
Numer. Math. Theor. Meth. Appl. Vol. xx, No. x, pp. 1-29

doi: 10.4208/nmtma.OA-2023-0058 x 2023

Analysis of Deep Ritz Methods for Semilinear

Elliptic Equations

Mo Chen1, Yuling Jiao1,2, Xiliang Lu1,2,*, Pengcheng Song1,
Fengru Wang1 and Jerry Zhijian Yang1,2

1 School of Mathematics and Statistics, Wuhan University,

299 Ba Yi Road, Wuhan 430072, P.R. China
2 Hubei Key Laboratory of Computational Science, Wuhan

University, 299 Ba Yi Road, Wuhan 430072, P.R. China

Received 9 May 2023; Accepted (in revised version) 8 October 2023

Abstract. In this paper, we propose a method for solving semilinear elliptical equa-
tions using a ResNet with ReLU2 activations. Firstly, we present a comprehensive

formulation based on the penalized variational form of the elliptical equations. We

then apply the Deep Ritz Method, which works for a wide range of equations. We
obtain an upper bound on the errors between the acquired solutions and the true

solutions in terms of the depth D, width W of the ReLU2 ResNet, and the num-
ber of training samples n. Our simulation results demonstrate that our method can

effectively overcome the curse of dimensionality and validate the theoretical results.
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1. Introduction

Solving semilinear partial differential equations in high dimensional space is a chal-

lenging problem in physics and engineering with applications in hydromechanics (Nav-

ier-Stokes equations, Burgers equations) [5,11,23], quantum mechanics (Gross Pitaev-

skii equations) [3], variational geometry (Plateaus equations) [13], and more. Tra-

ditional numerical methods such as finite element, finite difference, and finite vol-

ume encounter the curse of dimensionality, where the number of parameters expo-

nentially increases as the dimension grows, rendering these mesh-based methods im-
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practical. Recent attempts have been made to overcome this challenge, with one of

the most promising tools being deep neural networks (DNN). The approximability of

DNNs has been shown to overcome the curse of dimensionality, leading to the de-

velopment of related methods [16, 38, 39], such as physics-informed neural networks

(PINNs) [10, 20, 21, 31–33], Deep Galerkin method (DGM) [9, 22, 26, 36], and weak

adversarial networks (WAN) [2,7,40].

The Deep Ritz method (DRM) is one of the most renowned approaches in the field

of elliptic equations, capable of solving both the equations and the eigenvalue prob-

lems [9, 12, 14, 17, 19, 25, 27, 28, 30]. In this article, we present its application in

nonlinear elliptic equations and provide a convergent analysis. To apply the method,

we identify the functional variation that corresponds to the PDEs, and then replace the

trial function with a deep neural network (DNN). We subsequently discretize it using

the Monte Carlo algorithm [18, 37] and solve the discretized variation to approximate

the solution. By following these steps, we can divide the error into two components:

the approximation error and the statistical error. To bound the statistical error, we need

to calculate the infinity norm of both the solution and its derivative [14,28]. However,

this requirement narrows down the method’s applicability. To address this issue, we

can use one of two methods. The first is to restrict the feasible parameter region of

DNN [27]. In this case, the statistical error can be easily estimated, as the Rademacher

complexity can be computed in the parameter space. However, the approximation er-

ror can be challenging to compute, especially for DNN with large depth. The second

method is the one we propose in this article. By directly bounding the W 1,∞ norm of

the neural networks, we estimate the Rademacher complexity in the function space,

and we can obtain the approximation error through the traditional mollifier technique.

The outline of this paper is as follows. In Section 2, we establish the primary prob-

lem of our article and introduce the notation we use. In Section 3, we present the

variational loss of the problem and construct a simple error decomposition. The main

theorem of the article is presented in Section 4 before its proof, for ease of reading.

In Section 5, we provide numerical results to verify the effectiveness of the proposed

method. Finally, we conclude the main body of our article with a discussion in Sec-

tion 6. In Appendix A, we provide some lengthy proofs of the lemma in Section 4.3.

2. Preliminaries and notations

In this article, we consider the semilinear elliptic equation




−∆u+ f(u) = g in Ω,

u+
1

ε

∂u

∂n
= h on ∂Ω,

(2.1)

where ε ∈ (0,+∞]. The interval for ε includes the cases of Dirichlet boundary condition

(ε = +∞) and Robin boundary condition (ε ∈ (0,+∞)). We limit our equation to the

following assumption.
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Assumption 2.1.

• Ω ⊂ R
d is bounded and smooth.

• f is Lipschitz continuous increasing function and

|f(x)| ≤ C (|x|+ 1)
d

d−2

for some constant C.

• g ∈ Lp for some p ≥ 2.

• There exists a harmonic function w on Ω
′ ⊃ Ω̄ such that

w +
1

ε

∂w

∂n
= h on ∂Ω.

We denote F being the primitive of f , therefore F is a convex function.

Schauder’s theory gives.

Proposition 2.1. Under Assumption 2.1, there exists a unique solution uε ∈ W 2,2(Ω) of

Eq. (2.1), and ‖uε‖W 2,2 can be dominated by g and h.

Proof. See [34, Proposition 2.104].

Next, the neural network we used is introduced together with its notation. A deep

neural network uφ : Rd → R is defined by

u0(x) = x,

uℓ(x) = σℓ (Aℓuℓ−1 + bℓ) , ℓ = 1, 2, . . . , L− 1,

u = uL(x) = ALuL−1 + bL,

where Aℓ ∈ R
Nℓ×Nℓ−1, bℓ ∈ R

Nℓ and σℓ denotes the activations of layer ℓ. The depth D
and the width W of neural networks uφ are defined as

D = L, W = max{Nℓ : ℓ = 1, 2, . . . , L}.
∑L

ℓ=1Nℓ is called the number of units of uφ, and φ = {Aℓ, bℓ}Nℓ=1 is called the free

parameters of the networks.

Definition 2.1. The class Nα(D,W,B) is the collection of neural networks uφ such that:

(i) Depth and width are D and W, respectively.

(ii) The function values of uφ(x) and its derivative ∇uφ(x) are bounded by B.

(iii) Activation functions are given by ReLUα, where α is a multi-index.

For example, N 2(D,W,B) is the class of networks with activation functions as

ReLU2, and N 1,2(D,W,B) is that with activation functions as ReLU1 or ReLU2. We

may simply use Nα if there is no confusion.
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3. Model construction

Theorem 3.1. For v ∈ H1(Ω), set

Lε(v) =

∫

Ω
‖∇v‖22 + 2F (v)− 2vg dx+ ε

∫

∂Ω
v2 − 2vh ds. (3.1)

Then

• For ε ∈ (0,+∞), there exists one and only one minimizer uε of Lε. It is the solution

to Eq. (2.1).

• For ε→ +∞, let u∞ be the solution of Eq. (2.1) with the Dirichlet boundary condi-

tion. Then we have

‖uε − u∞‖H1 ≤ C(Ω, f, g, h)
1

ε
.

