆t)2 +h2) and E0 = O((∆t)2 +h3), thus

the theoretical results established in Theorem 4.2 are confirmed. This reveals that VEM has

advantages over finite element methods in handling meshes with hanging nodes.
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Table 5.5: Errors E1 and E0 and the temporal convergence orders for Example 5.4 with fixed h.

MESH7 (with 1740 elements) MESH8 (with 2500 elements)

∆t E1 Order E0 Order ∆t E1 Order E0 Order

1/4 5.4876e-02 1.7751e-03 1/4 5.8071e-02 1.7623e-03

1/6 2.4296e-02 2.0094 7.8595e-04 2.0093 1/6 2.5712e-02 2.0093 7.8030e-04 2.0093

1/8 1.3648e-02 2.0046 4.4152e-04 2.0045 1/8 1.4444e-02 2.0045 4.3835e-04 2.0046

1/10 8.7302e-03 2.0024 2.8241e-04 2.0027 1/10 9.2393e-03 2.0025 2.8037e-04 2.0027

Table 5.6: Errors E1 and E0 and the spatial convergence orders for Example 5.4 with ∆t = 1/1000.

MESH7 MESH8

h E1 Order E0 Order h E1 Order E0 Order

1.8161e-01 2.1438e-03 4.1281e-05 2.3020e-01 2.5748e-03 5.4863e-05

1.1814e-01 9.1139e-04 1.9891 1.1451e-05 2.9820 1.1989e-01 6.8566e-04 2.0283 7.6643e-06 3.0172

8.7552e-02 5.0221e-04 1.9891 4.6874e-06 2.9813 9.8083e-02 4.5591e-04 2.0325 4.2204e-06 2.9718

6.9560e-02 3.1762e-04 1.9917 2.3586e-06 2.9858 8.3437e-02 3.3253e-04 1.9513 2.5980e-06 2.9999

Fig. 5.4. MESH7 (left) and MESH8 (right) used in Example 5.4.

6. Conclusions and Discussions

The classical Nitsche-based projection method is incorporated into the framework of second-

order SVEM to numerically solve a class of semilinear pseudo-parabolic equations on curved

domains. Based on the characteristics of second-order SVEM, using the interpolation operator

to approximate nonlinear terms can simplify the implementation. The optimal error estimates

with respect to L2-norm and an energy norm are proven.
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FitzHugh-Nagumo model of cardiac electrophysiology, IMA J. Numer. Anal., 40:2 (2020), 1544–

1576.

[5] G. Barenblatt, I. Zheltov, and I. Kochina, Basic concepts in the theory of seepage of homogeneous

liquids in fissured rocks [strata], J. Appl. Math. Mech., 24:5 (1960), 1286–1303.

[6] L. Beirão da Veiga, F. Brezzi, L.D. Marini, and A. Russo, Serendipity nodal VEM spaces, Comput.

Fluids, 141 (2016), 2–12.

[7] S. Bertoluzza, M. Pennacchio, and D. Prada, High order VEM on curved domains, Rend. Lincei

Mat. Appl., 30:3 (2019), 391–412.

[8] S. Bertoluzza, M. Pennacchio, and D. Prada, Weakly imposed Dirichlet boundary conditions for

2D and 3D virtual elements, Comput. Methods Appl. Mech. Engrg., 400 (2022), 115454.

[9] J.H. Bramble, T. Dupont, and V. Thomée, Projection methods for Dirichlet’s problem in ap-

proximating polygonal domains with boundary-value corrections, Math. Comput., 26:120 (1972),

869–879.

[10] S.C. Brenner, Q. Guan, and L.Y. Sung, Some estimates for virtual element methods, Comput.

Methods Appl. Math., 17:4 (2017), 553–574.

[11] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer,

2008.

[12] A. Cangiani, G. Manzini, and O.J. Sutton, Conforming and nonconforming virtual element meth-

ods for elliptic problems, IMA J. Numer. Anal., 37:3 (2017), 1317–1354.

[13] L. Chen and J. Huang, Some error analysis on virtual element methods, Calcolo, 55:1 (2018), 5.

[14] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Tech-

nology: Vol. 5, Evolution Problems I, Springer-Verlag, 1992.

[15] M. Dehghan, Z. Gharibi, and M.R. Eslahchi, Unconditionally energy stable C0-virtual element

scheme for solving generalized Swift-Hohenberg equation, Appl. Numer. Math., 178 (2022), 304–

328.

[16] W.H. Ford and T.W. Ting, Stability and convergence of difference approximations to pseudo-

parabolic partial differential equations, Math. Comput., 27:124 (1973), 737–743.

[17] F. Gao, J. Cui, and G. Zhao, Weak Galerkin finite element methods for Sobolev equation, J. Com-

put. Appl. Math., 317 (2017), 188–202.
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