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Abstract

In this paper, we investigate the theoretical and numerical analysis of the stochastic
Volterra integro-differential equations (SVIDEs) driven by Lévy noise. The existence,
uniqueness, boundedness and mean square exponential stability of the analytic solutions
for SVIDEs driven by Lévy noise are considered. The split-step theta method of SVIDEs
driven by Lévy noise is proposed. The boundedness of the numerical solution and strong
convergence are proved. Moreover, its mean square exponential stability is obtained. Some
numerical examples are given to support the theoretical results.
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1. Introduction

In this paper, we concern the following SVIDE driven by Lévy noise:
t z
vy =0+ [ 1Yo, [T ovas)
0 0

+ /Otg (Y(z),/z K(z = 5)Y (s) ds) dw(z)

0
+/Ot/ZV<Y(z),/OZ n(zs)Y(S)dS,§> N(dz,d¢) (1.1)

for t € [0,00), where ¢ : [0,00) = R and |[|¢||2, = max,c(o,00) [¢(t)]* < c0. Here f: RxR — R,
g:RxR = Randv:R xR xZ— R are measurable functions. The kernel x: [0,00) — R is
continuous.

As we known, SVIDE (1.1) can be regarded as an extension of stochastic differential equa-
tions (SDEs) (see [14] and the references cited therein) and special types of stochastic Volterra
integral equations (SVIEs) (see, e.g. [2,7] and the references therein). SVIDEs and SDEs are
used to mathematically formulate many problems in different kinds of fields. The theoreti-
cal analysis of SVIDEs has gained abundant attention in recent decades (see [13,16] and the
references therein).
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In general, explicit solutions of SDEs and SVIDEs are rarely available and we have to resort
to numerical methods to gain their approximate solutions. A large number of studies on nu-
merical methods for SDEs have emerged (see, e.g. [5,6,15,17,24-26]), however, there are only
a few numerical results about SVIDEs and SVIEs (see, e.g. [10,12,19,22] and the references
therein). Although numerical solutions of SVIEs have attracted more and more attention re-
cently, but the research in this area is still limited. In particular, Liang et al. [11] obtained
super-convergence of the Euler-Maruyama method for SVIEs. In 2020, we studied theoreti-
cal and numerical analysis of the Euler-Maruyama method for the generalized SVIDEs under
global Lipschitz condition [23] and a class of SVIDEs with non-globally Lipschitz continuous
coefficients [21].

It is necessary to incorporate event driven uncertainty such as market crashes, central bank
announcements, changes in credit ratings, defaults, etc. which can have sudden and significant
effects on the movements of stock price into a model, and this can be expressed by jumps.
The evolution of economics, finance and many other random quantities are often modeled by
SVIDEs driven by Lévy noise, which offer the most flexible, numerically accessible mathematical
frameworks ([4] and the references therein). Some progress has been made in the recent decades
[1,3,8,18,20].

To the best of our knowledge, due to some new difficulties caused by the stochastic integral
(see [9]) and Lévy noise, these are the first results in the literature for such generalized SVIEs
driven by Lévy noise.

This paper is organized as follows: We will consider the existence, uniqueness, boundedness
and mean square exponential stability of the analytic solution of SVIDE (1.1) in Section 2. The
split-step theta (SST) method of SVIDE (1.1) is presented and its boundedness, convergence
and mean square exponential stability are established in Section 3. Finally, we will give some
numerical examples in Section 4 to illustrate the theoretical results of SVIDE (1.1).

2. Theoretical Analysis of SVIDE Driven by Lévy Noise

Let (Q, F, {F,}+>0,P) denote a complete probability space with a filtration {F,};>0 satis-
fying the usual conditions (i.e. it is right continuous and increasing while F; contains all P-null
sets), and let E be the expectation corresponding to P. Let Z C Ry — {0} be the range space of
the impulsive jumps. A one-dimensional Brownian motion defined on the probability space is
denoted by w(t) and N(dt,d§) is a Poisson random measure defined on o-finite measure space
(Z, L,v) with intensity measure v # 0 for the case when v = 0. Set

N(dt,d¢) = N(dt,d¢) — v(d€)dt,
where

(Ing)?
2

V(dE) = AD(E)dE,  O(E) = ﬁ exp <

Moreover, we assume that w(t) is independent of N(t,-). The family of R-valued F;-adapted
processes {z(t) }+c[o,7] such that E|z(t)|P < oo (p > 1) is denoted by LP([0,T];R). We denoted
by M?([0,T]; R) the family of processes {z(t)}icpo, 7] in £2([0,T]; R) such that

E </0 |(t)] dt) < 0.

>, 0<€&<oo.
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For a,b € R, we use a Vb and a A b for max{a,b} and min{a, b}, respectively. If G is a subset
of €, its indicator function is denote by 1.
The assumptions are listed below.

(A1) For any R > 1, there is a constant K > 0 such that
[f(@,y) = F@ IV g(e,y) — 9(z.9)| < Kr(le — 2|+ |y - 7l) (2.1)
for all z,Z,y, 5 € R with |z| vV |Z| V |y| V |7] < R.

Remark 2.1. By the elementary inequality and (2.1), we can see that for all z,y € R such
that

[f (@, )V lg(z, y)l < Kr(l+ || + [y]), (2.2)
where K = Kgr V |£(0,0)| V |g(0,0)|.

(A2) There are positive constants a; and ae such that

20 f(a) +law ) + [ e O v(d) < —aanlol? + azly? (2.3
for all z,y € R.
(A3) There exist positive constants ¢ and 7 such that
|K(t)] < ¢ (2.4)
for any t € [0, 00).

(A4) There is a positive constant K7 such that

/Z (2, y,€) = 7(Z,5,6)Pv(de) < Ki(|z — 21> + |y — §°) (2.5)
for z,y,Z,y € R.

