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Abstract

In this paper, we present a nonlinear correction technique to modify the nine-point

scheme proposed in [SIAM J. Sci. Comput., 30:3 (2008), 1341–1361] such that the resulted

scheme preserves the positivity. We first express the flux by the cell-centered unknowns

and edge unknowns based on the stencil of the nine-point scheme. Then, we use a nonlinear

combination technique to get a monotone scheme. In order to obtain a cell-centered finite

volume scheme, we need to use the cell-centered unknowns to locally approximate the

auxiliary unknowns. We present a new method to approximate the auxiliary unknowns

by using the idea of an improved multi-points flux approximation. The numerical results

show that the new proposed scheme is robust, can handle some distorted grids that some

existing finite volume schemes could not handle, and has higher numerical accuracy than

some existing positivity-preserving finite volume schemes.

Mathematics subject classification: 52B10, 65D18, 68U05, 68U07.

Key words: Monotonicity corrections, Diffusion equation, Improved MPFA, Distorted

meshes.

1. Introduction

In the numerical simulation of inertial confinement fusion, reservoir simulation and astro-

physics, we often need to numerically solve the diffusion equation on the distorted meshes.
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To avoid non-physical oscillations in the numerical solution, we need to choose the positivity-

preserving schemes. It was shown in [21] that there is no locally conservative, unconditionally

positivity-preserving, linear nine-point scheme such that the discretization has a second-order

accuracy and exactly reproduces the linear solution on the distorted meshes. To get a monotone

scheme, some pre- and post-processing methods are proposed in [1, 4, 12, 17, 18, 20, 23, 30–32].

On the other hand, Le Potier presents a nonlinear monotone finite volume scheme for time-

dependent anisotropic diffusion problems on unstructured triangular meshes [13]. As far as we

know, there have many papers so far, e.g. [3, 5, 10, 15, 19, 22, 25–27, 34], devoted to positivity-

preserving nonlinear finite volume schemes to solve diffusion equations on distorted meshes.

Besides, the nonlinear finite volume schemes which satisfy the stricter requirement – the discrete

maximum principle, have been discussed in [2, 6, 7, 9, 14, 16, 28].

Radiation diffusion calculation occupies an important position in solving actual radiation

fluid mechanics problems. In the calculation of multi-medium Lagrange radiation fluid, the

flow of fluid will cause the distortion of the grid. Triangular meshes have good adaptability to

the complex calculation areas, so they are often used in Lagrange radiation fluid calculations.

However, the previously proposed positive-preserving finite volume schemes [25–27,34] cannot

handle highly distorted triangular meshes well, such as the triangular Kershaw meshes showed

in Section 4.1. In this paper, we will propose a new nonlinear positive-preserving finite volume

scheme, which can handle highly distorted triangular meshes better.

The monotone schemes in [25, 27, 34] adaptively select discrete templates, which can adapt

to various large deformed meshes. However, when a certain cell has a large degree of distortion,

the expression of discrete flux on some edge of the cell may not include the physical quantity

on the edge. In this case, although the discrete flux design is well adapted to the geometric

deformation of the cell, it fails to directly reflect the change of physical quantities on some

edge of the cell, which may affect the discrete accuracy of the discrete normal flow. Besides,

the expression of the discrete flux proposed in [26] contains the unknown at the midpoint of

the edge. Hence, the discrete flux design can directly reflect the change of physical quantities

on the edge. However, the construction process of the scheme is relatively complicated, and

involves the elimination of two types of auxiliary unknowns: the vertex unknowns and the edges

unknowns.

In this paper, we construct a linear flux on each cell-edge as [24, 33], which contains the

unknown at the midpoint of the edge. And then, we deal with the tangential difference along the

edge in the discrete flux to get a new nonlinear expression of the discrete flux that includes the

cell-centered unknown and some edge unknowns. The construction process of the new proposed

scheme is relatively simple, and the new expression of the discrete flux is not only suitable for

the distortion of the mesh, but also directly reflects the change of the physical quantity on the

edge.

The auxiliary edge unknowns should be locally approximated with the surrounding cell-

centered unknowns. For a mesh with a small degree of distortion, we can use the method

in [25] to approximate the auxiliary edge unknowns. However, it is found through numerical

experiments that the absolute values of the interpolation coefficients obtained by the method

in [25] on some distorted triangular meshes are often large, resulting in an unstable scheme.

We present a new method to approximate the auxiliary edge unknowns inspired by the idea of

an improved multi-points flux approximation.