Proof. If ε < +∞, the Euler-Lagrange equation of Eq. (3.1) writes

δLε(v) = 2

∫

Ω
∇vT∇δv + f(v)δv − gδv dx+ 2ε

∫

∂Ω
(v − h)δv ds

= 2

∫

Ω

(
−∆v + f(v)− g

)
δv dx+ 2ε

∫

∂Ω

(
v +

1

ε

∂v

∂n
− h

)
δv ds.

All critical points of Eq. (3.1) must be the solutions to Eq. (2.1) and vice versa. Con-

sequently, there exists a unique critical point. Moreover, the convexity of Eq. (3.1)

guarantees that this critical point is the minimum.

Considering the Dirichlet boundary condition, we set wε as the solution satisfying

the following equations:




−∆wε + f(u∞) = g in Ω,

wε +
1

ε

∂wε

∂n
= h on ∂Ω.

It is known that

‖wε − u∞‖H1 ≤ C
(
Ω, f(u∞), g, h

)1
ε
,

cf. [29, Proposition 2.3]. The classical linear elliptic theory provides us with

∫

Ω
‖∇(wε − uε)‖22 dx+ ε

∫

∂Ω
(wε − uε)2 ds ≤ ‖f(u∞)− f(uε)‖2H−1 ≤ C(Ω, f, u∞),

given f(uε), f(u∞) ∈ L2. Then {uε} is a bounded series in H1. But

∫

Ω
‖∇(u∞ − uε)‖22 dx =

∫

Ω
∇(u∞ − uε)T∇u∞ dx−

∫

Ω
∇(u∞ − uε)T∇uε dx

=

∫

Ω
− (u∞ − uε)∆u∞ dx−

∫
− (u∞ − uε)∆uε dx
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+

∫

∂Ω

∂u∞

∂n
(u∞ − uε) ds −

∫

∂Ω

∂uε

∂n
(u∞ − uε) ds

= −
∫

Ω

[
f(u∞)− f(uε)

]
(u∞ − uε) dx

+
1

ε

∫

∂Ω

∂u∞

∂n

∂uε

∂n
ds− 1

ε

∫

∂Ω

(
∂uε

∂n

)2

ds

≤ 1

2ε

[∫

∂Ω

(
∂u∞

∂n

)2

−
(
∂uε

∂n

)2

ds

]
≤ C(Ω, f, g, h)

1

ε
, (3.2)

noticing that f is non-decreasing. Next, we proceed with the substitution of u∞ into

Lε, yielding

Lε(uε) ≤ Lε(u∞) ≤ C(Ω, f, g, h) − ε

∫

∂Ω
h2.

Therefore,

ε

∫

∂Ω
(uε − h)2 ≤ C(Ω, f, g, h).

In conjunction with Eq. (3.2), we can deduce the desired conclusion.

Moving on to the second step of the DRM, we substitute the trial function with

neural networks

uεφ ∈ argmin
v∈N 2

Lε(v).

The discrete version of the loss function is expressed as follows [8]:

L̂ε
K(v) =

|Ω|
N

N∑

i=1

[
‖∇v(Xi)‖22 + 2F (v(Xi))− 2gK(Xi)v(Xi)

]

+ ε
|∂Ω|
M

M∑

j=1

[
v2(Yj)− 2v(Yj)h(Yj)

]
, (3.3)

where {Xk}Nk=1 ∼ U(Ω) i.i.d., {Yj}Mj=1 ∼ U(∂Ω) i.i.d. and gK = min{g,K} with some

constant K. The truncation bound K is introduced to avoid the discontinuity of the

discrete Lε. Let ûεφ be the minimizer of the loss over N 2

ûεφ ∈ argmin
v∈N 2

L̂ε
K(v). (3.4)

In the subsequent discussions, we denote n being the sample number N or M .

Lemma 3.1. Let 1 ≤ q < p <∞. If u ∈ Lp and uN = u1|u|<N , then we have

‖u− uN‖Lq ≤ C(u)
1

Np/q−1
.
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Proof. Let v = |u−uN |, fv(t) = m({x : v(x) < t}), wherem is the Lebesgue measure

‖v‖qLq = q

∫ ∞

0
tq−1fv(t) dt

= q

∫ ∞

N
tp−1fv(t)t

q−p dt

= qN q−p

∫ ∞

N
tp−1fv(t) dt

= qN q−p‖v‖pLp ,

which leads to the conclusion.

Lemma 3.2. Let ûεφ be the function defined above, we have

Lε
(
ûεφ
)
−Lε(uε) ≤ inf

uφ∈N 2
[Lε(uφ)− Lε(uε)]

︸ ︷︷ ︸
Eapp

+2 sup
uφ∈N 2

∣∣Lε
K(uφ)− L̂ε

K(uφ)
∣∣

︸ ︷︷ ︸
Esta

+C(g)BK1−p

︸ ︷︷ ︸
Etru

,

which are called the approximation error, the statistical error, and the truncation error

respectively.

Proof. Set

Lε
K(v) =

∫

Ω
‖∇v‖22 + 2F (v) − 2vgK dx+ ε

∫

∂Ω
v2 − 2vhds.

With the help of Lemma 3.1, we have

|Lε
K(uφ)− Lε(uφ)| ≤

∫

Ω
|uφ(g − gK)| dx ≤ C(g)BK1−p

for any uφ ∈ N 2(D,W,B). Therefore for any u ∈ N 2

Lε
(
ûεφ
)
− Lε(uε)

=
[
Lε
(
ûεφ
)
− Lε

K

(
ûεφ
) ]

+
[
Lε
K

(
ûεφ
)
− L̂ε

K

(
ûεφ
)]

+
[
L̂ε
K

(
ûεφ
)
− L̂ε

K (uφ)
]
+
[
L̂ε
K (uφ)− Lε

K (uφ)
]

+
[
Lε
K (uφ)− Lε (uφ)

]
+
[
Lε (uφ)− Lε(uε)

]
.

The given expression consists of six terms, where the first and fifth terms represent the

true error denoted by Etru, the second and fourth terms correspond to the statistical

error denoted by Esta, the third term is negative, and the infimum of the last term is

precisely equal to the approximate error denoted by Eapp.
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4. Main results

4.1. Main theorem

For Robin boundary condition, we have

Theorem 4.1. Let Assumption 2.1 holds and ûεφ be the functions defined in Eq. (3.4). We

have

‖ûεφ − uε‖H1 ≤ C(Ω, uε, f, g, h)
√
δ

with

δ ≤ C (Ω, uε, f, g, h) ε
(
B−2/(d−2) +W−1/d

)
+ C(g)BK1−p

+ C(Ω, f, h)(K + εB)BD2W
√

D + logW
√

log n

n
.

Proof. By Lemma 3.2 and the estimation of both the approximation error in Sec-

tion 4.2 and the statistical error and Section 4.3, we have

Lε
(
ûεφ
)
− Lε (uε) ≤ C (Ω, uε, f, g, h) δ.

Let

Lε
0 (u) = Lε (u)− 2

∫

Ω
F (u) dx.