Remark 2.2. Using the elementary inequality and (2.5), we can see that for all z,y € R such
that

| e P vide) < Ka(1 + 1ol + ) (2:0)
where K1 = K1 V [7(0,0,¢)| and ¢ € Z.
(A5) There exists a positive constant K such that
|6(t) — w(E)|* < Kot — 1%,
for t,t € [0, 00).
(A6) There is a constant K3 > 0 such that
2z = 2)" [f(@,y) = f(@9)] + lg(z,y) - 9@, 7)I*
+ [ e =@ 5.0 vide)
< Ks(le —2* + 1y - ) (2.7)

for all z,z,y,y € R.
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2.1. Existence and uniqueness of the analytic solutions
For every integer R > 1, define the stopping time
Tr = inf{t >0:|Y(¢)| > R}.
Lemma 2.1. Assume that (A2) and (AS3) hold. If Y (t) is a solution of SVIDE (1.1), then
E|Y(t)|2 < K07 te [OvT]a (28)
where Ky depends on k,T, a1, and ¢. Moreover, we also have
Ko
Plra <T} < 20 (2.9)
In particular, Y (t) belongs to M?([0,T]; R).
Proof. Define Yr(t) :=Y (¢t A7g) for ¢t € [0,T]. It is easy to see that Yr(¢) satisfies
t z
Yr(t) = ¢(t ATr) +/ f (YR(Z)a/ k(z — S)YR(S)]-[O,TR](S)CZS) Lo, rp)(2)dz
0 0
t z
+/ g <YR(z),/ k(z — S)YR(S)1[07TR](S)dS) 110,75 (2)dw(2)
0

0
t z
[ Lo (Yt [ = W60 ()5 €) L2V ).
0 Jz 0
Using the Itd formula, for any ¢t € [0, 7] we obtain
[Yr(t)*<|o(t ATr)[? (2.10)

+/Ot 2Yg (2)f (YR(z),/OZ k(2 — 8)YR(8)1(0,7n] (s)ds) 10,7 (2)d2

/
0

l[O,TR] (Z)dz
+/O QYRT(z)g <YR(Z),/O k(z — s)YR(s)l[OﬁTR](s)ds> 110,75 (2)dw(2)

o (Ya(), [ 5z = 5) V()10 (5)ds
(et | )

+/Ot /Z 2Y T (s)y (YR(Z), /OZ Kz — s)YR(S)l[o,TR](S)ds,ﬁ) 10,7 (2) N (dz, d€)

o |

—[Yr(2)?

Ya(z) +7 (YR<z>, | e = )7l 051, g)

z
0

z

f2YT(z)fy (YR(Z),/OI{(ZS)YR(S)]_[O,TR](S)dS, 5)] 1(0,74] (2)N(dz, d¢).

Taking the expectation of (2.10), we get
E[Yr(t)[* < |p(t A Tr)[*

+E /0 t oY (2)f (YR(Z), /O (e — $)Yr(5)1[0.rs (S)ds) 107 (2)dz

+E /0 t g <YR(z), /0 ’ n(zs)YR(sn[O,m](s)ds) i

l[O,TR](Z)dZ
t
+E / /
0 JZ

v(d(§))1[0,rg)(2)dz.

3 (Y. [ = Wil 10 515
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y (A2), one can get that

/OZ K(z — 8)Yr(s)ds

t
E[Yr(t)|* < ot ATR)” + E/ <041|YR(Z)|2 + a2
0
Applying the Holder inequality and (A3), we also obtain

E /()Z,i(,zsm2

fIE/ |nz—s|dr/ |k(z — 8)| |YRr(s)|?ds

SE/ Cefn(zfs)dr/ Ce 9| YR(s)|?ds
0 0

S
n
C2 2

E ds.
HA Vi(s)[2ds

E / =15 Vi (s)
0

Consequently, we have

4-2 t
IE]|YR(1€)|2 <ot A 7'};>1)|2 + (—a1 + ag—) / E|YR(S)|2d8.
n 0

The Gronwall inequality implies that

2
E|Yr(t)|* < [o(t ATr)[* exp {<041 + 042%) T} = K.
Thus
E|Y (t A7R)|* < K.

Hence, (2.8) follows by letting R — oc.
Finally, one gets

K
P{rp < T} =E{l,,<1} < —E|Y(t ATR)]? < Rg

The proof is complete.

2
) dz.

|

Theorem 2.1. Assume (A1)-(A4) hold. Then there exists a unique solution Y (t) to SVIDE

(1.1).
Proof. For each R > 1, define the truncated functions
fz,y), it |z[V]y[ <R,
x,y) =
fr(@y) f((R/\|x| o (RA Iy ) it |¢/>R or |y >R,
9(x,y), it z[V]y| <R,
z,y) =
9r(@Y) ((R/\ o) g (R A ) i) it |¢/>R or |y >R,
v(@,y,), it |z[V]yl <R,
VR(xayaE) =

.
—

|z] > R or |yl > R.

Y
QRAuw7<RAwma@),
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Obviously, fr,gr and g satisfy the Lipschitz condition and the linear growth condition.
Hence, similarly to the proof of [14, Theorem 3.1], there exists a unique solution Yg(-) in
M2([0,T);R) to

Yalt) = ot A 7r) + /Ot fa <YR(Z), /O K(z — s)YR(s)d5> dz
# [ o (vate), [tz = vaopas ) dute
[ [ (YiCo), [ wle = Yaloyds,€) Niagzoae), 10T, (21

where 7r = T Ainf{t € [0,T] : | Xr(t)| > R} is defined as that in the proof of Lemma 2.1.
It is easy to see that

Yr(t) = Yret(t), te[0,7r). (2.12)

This implies that 7 is increasing. Applying the linear growth condition, there exists an Ry =
Ry(w) such that 7g = T whenever R > Ry.

Define Y (t) = Yg, (¢) for t € [0,T]. Using (2.12), we have Y (¢t A 7r) = Yg(t A 7r). Hence,
we have

Y(EATR) = @t ATR) + /OWR fa (Y(z), /0 K(z — S)Y(s)ds) dz
[ an (Y6 [ v sgas) due)

N /OWR /ZWR (y(z),/oz k(2 — s)Y(s)dS,§) N(dz, d€)
=p(tATR)+ /MTR f <Y(z), /OZ K(z — S)Y(s)ds) dz

0

+ /OWR p <Y(z), /0 Kz — s)Y(s)ds> duw(z)
v s (Y [ ol =7 (91 €) (s, a).

Letting R — o0,Y (t) is a solution of SVIDE (1.1). Applying Lemma 2.1, Y(¢) belongs to
M([0,T];R). We then obtain the uniqueness by a stopping procedure. O

2.2. Mean square exponential stability of the analytic solution

In this section, suppose f(0,0) = ¢(0,0) = v(0,0,£) = 0, £ € Z, we get the mean square
exponential stability of the SVIDE (1.1) by using the similar way of [13].

Theorem 2.2. Under (A1)-(A4), for any initial data To € R, if a; > aal?/n?, there exist
positive constants v and ¢y such that the unique global solution of SVIDE (1.1) satisfies

E|Y (1) < colzol?e™, Vit >0.
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Proof. By the Tté formula, one has
EY (8)]? = |p(0)]* + E/Ot e [2XT(F(X(5),U(s))ds + |g(¥ (5), U () [*] ds
+E [ 26 YT (5)g (¥ (), U(s)) du(s)
+ E/O /ZQeO‘ISYT(S)'y(Y(S), U(s), &) N(ds, d¢)

t
@18 2
2B [ [ e[V + (6. U6 - )P
=2V T (5)3(Y (), U(s),€) | N (ds, ),
where s
U(s) = / k(s —r)Y (r)dr.
0
Using (A2), we get
t t
e EY (1)]2 < |p(0))* — al/ e SE|Y (s)|*ds + O[QE/ eS| U (s)]?ds.
0 0
Applying the Holder inequality, (A3) and (2.13), we can show

U ()] =

/ Ca(s — )Y (r)dr

0
— | |a(s— r)|dr/ (s — )| [V () [2dr
0 0
S/ Ce_"(s_r)dr/ Ce_"(s_r)|Y(7’)|2dT
0 0
2 S
< ¢ / e "Iy (1) 2 dr.
n Jo
Substituting this into (2.14) yields

e E|Y (1)]* < [¢(0)

¢
2 —041/ e E|Y (s)|*ds
0

t C2 s
+a2/ eo‘ls—/ e "ETIR|Y () [2drds.
0 mJo

Hence, we have

E[Y (#$)]* < |¢(0)

t
2p—oat —041/ efal(tfs)E|Y(s)|2ds
0
t C2 s
—I—ag/ e_o‘l(t_s)—/ e "STIR|Y (1) drds
0 n Jo

t 2 s
<Jp(0)Pe™ " + / emon(t=9) & / e "IR|Y (r)[2drds.
0 n Jo
Define

t 2 S
Li(t) == |p(0)[?e~ 1" + ag/ efal(tfs)c—/ e "Ly (r)drds.
0 nJo

(2.13)

(2.14)
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Consequently, one obtains

2 %g t r 2 r T
BY (0 - () < 255 [ [EVO)E - 1) dn

By the Gronwall inequality, one gets
E[Y (8)* < La(t).
Set

t
Lo(t) ::/ e "Ly () dr,
0

we have
2

Ll(t) = OéQ%LQ(t) — OélLl(t),

Lo(t) = —nLa(t) + L (t)

(2.15)

with initial data L1(0) = |¢(0)|? and L2(0) = 0. It is known that (2.15) is exponentially stable
if and only if a1 > aa¢?/n% O

3. The SST Method

Define ¢, := nh for n =0,1,.... Hence, the SST method of SVIDE (1.1) can be defined as
follows:
n—1
X, = +0hf (Xn,th(tntl)Xl>, (3.1)
1=0
and

n—1 n—1
Tpe1 =Tn +hf | Xpn, h k(t, —t) X | +g9 | Xn,h k(tn, —t) X | Aw,
+

=0 =0
tng1 n _
Wb S Kt — )Xy, € | N(dz, de), 3.2
+/tn /;(X ;u mw) (dz, de) (3.2)

where Aw, = w(t,41)w(ts).
By induction, (3.2) can be rewritten as the following form:

n r—1 traa
Tne1 = ©(0) + Z hf (Xr, Z/ k(t. — 1) X; d5>
t
ti+1
+Zg< TZ/ K(ty — 1 deS>AwT
+;0/th+l/Z’7<Xr,Z/tz+l t —tl)deS f) N(dz,df). (3.3)
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3.1. Boundedness of the numerical solution

Having overcome the difficulties caused by random integrals and Lévy noise, we obtain the
boundedness of the numerical solution to generalized SVIDE (1.1).

Theorem 3.1. Assume that (A2) and (A3) hold. For 6 € [1/2,1], 0 < h < h* < n*/(202(?)
and 0 <n < S (tg =T), then there exist positive constants Cy and C{j such that

Elz,* < Co, E|X.|> < Gy, (3.4)
where Cy and C}y depend on k,T,p, a1 and asz, but not on h.
Proof. Define

Upi=hY_ k(e — )X,
=0

then by (A3), one has

2

ElUn> =B |h Y k(s — )X
1=0
< E¢? hzefn(tn*tl) hze*n(tn*tl)pm?
1=0 1=0
< g sup E|X;|?
< 5 sup E[X[% (3.5)
™ 1€lo,n]

Taking the expectation of (3.1) and using the elementary inequality, for all 0<t,41 <T, we get
E|X, > = Elz,|* + 0*R°E| f (X0, Un)|? + 20hE 2y, f (X, Uy)),
(@, f(Xn, Un)) = (X, f(Xn, Un)) = O(f (X, Un), f(Xn, Un))-