We can deduce that

Lε (uε + v)− Lε (uε)

= Lε
0 (u

ε + v)− Lε
0 (u

ε) + 2

∫

Ω
F (uε + v)− F (uε) dx

=

∫

Ω
‖∇ (uε + v) ‖22 − 2 (uε + v) g dx+ ε

∫

∂Ω
(uε + v)2

− 2 (uε + v) hds −Lε
0 (u

ε) + 2

∫

Ω
f (uε + θv) v dx

=

∫

Ω
‖∇v‖22 − 2vg dx+ ε

∫

∂Ω
v2 − 2v (h− uε) ds

+ 2

∫

Ω
∇vT∇uε dx+ 2

∫

Ω
f (uε + θv) v dx

=

∫

Ω
‖∇v‖22dx+ ε

∫

∂Ω
v2 ds+ 2

∫

Ω

[
f (uε + θv)− f (uε)

]
v dx

≥
∫

Ω
‖∇v‖22 dx+ ε

∫

∂Ω
v2 ds & C(Ω, ε)‖v‖2H1 ,

where θ ∈ (0, 1) is the parameter of Lagrange remainder. The second-to-last inequality

holds due to the following reasoning: Given that f is a monotonic function, it follows

that for any θ > 0, both f(uε + v) − f(uε) and v exhibit the same sign, leading to

[f(uε + v)− f(uε)]v ≥ 0.
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Corollary 4.1. Under the same condition of the Theorem 4.1, if we take

D = O(1), W = O(nt1), B = O(nt2), K = O(nt3),

we can acquire that

‖ûεφ − uε‖H1 ≤ C (Ω, uε, f, g, h) n−t4/2,

where

t1 =
d(p − 1)

3dp− 2d− p+ 1
, t2 =

(d− 2)(p − 1)

2(3dp − 2d− p+ 1)
,

t3 =
d

2(3dp − 2d− p+ 1)
, t4 =

p− 1

3dp − 2d− p+ 1

are all positive numbers.

For the Dirichlet boundary condition, we have

Theorem 4.2. Let Assumption 2.1 holds and ûεφ be the functions defined in Eq. (3.4). We

have

‖ûεφ − u∞‖H1 ≤ C(Ω, uε, f, g, h)
√
δ

with

δ ≤ C (Ω, uε, f, g, h) ε
(
B−2/(d−2) +W−1/d

)
+ C(g)BK1−p

+ C(Ω, f, h)(K + εB)BD2W
√

D + logW
√

log n

n
+ C(Ω, f, g, h)

1

ε
.

Proof. It is a direct deduction of Theorem 4.1 and the conclusion in Theorem 3.1.

Corollary 4.2. Under the same condition of the Theorem 4.2, if we take

ε = O(nt4/2), D = O(1), W = O(nt1), B = O(nt2), K = O(nt3).

We can acquire that

‖ûεφ − u∞‖H1 ≤ C(p)n−t4/4,

where {ti}41 are the numbers in Corollary 4.1.

4.2. Approximation error

Theorem 4.3. If D,W, and B are large enough, we can establish the following result:

Eapp = inf
uφ∈N 2(D,W ,B)

[
Lε (uφ)− Lε (uε)

]
≤ C(Ω, uε, f)ε

(
B−2/(d−2) +W−1/d

)
.

Proof. Our proof is based on some classical polynomial approximation results [35].

Let ρ ∈ C∞
0 be a mollifier, i.e.
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•

∫
ρ dx = 1,

• ρ ≥ 0,

• ρ(x) = 0 for ‖x‖ > 1,

• ‖ρ(x)‖∞ = 2Vd where Vd is the volume of the unit ball.

Take q = 2d/(d − 2) and

uεB(x) =

∫

y
Bqρ

( y

Bq/d

)
uε(x+ y) dy.

We claim that:

• ‖uεB‖W 1,∞(Ω) ≤
(
2Vd‖uε‖qW 2,2(Ω)

+ 2
)
B,

• ‖uεB − uε‖H1(Ω) ≤ 2‖uε‖W 2,2(Ω)B−q/d,

• ‖uεB‖W 2,2(Ω) ≤ ‖uε‖W 2,2(Ω).

For the first claim, let

EB = {x : |uε(x)| > B},
then we have

‖uε1EB
‖L1 ≤ 2‖uε‖qLqB1−q

according to Lemma 3.1. Thus

|uεB(x)| ≤
∫

y
Bqρ

( y

Bq/d

)
|uε(x+ y)| dy

=

∫

EB

Bqρ
( y

Bq/d

)
|uε(x+ y)| dy +

∫

Ec
B

Bqρ
( y

Bq/d

)
|uε(x+ y)| dy

≤
∥∥∥Bqρ

( y

Bq/d

)∥∥∥
L∞

‖uε1EB
‖L1 +

∥∥∥Bqρ
( y

Bq/d

)∥∥∥
L1

‖uε1Ec
B
‖L∞

≤
(
2Vd‖uε‖qLq + 1

)
B.

Since ∇uε ∈ Lq and the differential operator commutes with the mollifier, the same

argument stands for ∇uεB as well.

For the second claim, we have

‖uεB − uε‖L2 ≤
[∫

x

(∫

y
ρ(y)

∣∣uε(x+ B−q/dy)− uε(x)
∣∣ dy
)2

dx

]1/2

≤



∫

x

(∫

y

∫ B−q/d

t=0
ρ(y)

∣∣yT∇uε(x+ ty)
∣∣ dtdy

)2

dx



1/2



10 M. Chen et al.

≤



∫

x

(∫

y

∫ B−q/d

t=0
ρ(y)‖y‖2‖∇uε(x+ ty)‖2 dtdy

)2

dx



1/2

≤
∫

y

∫ B−q/d

t=0

[∫

x
ρ(y)2‖y‖22‖∇uε(x+ ty)‖22 dx

]1/2
dtdy

≤
∫

y

∫ B−q/d

t=0
ρ(y)‖y‖2‖∇uε(x+ ty)‖L2

x
dtdy

= ‖∇uε‖L2B−q/d,

which also stands for ∇uε since ∇uε ∈W 1,2.

The third claim is a direct conclusion of Fubini’s Theorem.

Next, we demonstrate that any function inW s,p(Ω) can be approximated by a neural

network f̃ in W 1,p norm, where s > 1, f̃ ∈ N 2. Without loss of generality, we assume

that Ω ⊂ [0, 1]d and extend the function into it. Let

ψ(x; δ) =
2

δ2

[
ReLU2(x) + ReLU2(x+ δ)− 2ReLU2

(
x+

δ

2

)]
.

Then ψ is a ReLU2-network with width {1, 3, 1} and

ψ(x; δ) =





0, x ∈ (−∞,−δ],
2

δ2
(x+ δ)2, x ∈ (−δ,−δ/2],

− 2

δ2
x2 + 1, x ∈ (−δ/2, 0],

1, x ∈ (0,∞).

For any multi-index I ∈ {1, 2, 3, . . . , N}d, we define

λI(x) =
d∏

j=1

[
ψ

(
x(j) − I(j)

N
;
1

N

)
− ψ

(
x(j) − I(j) + 1

N
;
1

N

)]
.

Then λI forms a positive partition of unity in [0, 1]d, and it is supported on UI =∏
j[(I(j) − 1)/N, (I(j) + 1)/N ]. Taking note that λI is a piecewise polynomial function

of at most degree d, and observing

f(x)g(x) =
1

4

[
ReLU2(f + g) + ReLU2(−f − g)− ReLU2(f − g)− ReLU2(g − f)

]
.