Hence, applying (A2), we have

E| X, |? = Elz,|? — 02h%| f (X, Un) |2 + 200(X 0, (X0, Un))
< Elzn|? + 20h( X, f(X0, Up))
< E|z,|* 4 20h( — 1 E| X, |* + 2E|U, %)
< Elan | 4+ 20hasE|U, 2. (3.6)

By (3.2), one gets

(241 = |2nl® + [7f (X, Un)? + hlg(Xn, Un)[* + 2(wn, hf (Xn, Un))

[ (X, U, ) Potde) + 1, (37)
Z
where
n 2 n 2
r=0 r=0

tng1 ~
P X, Un, €)N(dz, d€), g(Xn, Un) A
+</ [ 060U 8 2,0, >wl>
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tntl
+2<xn+hf(Xn,U / / (Xn,Un, )N (dzd€)>
tn

/tm/ (X, Un, €)N (dz, d)

Since Awy, is independent of F;, and g(X,,U,) is F;, -measurable, we have g(X,,,U,) is inde-
pendent of Aw,,. It is obvious that E(Aw,) = 0 and E(Aw,)? = h.
Notice that w(t) is independent of N(t,-), we have

</ttn+1/ (Xn, Un, )N (dz, dE), (Xn,Un)Awl> _
(/t "H/ (X, Un, )N (dz, dg))
/ttm/ (X, Un, )N (dz, d€)

Consequently, we have E(M,,) = 0.
Using the elementary inequality, § € [1/2,1] and (A2), we find that

fm/w&ﬂmHW@

—hE/ |’7 Xn;Unag | l/(df)

Elzpi1]* < Elen|? + Elhf (Xn, Upn)|* + hE|g(Xn, Un)|?
+ 2B 1 (X, Un)) B | 11X, Ui ©)P0(d)
< Elz, > + (1 — 20)R%E|f (X, Up) |2 + hE|g(Xn, Un)|?
+ 2hE( X, £ (X, Un)) + hE/Z IV ( X, Un, €)|?v(d€)

< Elzn|? — a1hE|X,|? + azhE|U,|?
< Elz,|? + axhE|U, |
< Elan 1> + aohE|U,_1|? + azhE|U, |?

< |p(0) + azh > EU.

=0

Hence, we show

E|X,|? < Elz,|* + 20hasE|U, |2
n—1
< |9(0)[? + azh Y E|U|* + 20hasE|U, . (3.8)
1=0

Substituting (3.5) into (3.8), we have

n—1 2 2
E|X,|? < |¢(0 )|2+a2hzc— sup E|Xl|2+29ha2<—2 sup E|Xl|2
1= 0 0=<

Therefore, we get

n—1

2/ 2
02C%/n hz sup E|Xl|2

1
E|X;|? T 90hoac2 /2
sup E[X] 1 — 20haa(2/n? — 0<I<i

S _— 0 2+
0<i<n 1 — 20hasC2/n? ¢ (0)]
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The discrete Gronwall inequality implies that

sup E|X;|*> < Cf,
0<i<S

where
2

= )P exp [ 22 7],
n? — 20has(? % — 20has(?
Applying (3.5) and (3.6), one gets
n_ 2
Elrasi? < [0(0) +ash 3 S sup E|Xi[2 < Co,
i—o 7 1€(0,4]

where Cp = |¢(0)]? + aT'¢*C{/n?. The proof is complete. O

3.2. Convergence of the SST method

Now we will propose the approximate time continuous interpolation of discrete numerical
approximation, and then get the convergence results of SST method (3.1).
Define

spi=t, for s€ [tn,tnt1).

Let X (¢) be the continuous form of X,, with X (¢,) = X, i.e.

Xn(t) = Z L, <t<tn 1} Xn (3.9)

n=0

and
#0) = x0) + [ (e [ e = s x50 ds) a
+ /tt g <Xh(z)v/0Zh K(zn — Sh)Xh(S)dS) dw(z)

+/j/z’>’<Xh(z),/0z” n(thh)Xh(S)ds’g) N(dz, d€)

t

= o0+ [ £ U)o+ [ 9(X0(6).Unlen) ()

0
t
[ ] A0,V en). €)Wz ),
where t € [tp, tpy1) with n=0,1,..., and
Up(z) := / k(z — sp) Xp(s) ds.
0

Define the stopping time

pr:=1inf{t > 0: |Z(t)| V | Xn(t)| > R}.
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Lemma 3.1. Under (A1)-(A4), for 6 € [1/2,1] and 0 < h < h* < n?/(202(?), we have
E[|Z(t) — Xn(t)|* 10,05 (t)] < C1(R)h, t€[0,T], (3.10)
where

2
Ci(R) :=3(TKr+ Kr + K1) [1 +Co (1 + %)] :

Proof. For t € [ty,tnt1), using (A3) and Theorem 3.1, we have

2
E|Un(zp)|> = E

/Zh k(zn — sn)Xn(s) ds
0

Zh Zh
S/ Ce*n(zh*Sh)dS/ Ce MGETE| Xy, () ds
0 0

s

n
2

< 2C.
n2°

2
[ e B, o) s
0

By Remark 2.1, (A3), Remark 2.2 and Theorem 3.1, we obtain

E“f(t) - Xh(t)|21[0,pR)(t)} S 3(t - tn) |:/t E’f(Xh(Z), Uh(zh))‘QdZ]_[O,pR) (t):|

n

+3 Utt E|g(Xn(2), Un(zn)) \del[o,pR)(t)]

t
Ik
t

n

+3

/Z (X0 (2), Un(21), €) w(de)

2
dZI[O,pR)(t)]
t —
<3h [ [Ra (1 4+ BIX0()P + BIUAGH)) d21i (1)
tTI,

+ S/t (B + K0 (1 4+ EIXA () + EJU () ) d2110,0 (0]

S Cl (R)ha

where )
Ci(R) :=3(TKr+ Kr + K1) [1 + C} (1 + %)] .