It can be easily deduced that λI can be exactly expressed by a ReLU2-network with

width 4d and depth ⌈log2 d⌉+ 3.

Lemma 4.1. Let f ∈ W s,p(Ω) ∩ W 1,∞(Ω), where s ∈ (1, 2]. For any I, let VI =∏
j[(I(j) − 2)/N, (I(j) + 2)/N ]. Then there exists a ReLU2-neural network ΨI[f ] with

width {d, (d2 + 3d+ 2)/2, 1} such that
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• ‖ΨI[f ]‖W 1,∞(VI)
≤ 2‖f‖W 1,∞(Ω),

• ‖f − ψI[f ]‖W 1,p(VI) ≤ C(s, p, d)[f ]s,p,VI
N1−s,

• ‖f − ψI[f ]‖Lp(VI) ≤ C(s, p, d)[f ]s,p,VI
N−s.

Proof. By judiciously choosing the values of {ai, bi}, we can ensure that the set

{ReLU2(aTi x+ bi)} forms a complete linear basis of P (VI), where

P (VI) = {All polynomials on VI with degree less than 2}.

The dimension of P (VI) is (d2 + 3d+ 2)/2. The result of polynomial approximation is

a direct consequence of the work of [35].

Now for any f ∈W s,p(Ω), define

f̃ =
∑

I

λIΨI[f ].

As λI and ΨI[f ] are both ReLU2-neural networks, it follows that f̃ is a neural network

with width at most Nd(2d2 + 6d+ 2) and depth at most ⌈log2 d⌉+ 5. Further, we have

∥∥∂if − ∂if̃
∥∥
Lp(Ω)

=

∥∥∥∥∂i
∑

I

λI (f −ΨI[f ])

∥∥∥∥
Lp(Ω)

≤
∑

I

‖∂iλI (f −ΨI[f ])‖Lp(Ω) +
∑

I

‖λI∂i (f −ΨI[f ])‖Lp(Ω)

≤
∑

I

‖∂iλI‖L∞(VI)
‖(f −ΨI[f ])‖Lp(VI)

+
∑

I

‖∂i (f −ΨI[f ])‖Lp(VI)

≤
∑

I

2NC(s, p, d)[f ]s,p,VI
N−s +

∑

I

C(s, p, d)[f ]s,p,VI
N1−s

≤ C(s, p, d)[f ]s,p,ΩN
1−s.

Summary it all up, now we have proven the Lemma 4.2.

Lemma 4.2. For any f ∈W s,p(Ω)∩W 1,∞(Ω), s ∈ (1, 2], there exists a fφ ∈ N 2(W,D,B)
s.t.

‖f − fφ‖W 1,p ≤ C(s, p, d,Ω)[f ]s,p,ΩW(1−s)/d

as long as B ≥ 2‖f‖W 1,∞(Ω), D ≥ ⌈log2 d⌉+ 5 and W is large enough.

Now, we turn our attention to the approximation error. Let Lf be the Lipschitz

constant of f . Apparently, we have

Lε (uε + v) =

∫

Ω
‖∇ (uε + v) ‖22 + 2F (uε + v)− 2 (uε + v) g dx

+ ε

∫

∂Ω
(uε + v)2 − 2 (uε + v) hds
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=

∫

Ω
‖∇uε‖22 + ‖∇v‖22 − 2∆uεv + 2F (uε + v)− 2 (uε + v) g dx

+ ε

∫

∂Ω
(uε + v)2 − 2 (uε + v) hds+

∫

∂Ω
2v
∂uε

∂n
ds

=

∫

Ω
‖∇uε‖22 + ‖∇v‖22 + 2F (uε + v)− 2f(uε)v − 2uεg dx

+ ε

∫

∂Ω
(uε + v)2 − 2 (uε + v) h+ 2v

1

ε

∂uε

∂n
ds

=

∫

Ω
‖∇v‖22 + 2 [F (uε + v)− F (uε)− f(uε)v] dx

+ ε

∫

∂Ω
v2 + 2

(
uε +

1

ε

∂uε

∂n
− h

)
vds+ Lε (uε)

≤
∫

Ω
‖∇v‖22 dx+ 2Lf

∫

Ω
v2 dx+ ε

∫

∂Ω
v2 ds+ Lε (uε) .

It leads to

Eapp = inf
uφ∈N 2

[Lε (uφ)− Lε (uε)]

≤ C(Ω, f)ε inf
uφ∈N 2

‖uφ − uε‖2H1

≤ C(Ω, f)ε
(

inf
uφ∈N 2

‖uφ − uεB‖2H1 + ‖uεB − uε‖2H1

)

≤ C(Ω, f, uε)ε
(
W−1/d + B−q/d

)
.

The first inequality arises from the continuity of Lε. The second inequality is obtained

by applying the triangle inequality. By incorporating Lemma 4.2 with the definition of

uεB, we deduce the final inequality.

4.3. Statistical error

This section focuses on bounding the statistical error

Esta = 2 sup
uφ∈N 2

∣∣Lε
K(uφ)− L̂ε

K(uφ)
∣∣.

We begin by decomposing the statistical error into five parts to estimate them sepa-

rately. Thus we set

sup
uφ∈N 2

∣∣Lε
K(uφ)− L̂ε

K(uφ)
∣∣ ≤

5∑

j=1

sup
uφ∈N 2

∣∣Lε
j(uφ)− L̂ε

j(uφ)
∣∣, (4.1)

where

Lε
1(v) = |Ω| E

X∼U(Ω)

[
‖∇v(X)‖22

]
, L̂ε

1(v) =
|Ω|
N

N∑

i=1

[
‖∇v(Xi)‖22

]
,
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Lε
2(v) = 2|Ω| E

X∼U(Ω)
[F (v(X))] , L̂ε

2(v) = 2
|Ω|
N

N∑

i=1

[F (v(Xi))] ,

Lε
3(v) = −2|Ω| E

X∼U(Ω)
[v(X)gK(X)] , L̂ε

3(v) = −2
|Ω|
N

N∑

i=1

[v(Xi)gK(Xi)] ,

Lε
4(v) = ε|∂Ω| E

Y ∼U(∂Ω)

[
v2(Y )

]
, L̂ε

4(v) = ε
|∂Ω|
M

M∑

j=1

[
v2(Yj)

]
,

Lε
5(v) = −2ε|∂Ω| E

Y ∼U(∂Ω)
[v(Y )h(Y )] , L̂ε

5(v) = −2ε
|∂Ω|
M

M∑

j=1

[v(Yj)h(Yj)] .

Here, U(Ω) and U(∂Ω) represent the uniform distribution on Ω and ∂Ω, respectively.

Given n i.i.d samples Zn = {Zi}ni=1 from a uniform distribution, we can utilize the

Rademacher complexity to assess the capacity of a given function class N restricted on

n random samples Zn.

Here is the sketch of bounding the statistic error: First we define the Rademacher

complexity R, covering number C∞ and pseudo-dimension Pdim from Definitions 4.1

to 4.5. Then Lemma 4.3 bounds every part of the statistical error by the Rademacher

complexity. Lemma 4.4 dominates the Rademacher complexity by an integral of the

covering number, which is controlled by the pseudo-dimension through the Lemma 4.5.

Finally, Lemma 4.6 expresses the order of the pseudo-dimension through the width and

depth of the neural networks. It leads to the Theorem 4.4 combining them all together.

For ease of reading, we state the above lemmas and theorems first and leave their

proofs in Appendix A.

Definition 4.1. The Rademacher complexity of a set A ⊆ Rn is defined as

R(A) := EZn,σi

[
sup
a∈A

1

n

∣∣∣
∑

i

σiai

∣∣∣
]
,

where {σi}ni=1 are n i.i.d Rademacher variables with P(σi = 1) = P(σi = −1) = 1/2. The

Rademacher complexity of function class N associated with random sample Zn is defined

as

R(N ) := EZn,σi

[
sup
u∈N

1

n

∣∣∣
∑

i

σiu(Zi)
∣∣∣
]
.

Definition 4.2. Suppose that W ⊂ R
n. For any ε > 0, let V ⊂ R

n be an ε-cover of W
with respect to the distance d∞, that is, for any u ∈ W , there exists a v ∈ V such that

d∞(u, v) < ε, where d∞ is defined by

d∞(u, v) := ‖u− v‖∞.

The covering number C(ε,W, d∞) is defined to be the minimum cardinality among all

ε-cover of W with respect to the distance d∞.
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Definition 4.3. Suppose that N is a class of functions from Ω to R. Given n sample

Zn = (Z1, Z2, · · · , Zn) ∈ Ωn, N| zn ⊂ R
n is defined by

N | zn = {(u (Z1) , u (Z2) , · · · , u (Zn)) : u ∈ N} .

The uniform covering number C∞(ε,N , n) is defined by

C∞(ε,N , n) = max
Zn∈Ωn

C (ε,N | zn, d∞) .

Definition 4.4. Let N be a set of functions fromX to R. Suppose that S={x1, x2, · · · , xn}
⊂ X. We say that S is pseudo shattered by N if there exists y1, · · · , yn such that for any

b ∈ {0, 1}n, there exists a u ∈ N satisfying

sign
(
u (xi)− yi

)
= bi, i = 1, 2, . . . , n,

and we say that {yi}ni=1 witness the shattering.

Definition 4.5. The pseudo-dimension of N , denoted as Pdim(N ), is defined to be the

maximum cardinality among all the sets pseudo-shattered by N .

The following lemma elucidates the relationship between statistical errors and the

Rademacher complexity of the function class.

Lemma 4.3. We have

E{Xi}
N
i=1

sup
u∈N 2

∣∣Lε
1(u)− L̂ε

1(u)
∣∣ ≤ |Ω|N

(
N 1,2

)
,

E{Xi}
N
i=1

sup
u∈N 2

∣∣L2(u)− L̂2(u)
∣∣ ≤ 2|Ω|‖f‖∞N

(
N 2
)
,

E{Xi}
N
i=1

sup
u∈N 2

∣∣Lε
3(u)− L̂ε

3(u)
∣∣ ≤ 2|Ω|KN

(
N 2
)
,

E{Yi}
M
i=1

sup
u∈N 2

∣∣Lε
4(u)− L̂ε

4(u)
∣∣ ≤ 2ε|∂Ω|BN

(
N 2
)
,

E{Yi}
M
i=1

sup
u∈N 2

∣∣Lε
5(u)− L̂ε

5(u)
∣∣ ≤ 4ε|∂Ω|‖h‖∞N

(
N 2
)
.

The proof is given in the Appendix A.

To bound the Rademacher complexity by using the covering numbers defined in

Definition 4.5, we refer to Dudley’s classical result.

Lemma 4.4 (Dudley’s Entropy Formula [15]). Assume that 0 ∈ N and the diameter of

N is less than B, i.e., ‖u‖L∞(Ω) ≤ B,∀u ∈ N . Then

R(N ) ≤ inf
0<δ<B

(
4δ +

12√
n

∫ B

δ

√
log(2C (ε,N , n))dε

)
.

The proof is given in Appendix A.
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The subsequent lemma uncovers the interrelation between covering numbers and

pseudo-dimension. In pursuit of an upper bound on the Pdim of piecewise polynomial

functions, we refer to the conclusions presented in [4], which are adaptable to the

function class defined in our formulation.

Lemma 4.5. Let N be a set of real functions from a domain X to the bounded interval

[0,B]. Let ε > 0. Then

C(ε,N , n) ≤
Pdim(N )∑

i=1

(
n
i

)(B
ε

)i

,

which is less than (enB/(ε · Pdim(N )))Pdim(N ) for n ≥ Pdim(N ).

Proof of the lemma can be found in [1, Theorem 12.2].

Lemma 4.6. Let N be a set of functions that can be implemented by a neural network

with its depth at most D and its width at most W, and the activation function in each unit

is the ReLU or the ReLU2. Then

Pdim(N ) ≤ C1D2W2(D + logW).

The proof is given in the Appendix A. Particularly, based on Eq. (A.1), we have

Pdim(N 1,2) ≤ C2d
2D4W2(D + logW),

where C1, C2 are constant independent of d, if W > d.

With the help of these preparations above, the statistical error can easily be bounded

by a simple calculation.

Theorem 4.4.

Esta ≤ C(Ω, f, h) (K + εB)BD2W
√

D + logW
√

log n

n
.

Proof. Combining Lemmas 4.3-4.6, it can be obtained that

sup
u∈N 2

∣∣Lε(u)− L̂ε(u)
∣∣ ≤ C(Ω)BN

(
N 1,2

)
+ C(Ω, f, h) (εB +K)N

(
N 2
)
,

where

N (N ) ≤ 4δ +
12√
n

∫ B

δ

√
log(2C(ε,N , n))dε

≤ 4δ +
12√
n
B
√
log(2C(δ,N , n))

≤ 4δ +
12√
n
B
√
log 2 + Pdim(N ) log

(
enB

δ Pdim(N )

)
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for that apparently C(ε,N , n) is a decreasing function of ε. By choosing

δ = B
√

Pdim(N )

n
,

it can be acquired that

N (N ) ≤ 4δ

{
4 + 3

√
log 2

Pdim(N )
+

3
√
6

2

√
log

(
n

Pdim(N )

)}

≤ CB
√
Pdim(N )

√
log n

n
.

Then by Lemma 4.6, the proof is finished.

5. Numerical experiments

As indicated in the introduction, conventional grid-dependent PDE numerical so-

lutions encounter challenges in high dimensions due to the curse of dimensional-

ity. However, through our comprehensive analysis, we have theoretically established

a dimension-independent convergence analysis for the Deep Ritz method. To further

validate the efficacy of our theory in high dimensions, we conducted a series of numer-

ical experiments.

In this section, we provide examples of approximating solutions to semilinear el-

liptic equations, including Dirichlet problems with homogeneous and inhomogeneous

boundary conditions.

We utilize a neural network consisting of two blocks for solving the equations. Each

block comprises two linear transformations, two activation functions, and a residual

connection, which can be viewed as a four-layer deep neural network. We use the Ada-

grad or Adam algorithm with a stepwise decreasing learning rate to minimize Eq. (3.1)

during optimization.