The proof is complete. O

Lemma 3.2. Under (A1)-(A3), for any e € (0,1) and 6 € [1/2,1], then there exists a constant
Ry satisfies R > Ry, let 0 < h < h* < 1n?/(2002¢?) A ho(R), where ho(R) > 0 such that

P{pr < T} <e. (3.11)

Proof. For any t € [0,T], using the Ité formula, we have
tApR
ot npr) < JeOF + [ 207 () (Xa(2), U (o))
0

+/0 . ‘Q(Xh(z);Uh(Zh))‘QdZ
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tAPR
+ / 277 (2)g (X1 (), Un(zn)) duw(=)
0
tAPR B
s [ ] 20T 6 (X Unen). € W )
0 Z

+/O pR/Z [|~’f(z)+v(Xh(z),Uh(zh),g)|27|f(s)|2
— 227 ()7 (Xn(2), Un(2n), 5)} N(dz, de).

Applying (A2), one obtains that

tApR [

E|Z(t A pr)|* < |(0)? —HE/ 2XhT(z)f(Xh(z),Uh(zh)) + ‘g(Xh(z),Uh(zh))‘Q} dz

0
+E [ o | (X0 Usen). ) Potiyas
+E /OMPR 2(2(2) — Xn(2))" S (Xn(2), Un(en)) dz
<HoOF + [ (- @B + Bl ) )t
VE /Ot 2(2(2) — Xn(2)) " S (X0 (=), Un(20)) Lo, pm (=) 2.

By Holder inequality, we have

E /0 2(2(2) — Xu(2))" £ (Xn(2), Un(2)) 10 pp) (2)d2

1
2

g2/0 (B12(2) = X0 ()P 10,1 (2))* (1 (X020, Un) Lo i (2)) 2

W=

1
2

< 2/0 (Bl (2) = Xn(2)P10,000 (2))* (1 (Xn(z A pr) Unlzn A pr))[*)

Using Remark 2.1, Lemma 3.1 and Theorem 3.1, we get

tAPR
E|z(t A pr)[* < |¢(0)]? +/ (= B[ X5 (s)|* + a2E|Un(21)[*) dz
0
- \1. .

2 B 2
< |e(0)? + QQ?TC() + 2T\/01(R)KR {1 +C <1 + %)} he.

[

Hence, we get

N

C Cs3(R)h
P{PRST}SR—zwL S(RQ) )

where

C2
Cg = |(p(0)|2 +042FTC(/),

C3(R) :== 2T\/01(R)KR {1 +C} (1 + %)]

13
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For any € € (0,1), there exist a constant Ry, for R > Ry, such that

CQ E

IS
Then, choose ho(R), when 0 < h < h* < n?/(20a2¢?) A ho(R), we have

Cs(R)h2 _€
R? 2
Therefore,
P{pR S T} S E.
The proof is complete. O

Lemma 3.3. Under (A1)-(A6), define e(t) ==Y (t)—z(t) and Vg = TrApr. For anyt € [0,T],
0 €[1/2,1] and 0 < h < h* < n*/(202(?), then

sup IE|€(7’)|2 < C5(R)h,

7€[0,tn AD R) N
where
2
C4(R) :=C1(R) T+ 3(Kgp + Ks)thC()T?’ +3(Kr+ K3)%h06T
2
+2(Kgr + K3)TCy(R) 4+ 6(KR + Kg)%T?’Cl (R),
CQ
C5(R) := C4(R) exp {Q(KR + K3) (1 + 3?) T] )

Proof. Define &(t) := Y () — Xx(t). By Ito’s formula, we obtain
Ele(tn A9R)? < E/Otan (2" (Y (). U(2) = T (X (2). Un(2)]
+19(Y(2),U(2)) — 9(Xn(2), Uh(z))}g)dz
+E/Otan [ (12 +9((.0.€) = 1(X0(2). Un(2).)
— [e(2)?) w(dg)d=
B [ [ (OB LU (06, U] e
< E/Ot"w 2(Xu(2) — 2(2)]" [f(Y(2),U(2)) — £(Xn(2), Un(2))]dz
+E/Ot"m (QET(z)[f(Y(z), U(2)) = f(Xn(2), Un(2))]
+19(Y(2),U(2)) — g(Xn(2), Uh(z))f)dz

tn NOR )
* E/O /Z 7 (Y (2), U(2),€) = 7(Xn(2), Un(2), €) | v(d€)dz.
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Applying (A6), one has
tn AU R
Ele(t, A dp)[2 < /O E|Xp(2) — 3(2)[2d
tn AU R
+ /0 E|f(Y(2),U(2)) — £ (Xu(2), Un(2) [d=
tn ANOR
JrKgE/O [|€(z)|2+ |U(z)—Uh(z)|2]dz
tn NOR tn ANOR
S/o E|Xn(z) — z(2)] dz+KR/O E[|e(z)| +|U(2) — Un(2)| ]dz
tn NOR
SEB [ o) + U() — U

tn NOR tn ANUR
g/ E| X (2) — #(2)2d= + (KR+K3)/ E|e(2)[2dz + (K + Ks)H,
0 0

where

tn N R
H, ::/ E|U(z) — Un(2)|?dz
0

tn NOR
0

By (Al), the Cauchy inequality, the Holder’s inequality and the It6 isometry, one obtains

tn AU R z
H, §3/0 E /0 k(z —s)[Y(s) — Xn(s)]ds

tn NOR
+3 e
0

2
dz.

/Oz K(z —8)Y(s)ds — /OZh K(zn — sn)Xn(s) ds

2
dz

2
dz

/OZ[K(Z —8) — k(zn — sn)| Xn(s)ds

tn AR z 2
+ 3/ / K(zn — sn)Xn(s)ds| dz.
0 Zn
Using (A3) and the elementary inequality, we have
tn ANUR z 2
/ E / k(z —s)[Y(s) — Xn(s)]ds| dz
0 0

dz

tn AU R z
< / / e~ M(z=9) 4g
0 0

CQ tn NOR
< —2/ sup E|Y (r) — Xp(r)|ds.
n=Jo r€[0,s]

/ e MEIR|Y (5) — Xp(s)]? ds
0

Applying (A5), Theorem 3.1 and the elementary inequality, we get

tn NOR
[T
0
tn AU R z
< / / |k(z — 8) — k(zn — s1)|?ds
0 0

< Koh2CHT?.

2
dz

/OZ[H(Z —5) — k(zn — sp)| Xn(s) ds

dz

/ E| X5 (s)* ds
0
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By (A3), Theorem 3.1 and the elementary inequality, we have
tn ANOR z 2
/ / K(zn — sn)Xn(s)ds| dz
0 Zh
tn NOR z z
< / / e MEn=sn) g / e NG =sE| X, (s)|? ds| dz
0 Zh Zh
2
< C—QhQC(’)T,
n
we get
C2 th ANOR 4-2
Hy <32 / sup E|Y(r) — Xp(r)[?ds + 3K2h*CyT® + 325 h*CT.
= Jo r€l0,s] n

Applying Lemma 3.1, one obtains that

2
Ele(t, AVR)|> < C1(R)Th + 3(Kr + K3)K2h?>CiT? + 3(Kp + Kg)C—QhQC{JT

n

4-2 tn AN R
+3(Kg + Kg)—QTQ/ sup E|Y (r) — Xp(r)|*ds
n 0 re[0,s]

tn ANOR
+ (K + Ko) / Ele(z)[2dz
0

2
< C1(R)Th+3(Kg + K3)K2h?CyT? + 3(Kg + Ks)C—QhQCéT

n

W. ZHANG

tn AR 4-2 tn AR
L (Kp+ Ks) / Ble(e) Pz + 6(0Kn + Ko) (5T / sup Ele(r)|2ds
0

0 re(0,s]

CQ tn AN R
+6(KR+K3)—2T2/ sup E|Z(r) — Xu(r)|?ds
n 0 re[0,s]
2
< CV(R)Th + 3(Kp + K3)Ksh2CT? + 3(Kp + K3)§—2h2q3T

tn NOR
+2AKp+ Ks) / E|#(2) — Xn(2)|2d>
0
tn AU R CQ
+2AKp+ Ks) / Ble(2) Pz + 6(Kn + K) S5T°C1 ()
0

4-2 tn AN R
+6(KR+K3)—2T2/ sup Ele(r)|*ds
n 0 re[0,s]
2
< CL(R)Th+3(Kr + K3)K2h*>CiT? + 3(Kg + Kg)EhQC’{)T

2
+2(Kg + K3)TC1(R)h + 6(K g + Kg)%TgC’l(R)h

4-2 tn AUR
+2(Kr + K3) (1—1—3—2) / sup Ele(r)|?ds
n 0 rel0,s]

4-2 tn NOR
< Cy(R)h +2(Kr+ K3) <1+3?T2> / 81[10p]E|e(7")|2ds,
0 re|0,s
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where

2
Cy(R) := C1(R)T + 3(K g + K3)K2hCyT? + 3(Kr + Kg)C—QhC(’,T

7
2
+2(Kg + K3)TCy(R) + 6(Kg + Kg)%ﬁcl(}z).

Hence, by Gronwall’s equality, we have

sup  Ele(r)|* < C5(R)A,

rel0,tn, AV R]
where

Co() = CalR)exp |21+ Ka) 1 +3§_j> a

The proof is complete. O

Theorem 3.2. Under (A1)-(A6), for q € [1,2), and 0 € [1/2,1], there exists a constant Ry
satisfies R > Ry, let 0 < h < h* < n?/(2002(?) A ho(R), where ho(R) > 0 such that

lim sup E[Y(t,) — X,|?=0. (3.12)

h—0 0<t,<T
Proof. By the Young inequality, for any § > 0, one gets that
EY (tn) = Xal* =E[|Y (tn) = Xl "L rps, pr>1}(W)]
+E[[Y(tn) = Xl "Lra<r or prery(@)]
<E [|Y(tn) - X77/|q1{TR>T1 PR>T}(°‘))}

5 2
+ ?qmy(tn) — X2+ — Ipirp > T, pr > T}

I
2—gq

dq
<E [|Y(tn> - Xn|q1{'rR>T, PR>T}(w)} + ?E|Y(tn) - Xn|2
2—q

2 —
LP{rr > T} + ==L P{pr > T}, (3.13)

267a 262

+

Hence, we have

E [|Y(tn) - Xn|21{73>T7 pR>T}(W)] =E [|Y(tn) - Xn|21{19R>T}(w)}
< Ele(t, AVR)*.

Applying Lemma 2.1 and Theorem 3.1, one has
0
SLEIY (tn) = Xaf? < dq (EJY (ta) 2 + E|Xa[?) < dq(Ko + C)-

Together with Lemma 3.2 and (3.13), we get

a q 2—q K
B[ (tn) = Xl < CF (R)# + 60 (Ko + C)) + 73
2 - 2 - 1
g C2 ¢ Cs(B), o (3.14)

2677 R* 2575 R?
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Therefore, for any e € (0, 1), choose sufficiently small § such that
then, choose sufficiently large Ry, for R > R, such that
2—q Ky 2—qCs <&
9677 B2 952%7 R?2 ~ 3’
finally, choose hi(R), for all h < hq(R), we show that

2—q C3(R)
2677 R?

CZ (R)h? + h3 <

Wl M

Hence, we get
E|Y (t,) — X,|? <e.
Consequently, one obtains

lim sup E[Y(t,) — X,|?=0.
h—0 0<t,, <T

The proof is complete. O

3.3. Mean-square exponential stability of the SST method

In this section, suppose f(0,0) = ¢(0,0) = ¥(0,0,&) = 0, € Z. The following theorem
shows that the SST method is mean-square exponentially stable.