All experiments and implementations are conducted in Python 3.9.12 with Py-

Torch on CentOS, using two Intel(R) Xeon(R) E5-2640 v4 x86 64 Processors clocked

at 2.40 GHz and a Nvidia Tesla V100 GPU with 16 GB of graphics memory.

5.1. Dirichlet problem with homogeneous boundary condition

We first consider the following homogeneous boundary condition Dirichlet prob-

lem: {
−∆u+ S(u) = g1(x) on Ω,

Tu = 0 on ∂Ω,
(5.1)

where Ω = [0, 1]10 and S(x) is the sigmoid function

S(x) =
1

1 + e−x
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and

g1(x) = 8
∑

1≤i≤d

i 6=j

d∏

j=1

xj(1− xj) + S

(
d∏

i=1

4xi(1− xi)

)
,

S(x) is a nonlinear function in L∞(Ω), and is both Lipschitz continuous and non-

decreasing. Consequently, it satisfies Assumption 2.1. The exact solution of Eq. (5.1) is

given by u1(x) =
∏d

i=1 4xi(1− xi).
We commence by examining the scenario where d = 2. A multitude of numerical

experiments have been conducted across various network parameter configurations.

These empirical findings offer robust evidence supporting the convergence properties

of our algorithm.

Initially, we focus on assessing the influence of sampling size n on the solution

accuracy. We set the network parameters as W = 120 and D = 4, while employing

different sampling sizes to address problem (5.1). The outcomes are illustrated in

Fig. 1, and as anticipated in Fig. 2, a larger sampling size leads to higher accuracy. This

observation aligns with the conclusion of Theorem 4.2.

It is worth noting that in the aforementioned numerical experiment, we only sam-

pled {Xi}ni=1 once at the outset of the calculation. When n is small, the algorithm

exhibits poor performance and converges slowly. To enhance both the accuracy and ef-

ficiency of the algorithm, we implemented a strategy of resampling {Xi}ni=1 after each
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Figure 1: (Dirichlet problem with homogeneous boundary condition, d = 2). The pointwise difference
between the Deep Ritz solution uDRM and the true solution u1(x) under different sample sizes n.
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Figure 2: (Dirichlet problem with homogeneous boundary condition, d = 2). The L2 solution error under
different sample sizes n.
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Figure 3: (Dirichlet problem with homogeneous boundary condition, d = 2). The pointwise difference
between the Deep Ritz solution uDRM and the true solution u1(x) under different network widths W.

W=10 W=20 W=50 W=100 W=150
0

1e-2

2e-2

so
lu
tio

n 
er
ro
r

Solution Error under different W

a) L2 solution error

0 10000 20000 30000 40000 50000
epoch

10−2

10−1

100

so
lu
tio

n 
er
ro
r

Logarithmic loss of solution error
W=10
W=20
W=50
W=100
W=150

b) The error during the training process

Figure 4: (Dirichlet problem with homogeneous boundary condition, d = 2). The convergence performance
of Deep Ritz Method under different network widths W.

training step or several steps. This process is analogous to batch training on an infinite

sample set. By adopting this approach, we can effectively achieve a larger n with rela-

tively modest computational resources, subsequently improving the algorithm’s gener-

alization performance. Our extensive experiments have also substantiated the efficacy

of this technique. Unless specified otherwise, the sampling size n mentioned in our

subsequent experiments refers to the resampled n.

The influence of the network width W on the method is depicted in the Figs. 3

and 4. We conducted experiments with D = 4 and n = 150000. The experimental

results demonstrate that a wider network can attain superior accuracy and converge

more rapidly. This finding is consistent with our previous conclusion.

We then investigate the case where d = 10. Due to the high dimensionality and

the non-linearity introduced by S(x), solving the equation becomes notably challeng-

ing. Traditional computational techniques such as Finite Difference Method (FDM) and

Finite Element Method (FEM) have proven ineffective. Despite these challenges, the

Deep Ritz method remains effective, as depicted in Fig. 5. We plot the approximation

and exact solutions on the diagonal of Ω as shown in Fig. 5 (a). The trend of L2 error

with epoch is shown in Fig. 5 (b), and the loss is shown in Fig. 5 (c).

The parameters for this numerical experiment are configured as follows: ε = 2000,

depth D = 4, width W = 80, sample size as 200000, and boundary sample size as 80000.
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Figure 5: (Dirichlet problem with homogeneous boundary condition, d = 10). Due to the inability to directly
visualize functions in high-dimensional spaces, we exclusively present their values along the diagonal of the
cubic area and subsequently compare these values with the corresponding values of the true solution.

We employed the Adam algorithm to minimize the objective function, initializing the

learning rate at 1.8e−3. An equidistant learning rate reduction strategy was employed,

where the learning rate was reduced by a factor of 0.9 every 5000 step.

5.2. Dirichlet problem with inhomogeneous boundary condition

To illustrate the generality of our theory, we consider the following inhomogeneous

Dirichlet problem: {
−∆u+ S(u) = g2(x) on Ω,

Tu = Tg2(x) on ∂Ω,
(5.2)

where Ω = [−1, 1]10, and

g2(x) =





2

d
+ S



(
1

d

d∑

i=1

xi

)2

 ,

∣∣∣∣∣
1

d

d∑

i=1

xi

∣∣∣∣∣ >
√
0.3,

S(0.3),

∣∣∣∣∣
1

d

d∑

i=1

xi

∣∣∣∣∣ ≤
√
0.3.
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The solution of the above inhomogeneous problem is given by

u2(x) =





(
1

d

d∑

i=1

xi

)2

,

∣∣∣∣∣
1

d

d∑

i=1

xi

∣∣∣∣∣ >
√
0.3,

0.3,

∣∣∣∣∣
1

d

d∑

i=1

xi

∣∣∣∣∣ ≤
√
0.3.

In contrast to the previous equation, this problem (5.2) is not only a non-homogeneous

boundary problem but also involves a non-smooth solution.

The parameters for this numerical experiment are configured as follows: ε = 2000,

depth D = 4, width W = 150, sample size as 150000, boundary sample size as 40000,

and other parameters are the same as before. As shown in Fig. 6, the proposed method

also accurately approximates the solution in this setting.
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Figure 6: Dirichlet problem with inhomogeneous boundary condition, d = 10.

6. Discussion

In this paper, we investigate the use of ResNet with ReLU2 activations for solving

semilinear elliptic problems. We propose a general formulation for computing the so-
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lution to semilinear elliptical equations based on a penalized variational form. The

penalized variational form is then solved using the Deep Ritz Method. We derive an

upper bound on the errors between the estimated solutions and true ones in terms of

the depth D and width W of the ReLU2 ResNet, as well as the number of training sam-

ples n. Our simulation results demonstrate the effectiveness of the proposed method in

circumventing the curse of dimensionality and validate our theoretical results.

Appendix A

In this appendix, we present comprehensive proofs of several lemmas introduced in

Section 4.3. The statistical error analysis of the Deep Ritz Method follows a standard-

ized process, and thus, it is omitted from the main body of the text.

Proof of Lemma 4.3. We will present the proof in two parts, each of which can

be obtained separately using two distinct facts. The first fact is that the Rademacher

complexity can be passed on through a Lipschitz continuous function. This fact enables

us to establish the last four inequalities.