Theorem 3.3. Let (A1)-(A4) hold, oy > (¢?/n*)az and 0 € (1/2,1]. Then for sufficiently
small h, the solution of the SST method is mean-square exponential stable.

Proof. Using (A2), (3.1) and (3.7), we have

1-—26
|$n+1|2 < |1'n|2 =+ T|Xn - zn|2 + h|g(Xna Un)|2 + 2h<Xna f(Xn7 Un)>
b [ (X0 U, O 0(d) + M,
2 1- 29 2 2 2
< l|znl®+ 7 | X0, — xn|® — a1h|Xn|” + agh|U,|” + M,

1—-260 20 -1

20 — 1
92

— (alh + ) | X0 |? + aoh|U, |2 + M,. (3.15)

For 6 € (1/2,1], applying the elementary inequality, we obtain

20— 1 20— 1 (20 — 1)

2 (X, xn) < h X, |? e
Z ’“—(O‘l e )' o he? 120 1)

Substituting this into (3.15), one gets

1-20 (20 —1)2
|zn+1|2 < (1 + 02 > |$n|2 + 02 (a1h92 120 1) |$n|2 + Oé2h|Un|2 + M,

< 1— Oélh(29 — 1)
- a1h6?2 +20 -1

= (1 — ay ph)|znl?® + aoh|Un|* + M,

> |xn|2 + 042h|Un|2 + M,
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where

041(29 — 1)

AL = L he2 120 — 1

It is easy to see that ay;, — a1 as h — 0.
Therefore, for any fix € > 0, we can choose h small enough to satisfy

a1y 2> ap — € =: 0/1.
In particularly, a; > (¢%/n?)as, we can choose € small enough to satisfy
2
of =a; —e> 5.
n
Consequently, we obtain
|Tns1]? < (1 = ajh)|zn]? + aoh|Uy|? + M,.
For any A > 1, we have

A(i+1)h|zi+1 |2 . Aih|1'i|2

SA(H_l)h(l—Oéllh—A_h)|$i|2+A(i+1)ha2h|Ui|2+A(H_l)hMi.

Summing the both sides of (3.17) from ¢ =0 to i =n — 1, we get

n—1
A < [p(O) + D(h) Y ACHDR (2
i=0

n—1 n—1
+agh Y ACEDME 24y AGHIR AL,
1=0 i=0

where

D(h):=1—ajh— A"
It is obvious that D(0) = 0 and
D'(h) =~} + A "log A <0
for 1 < A < e, Hence, for any h >0 and 1 < A < eall, we have D(h) < 0. Since
|z = | Xa|? + 0°R°| (X4, Ui) [P — 2(X, 00 f (X3, Uy))

> X = 2(X;, 0hf (X, Uy))
> X2+ 0h (on | Xi|? — ol U ),

we get
|$i|2 + 9h0¢2|Ui|2

Xi|? <
| | - 1+9h0&1

and

19

(3.16)

(3.17)

(3.18)

(3.19)
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Substituting these into (3.18), we have

n—1

Az |2 < Jp(0)* + D(h) Y AT [1X2 4 0h (| Xil? — e |Ui[?)]

1=0
n—1 ) n—1 .
+agh Y AUFOR 2 4N " AUTDR
1=0 =0
n—1
< |p(0)]* + D(h)(1 + Ohan) Y - AUTIM X2
1=0
n—1 ) n—1
+agh[l — 0D(R)] Y | AUFORU 2 4y " AUTDR AL,
1=0 =0
By (A3), we have

Jj=0

i—1 i—1
<¢ <h > e"(titﬂ')> (h > ettt x; |2>
j=0 j=0

¢
<2p e—ﬁ(ti—tj)|X.|2.
1 jZO ’

i—1 2
Uif? < ¢? (hz e—"m‘tf’Xj)

Therefore, one has

n—1
Az * < [(0)]* + D(R)(1 + Ohan) Y AT X2

i=0

n—1 5 i-1 n—1
+azh[l —0D(h)] > A(”l)h%hz e TGP Y T AGTUR A,
i=0 j=0 i=0

Due to 1 < A < €1, we have

n—1 i—1 n—2 n—1
ZA(i-H)h Ze_"](ti_tj)lXj|2 = Z A(j+1)h|Xj|2 Z AG=0hg—n(ti—t;)
i=0 =0 j=0 i=j+1
A G+1)h 2
S SM14,Aﬁ 2:14] |X3|-
j=0
Consequently, one gets
n—1 n—1
A, 2 < () + F(h, A) S ACHDR X2 4 57 AGHDR
i=0 i=0
where

F(h,A) := D(h)(1 + 6hay) + h?[1 — 0D (h)]az g

n enh — Ah”
Hence, we have

2
1
F(h,1) = —ah(1 + Ohay) + h*(1 + Ha/lh)agﬂ—

n e —1

W. ZHANG

(3.20)

(3.21)
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2
< —ajh(1+ 6hay) + h(1 + Gaih)ag%

2 2
—h |af — %O@ +60alh (a1 — %o&)} )

For a1 > (8%/n*)aa, we can choose o) € (0, 1) such that o} — (8%/n*)as > 0. Consequently,
F(h,1) < 0 and F(h,A) is continuous with respect to A, there is ¢ > 0 such that for any
A€ (1,(14¢) Aem1), we have

IN

F(h,A) <O
Since Aw; is independent of F;, and ¢g(X;,U;) is Fi,-measurable, we have ¢g(X;,U;) is in-

dependent of Aw;. It is known that E(Aw;) = 0 and E(Aw;)? = h. Notice that w(t) is
independent of N(t,-), we have

tnt1
</ / (X, Un, €) wz@><XmUmAm>=a
t

</ IH/ (X:, Ui, )N (dz, d§)>

M/ (X, Uy, )N (dz, de)

—W/W&M@F%)
Hence, we have E(M;) = 0. Therefore,
E(A™|z,]?) < |@(0)]? == ¢1 < cc.

By (3.19) and (3.20), one has

1 4.2 n—1 - i
| X, |2 < T oha <|:cn|2 +0h == e i t]>|Xj|2>. (3.22)
n i
Then
(Anh|X | ) 1 (Anh|$n|2)
~ 1+ Oha

+ M nz_:l e*n(tn*tj)A(n*j)hE(Ajh|X4|2)
77(1 + eth) = !

Z (e7mA)m=IhE (AT X41%). (3.23)

C1 9h2042<-2
< +
1+ 6har (1l + 0hay)

Define u,, := E(A™|X,|?). We can see that

n—1

Un S co + Z ljuj,
5=0

where
C1 L 9h2042<2

A= 9N (mn gy=ih s
1+ 60hay’ 7 77(1—}—6’]1041)(6 ) 20

Cyg =
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By the discrete Gronwall inequality, we have

n—1

E(Anh|Xn|2) < coexp [le] < cgexp
§=0

Oh2asc?  Ab
n(1 + 6hay) et — Al

=:c3 < 00.

Thus, we get

log E| X, |2
wgci—logfl ~ —logA <0.
nh nh

Namely, the SST method is mean square exponentially stable with rate log A. O

4. Numerical Experiments

In this section, we support the results obtained in Theorems 3.2 and 3.3 numerically with
some examples. We use discrete Brownian paths over [0, 1] with At = 2712, The SST method
with step size h = At is taken as an approximation of the analytic solution and we compare
it with the numerical approximation using h = 2°At, h = 26At,h = 27At and h = 28At over
M = 4000 sample paths. Then the mean-square error is denoted as follows:

M
1 ) )
Errory :== i Z | X5(T) — XlAt(T)‘q, q€[1,2), (4.1)
i=1

where X/ (T) denotes the numerical solution of the SST method along the i-th sample path at
t =T with step size h, and the strong convergence order is defined numerically by

Errory,

Order =

log 2 o8 Errorys

Consider the following SVIDE:
Y (t) = p(t) + /Ot (—ay3(z) —bY (2) + c/oz K(z — s)Y(s)ds) dz
+ /Ot (eY(z) + k:/oz k(z — s)Y(s)ds) dw(z)

+f t / (zy(z)+n | stz = 9w ds) EN (dz, de) (4.2)

with initial data ¢(t) =1 and A =1/2.
Firstly, we discuss a particular type.

Example 4.1. In SVIDE (4.2), we takea =b=e=1and c=k =1=n = 0. We can see
SVIDE (4.2) reduce to SDE which is studied by many authors.

From Table 4.1 and Fig. 4.1, it can be observed that if 8 € [1/2,1], the SST method is
convergent. We can see the error gets smaller as 0 stays the same and the step size gets smaller.
The error gets smaller when the step size is constant and 6 gets bigger if 6 € [1/2,1].

See from Fig. 4.2, we can see the SST method is mean square exponentially stable when
0 e (1/2,1].
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Table 4.1: Strong convergence order of the SST method for Example 4.1.
. 0=0.5 0 =0.75 =1
Stepsize
Error Order Error Order Error Order
2°At | 0.0094 - 0.0090 - 0.0088 -
26AtL 0.0145 | 0.6306 | 0.0134 | 0.5725 | 0.0129 | 0.5566
27At 0.0227 | 0.6487 | 0.0213 | 0.6714 | 0.0198 | 0.6176
28At 0.0388 | 0.7690 | 0.0340 | 0.6751 | 0.0319 | 0.6897
1 Serﬂg convergence
10
—*—0=0.5
0=0.75
. - - —0=1
10 — — — Reference line with order = 0.5
107"

@
i
S

EX3

05

10°
At

Fig. 4.2. Mean square exponential stability of the SST method of Example 4.1.

6=0.55

E[X3

23

E[X?
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Secondly, we consider a more generalized type.

Example 4.2. In SVIDE (4.2), we take a=b=e=1, c=k=0.5 and [=n=0.25 and k(t) = e =%,

The strong convergence results of the SST method of Example 4.2 are shown in Table 4.2.
From Table 4.2 and Fig. 4.3, if § € [1/2,1], we can see that as € remains unchanged, the step
size gets smaller and the error gets smaller. When the step size is constant, the error becomes
smaller as 6 gets bigger if § € [1/2,1]. Observe Fig. 4.4, we can see the SST method is mean
square exponential stable when 6 € (1/2,1].

strong convergence

—*—6=0.5

— - —6=075

0 —e=1

— — — Reference line with order = 0.5]
Reference line with order =1

6-0 6=0.55
Vi — =12 —h=112
N - = =h=1/4 - = =h=1/4
12 L - = h=1/8 D sl
[
1
1
1 !
H !
\ .
08 % R
B " ’ r 1 <
=, b A / 1 pa)
i) [\ PR 1 - [}
06F ., ' !
"\ ‘. \ 1
A AR ’
\} ’ A} N
B A ] 1
0.4 W A R
AV Loy, !
4 ‘ ~ !
0.2 v AP il
0 .
0 1 2 3 4 5 6 3 4 5 6
(a) (b)
6-0.75 -1
— a2 — 172
- = =h=1/4 - = =h=1/4
1.2 = = h=1/8 = =h=1/8
N; Ng
i ]
4 5 6 3 4 5 6
(d)

Fig. 4.4. Mean square exponential stability of the SST method of Example 4.2.
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Table 4.2: Strong convergence order of the SST method for Example 4.2.

. 0=0.5 0 =0.75 6=1
Stepsize
Error Order Error Order Error Order
2°At | 0.0034 - 0.0031 - 0.0030 -

20 At 0.0056 | 0.7250 | 0.0049 | 0.6360 | 0.0047 | 0.6241
2TAL 0.0096 | 0.7871 | 0.0079 | 0.7050 | 0.0078 | 0.7485
28 At 0.0174 | 0.8481 | 0.0140 | 0.8207 | 0.0136 | 0.7922
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