Lemma A.1. Suppose that ψ : Rd ×R → R, (x, y) 7→ ψ(x, y) is ℓ-Lipschitz continuous on

y for all x. Let N be a class of functions on Ω and ψ◦N = {ψ◦u : x 7→ ψ(x, u(x)), u ∈ N}.

Then

R(ψ ◦ N ) ≤ ℓ R(N ).

For the deduction of this statement, we cite [24, Corollary 3.17].

Obviously, the Lipschitz constant for the 2nd, 3rd, 4th, and 5th terms are 2‖f‖∞,

2K, 2εB, and 4ε‖h‖∞, respectively. Therefore their conclusion can be yielded directly

in the same manner.

The first term requires special treatment due to the fact that the ∇ operator is not

Lipschitz continuous. This consideration follows directly from the following claim.

Claim A.1. Let u be a function implemented by a ReLU2 network with depth D and

width W. Then ‖∇u‖22 can be implemented by a ReLU-ReLU2 network with depth

D + 3 and width d(D + 2)W.

Denote ReLU and ReLU2 as σ1 and σ2, respectively. As long as we show that each

partial derivative Diu, i = 1, 2, . . . , d can be implemented by a ReLU-ReLU2 network

respectively, we can easily obtain the network desired since ‖∇u‖22 =
∑d

i=1 |Diu|2 and

the square function can be implemented by x2 = σ2(x) + σ2(−x).
Now we show that for any i = 1, 2, . . . , d, Diu can be implemented by a ReLU-

ReLU2 network. We will focus on explaining the first two layers in detail, as the process

for the layers with k ≥ 3 is similar and can be derived through induction. For the first

layer, since σ′2(x) = 2σ1(x), we have for any q = 1, 2, . . . , n1

Diu
(1)
q = Diσ2




d∑

j=1

a
(1)
qj xj + b(1)q


 = 2σ1




d∑

j=1

a
(1)
qj xj + b(1)q


 · a(1)qi .
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Hence,Diu
(1)
q can be implemented by a ReLU-ReLU2 network with depth 2 and width 1.

For the second layer,

Diu
(2)
q = Diσ2




n1∑

j=1

a
(2)
qj u

(1)
j + b(2)q


 = 2σ1




n1∑

j=1

a
(2)
qj u

(1)
j + b(2)q


 ·

n1∑

j=1

a
(2)
qj Diu

(1)
j .

Since σ1(
∑n1

j=1 a
(2)
qj u

(1)
j + b

(2)
q ) and

∑n1

j=1 a
(2)
qj Diu

(1)
j can be implemented by ReLU −

ReLU2 subnetworks, respectively, and the multiplication can also be implemented by

x · y =
1

4

[
(x+ y)2 − (x− y)2

]

=
1

4
[σ2(x+ y) + σ2(−x− y)− σ2(x− y)− σ2(−x+ y)] .

We conclude that Diu
(2)
q can be implemented by a ReLU-ReLU2 network. We have

D


σ1




n1∑

j=1

a
(2)
qj u

(1)
j + b(2)q




 = 3, W


σ1




n1∑

j=1

a
(2)
qj u

(1)
j + b(2)q




 ≤ W

and

D




n1∑

j=1

a
(2)
qj Diu

(1)
j


 = 2, W




n1∑

j=1

a
(2)
qj Diu

(1)
j


 ≤ W.

Thus D(Diu
(2)
q ) = 4,W(Diu

(2)
q ) ≤ max{2W, 4}.

Now we apply induction for layers k ≥ 3. For the third layer,

Diu
(3)
q = Diσ2




n2∑

j=1

a
(3)
qj u

(2)
j + b(3)q


 = 2σ1




n2∑

j=1

a
(3)
qj u

(2)
j + b(3)q


 ·

n2∑

j=1

a
(3)
qj Diu

(2)
j .

Since

D


σ1




n2∑

j=1

a
(3)
qj u

(2)
j + b(3)q




 = 4, W


σ1




n2∑

j=1

a
(3)
qj u

(2)
j + b(3)q




 ≤ W

and

D




n2∑

j=1

a
(3)
qj Diu

(2)
j


 = 4, W




n1∑

j=1

a
(3)
qj Diu

(2)
j


 ≤ max{2W, 4W} = 4W,

we conclude that Diu
(3)
q can be implemented by a ReLU-ReLU2 network and

D
(
Diu

(3)
q

)
= 5, W

(
Diu

(3)
q

)
≤ max{5W, 4} = 5W.
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We assume that Diu
(k)
q , q = 1, 2, . . . , nk can be implemented by a ReLU-ReLU2

network and

D
(
Diu

(k)
q

)
= k + 2, W

(
Diu

(3)
q

)
≤ (k + 2)W.

For the (k + 1)-th layer,

Diu
(k+1)
q = Diσ2




nk∑

j=1

a
(k+1)
qj u

(k)
j + b(k+1)

q




= 2σ1




nk∑

j=1

a
(k+1)
qj u

(k)
j + b(k+1)

q


 ·

nk∑

j=1

a
(k+1)
qj Diu

(k)
j .

Since

D


σ1




nk∑

j=1

a
(k+1)
qj u

(k)
j + b(k+1)

q




 = k + 2,

W


σ1




nk∑

j=1

a
(k+1)
qj u

(k)
j + b(k+1)

q




 ≤ W,

D




nk∑

j=1

a
(k+1)
qj Diu

(k)
j


 = k + 2,

W




nk∑

j=1

a
(k+1)
qj Diu

(k)
j


 ≤ max{(k + 2)W, 4W} = (k + 2)W,

we conclude that Diu
(k+1)
q can be implemented by a ReLU-ReLU2 network and

D
(
Diu

(k+1)
q

)
= k + 3,

W
(
Diu

(k+1)
q

)
≤ max{(k + 3)W, 4} = (k + 3)W.

Hence, we derive that Diu = Diu
D
1 can be implemented by a ReLU-ReLU2 network

and D(Diu) = D + 2, W(Diu) ≤ (D + 2)W. Finally, we obtain

D
(
‖∇u‖2

)
= D + 3, W

(
‖∇u‖2

)
≤ d (D + 2)W. (A.1)

The proof is complete.

Proof of Lemma 4.4. First, we introduce Massart’s finite class lemma whose proof

can be found in [6].
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Lemma A.2 (Massart’s Finite Class Lemma [6]). For any finite set V ∈ R
n with diameter

D =
∑

v∈V ‖v‖2, then

Eσi

[
sup
v∈V

1

n

∣∣∣∣
∑

i

σivi

∣∣∣∣

]
≤ D

n

√
2 log(2|V |),

where {σi}ni=1 are the Rademacher variables defined the same as in Definition 4.1.

Set εj = 2−k+1B. We denote Fk as an εk-cover of F and |Fk| = C(εk,F , ‖ · ‖∞).
Hence, for any u ∈ F , there exists uk ∈ Fk such that ‖u − uk‖∞ ≤ εk. Let K be

a positive integer determined later. We have

E{σi,Zi}
n
i=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σiu (Zi)

∣∣∣∣∣

]

= E{σi,Zi}
n
i=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
u (Zi)− uK (Zi)

)

+
K−1∑

j=1

n∑

i=1

σi
(
uj+1 (Zi)− uj (Zi)

)
+

n∑

i=1

σiu1 (Zi)

∣∣∣∣∣

]

≤ E{σi,Zi}
n
i=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
u (Zi)− uK (Zi)

)
∣∣∣∣∣

]

+
K−1∑

j=1

E{σi,Zt}
n
i=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
uj+1 (Zi)− uj (Zi)

)
∣∣∣∣∣

]

+ E{σi,Zt}
n
k=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σiu1 (Zi)

∣∣∣∣∣

]
.

Since 0 ∈ F , we can choose F1 = {0} to eliminate the third term. For the first term,

E{σi,Zi}
n
t=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
u (Zi)− uK (Zi)

)
∣∣∣∣∣

]

≤ E{σi,Zi}
n
i=1

[
sup
u∈F

1

n

n∑

i=1

|σi| ‖u− uK‖∞

]
≤ εK .

For the second term, defining vji = uj+1(Zi) − uj(Zi), and applying Lemma A.2, we

have

K−1∑

j=1

E{σ}ni=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
uj+1 (Zi)− uj (Zi)

)
∣∣∣∣∣

]

=

K−1∑

j=1

E{σt}
n
t=1

[
sup
v∈Vj

1

n

∣∣∣∣∣

n∑

i=1

σiv
j
i

∣∣∣∣∣

]
≤

K−1∑

j=1

Dj

n

√
2 log (2 |Vj |).
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By the definition of Vj , we know that |Vj| ≤ |Fj ||Fj+1| ≤ |Fj+1|2 and

‖V ‖2 =

(
n∑

i=1

|uj+1 (Zi)− uj (Zi)|2
)1/2

≤ √
n ‖uj+1 − uj‖∞

≤ √
n ‖uj+1 − u‖∞ +

√
n ‖uj − u‖∞

=
√
nεj+1 +

√
nεj = 3

√
nεj+1.

Hence,

K−1∑

j=1

E{σi,Zt}
n
t=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σi
(
uj+1 (Zi)− uj (Zi)

)
∣∣∣∣∣

]

≤
K−1∑

j=1

Dj

n

√
2 log (2 |Vj|) ≤

K−1∑

j=1

3εj+1√
n

√
2 log

(
2 |Fj+1|2

)
.

Now we obtain

E{σi,Zi}
n
i=1

[
sup
u∈F

1

n

∣∣∣∣∣

n∑

i=1

σiu (Zi)

∣∣∣∣∣

]

≤ εK +

K−1∑

j=1

6εj+2√
n

√
2 log

(
2 |Fj+1|2

)

= εK +
6√
n

K−1∑

j=1

(εj+1 − εj+2)

√
2 log

(
2C (εj+1,F , ‖ · ‖∞)2

)

≤ εK +
6√
n

∫ B/2

εK+1

√
2 log

(
2C (ε,F , ‖ · ‖∞)2

)
dε.

The lemma can be concluded by selecting an appropriate K such that εK+2 < δ ≤ εK+1

for any 0 < δ < B/2.

Proof of Lemma 4.6. The sketch of the proof is given as follows: Firstly, the VCdim
and pseudo-shattering is introduced as a lower bound of the Pdim. Then the VCdim
for a polynomial is estimated through a lemma in [1]. Based on the conclusion above,

the proof can be finished by a deduction similar to [4, Theorem 6].

Here are the definitions of pseudo-shattering and VCdim.

Definition A.1. Let N be a set of functions from X = Ω(∂Ω) to {0, 1}. Suppose that

S = {x1, x2, · · · , xn} ⊂ X. We say that S is shattered by N if for any b ∈ {0, 1}n, there

exists a u ∈ N satisfying

u (xi) = bi, i = 1, 2, . . . , n.
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Definition A.2. The VC-dimension of N , denoted as VCdim(N ), is defined to be the

maximum cardinality among all sets shattered by N .

Lemma A.3 is introduced to estimate the Pdim for polynomials. The proof can be

found in [1, Theorem 8.3].

Lemma A.3. Let p1, · · · , pm be polynomials with n variables of degree at most d. If n ≤ m,

then

|{(sign(p1(x)), · · · , sign(pm(x))) : x ∈ R
n}| ≤ 2

(
2emd

n

)n

.

The argument follows from the proof of [4, Theorem 6]. The result stated here is

somewhat stronger than [4, Theorem 6] since VCdim(sign(N )) ≤ Pdim(N ).
We consider a new set of functions

Ñ = {ũ(x, y) = sign(u(x) − y) : u ∈ N}.
It is clear that Pdim(N ) ≤ VCdim(Ñ ). We now bound the VC-dimension of Ñ . Denot-

ing M as the total number of parameters (weights and biases) in the neural networks

implementing functions in N , our objective is to derive a uniform bound for

K{xi},{yi}(m) :=
∣∣{(sign(u(x1, a)− y1), . . . , sign(u(xm, a)− ym)) : a ∈ R

M}
∣∣ ,

over all {xi}mi=1 ⊂ X and {yi}mi=1 ⊂ R. Actually, the maximum of K{xi},{yi}(m) over all

{xi}mi=1 ⊂ X and {yi}mi=1 ⊂ R is the growth function GÑ (m).
In order to apply Lemma A.3, we partition the parameter space R

M into several

subsets to ensure that in each subset u(xi, a) − yi is a polynomial with respect to a
without any breakpoints. In fact, our partition is the same as the partition in [4].

Denote the partition as {P1, P2, · · · , PN} with some integer N satisfying

N ≤
D−1∏

i=1

2

(
2emki(1 + (i− 1)2i−1)

Mi

)Mi

, (A.2)

where ki and Mi denote the number of units at the i-th layer and the total number of

parameters at the inputs to units in all the layers up to layer i of the neural networks

implementing functions in N , respectively. See [4] for the construction of the partition.

Obviously we have

K{xi},{yi}(m) ≤
N∑

i=1

|{(sign(u(x1, a)− y1), · · · , sign(u(xm, a)− ym)) : a ∈ Pi}| . (A.3)

Note that u(xi, a) − yi is a polynomial with respect to a with degree the same as the

degree of u(xi, a), which is equal to 1 + (D − 1)2D−1 as shown in [4]. Hence, by

Lemma A.3, we have

|{(sign(u(x1, a)− y1), · · · , sign(u(xm, a)− ym)) : a ∈ Pi}|

≤ 2

(
2em(1 + (D − 1)2D−1)

MD

)MD

. (A.4)
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Combining Eq. (A.2)-Eq. (A.4) yields

K{xi},{yi}(m) ≤
D∏

i=1

2

(
2emki(1 + (i− 1)2i−1)

Mi

)Mi

.

We then have

GÑ (m) ≤
D∏

i=1

2

(
2emki(1 + (i− 1)2i−1)

Mi

)Mi

,

since the maximum ofK{xi},{yi}(m) over all {xi}mi=1 ⊂ X and {yi}mi=1 ⊂ R is the growth

function GÑ (m). Using algebras as that of the proof of [4, Theorem 6], we obtain

Pdim(N ) ≤ C
(
D2W2 log U +D3W2

)
≤ C

(
D2W2 (D + logW)

)
,

where U refers to the number of units of the neural networks implementing functions

in N .
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