However, the approximate auxiliary unknowns obtained by this new method may be negative

even if the surrounding cell-centered unknowns are non-negative. We use an idea similar to
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[26] to assure the resulting nonlinear scheme is monotone by introducing two non-negative

parameters when constructing the conservative flux. The new proposed scheme can deal with

some distorted grids that the previous finite volume schemes could not handle well, such as the

triangular Kershaw meshes.

The article is organized as follows. In Section 2, we introduce the nonlinear correction

technique to modify the nine-point scheme. In Section 3, we give a new approach to eliminate

the auxiliary unknowns. In Section 4, we present some numerical results to test the monotonicity

and accuracy of the new scheme. Finally, we give some conclusions in Section 5.

2. Construction of Scheme

2.1. Notations

We consider the numerical solution of the diffusion equation on an open bounded polygonal

domain Ω in R
2















−∇ ·
(

κ(x)∇u(x)
)

= f(x), x ∈ Ω,

u(x) = g(x), x ∈ Γ1,

α(x)κ(x)
∂u

∂~n
(x) + β(x)u(x) = h(x), x ∈ Γ2.

(2.1)

Here, the boundary ∂Ω is divided into two disjoint parts: Γ1 with a Dirichlet boundary condition

and Γ2 with a Robin boundary condition where the non-negative parameters α(x) and β(x) do

not vanish at the same time. Moreover, the diffusion tensor κ(x) is piecewise smooth and

satisfies the following uniform ellipticity condition:

∃λ1, λ2 > 0, λ1|ξ|
2 ≤ ξTκ(x)ξ ≤ λ2|ξ|

2, ∀ x ∈ Ω, ξ ∈ R
2.

We construct a second-order positivity-preserving finite volume scheme for the diffusion equa-

tion (2.1) on distorted meshes. On the discontinuity of the diffusion tensor, we request that the

solution u(x) and the normal flux κ(x)(∂u/∂~n)(x) are continuous, but the gradient ∇u(x) is

discontinuous. We require the discontinuity of the diffusion tensor matches some mesh edges.

T denotes the set of all cells, and E is the set of all edges. We denote Pint as the set of the

cell centers and Pout as the set of the midpoints for the boundary edges. Besides, we choose

h = supK∈T diam(K), where diam(K) is the diameter of K.

For the selected cell K, its vertices are numbered counterclockwise by {Pk}
m
k=1. The cell

center is still denoted K, the edges are denoted as {σk = PkPk+1}
m
k=1 with Pm+1 = P1 and the

midpoint of σk is Mk. Integrating the diffusion equation (2.1) on K, we can obtain

−

∫

K

∇ ·
(

κ(x)∇u(x)
)

dx =

∫

K

f(x)dx,

and then it follows from the divergence theorem to obtain

m
∑

k=1

FK,σk
=

∫

K

f(x)dx,

where FK,σk
is the continuous normal flux on edge σk

FK,σk
= −

∫

σk

κ(x)∇u(x) · ~nK,σk
dΓ = −

∫

σk

∇u(x) · κ(x)T~nK,σk
dΓ. (2.2)
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2.2. The non-conservative discrete flux

As shown in Fig. 2.1, we denote an edge of the cell K by σ, the endpoints of σ by A and

B, the midpoint by I. If θK,σ is denoted as the angle between ~τKI and ~nK,σ, then according

to the construction of the discrete flux on σ in [24], we have

FK,σ = αK,σ

[

u(A)− u(B)
]

−
|A−B|

|I −K|
βK,σ

[

u(I)− u(K)
]

+O(h2) (2.3)

with the coefficients are defined by

βK,σ =
1

cos θK,σ

~nK,σ ·
(

κT
K~nK,σ

)

> 0, αK,σ =
1

cos θK,σ

~νKI ·
(

κT
K~nK,σ

)

,

where we denote κK = κ(K) and

~νKI = sin θK,σ~nK,σ − cos θK,σ~τBA.

Hence, we can obtain a discrete approximation of the continuous flux FK,σ as follows:

F1,σ = −τK,σ

[(

u(I)− u(K)
)

−DK,σ

(

u(A)− u(B)
)]

, (2.4)

where

τK,σ =
|A−B|

|I −K|
βK,σ > 0, DK,σ =

|I −K|αK,σ

|A−B|βK,σ

.

Assume L is the neighbor cell of K with σ = K
⋂

L. Similarly, we can give a discrete

expression of the other flux FL,σ on σ

F2,σ = −τL,σ

[(

u(I)− u(L)
)

−DL,σ

(

u(B)− u(A)
)]

(2.5)

Fig. 2.1. The stencil of the discrete flux.
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with the coefficients defined as follows:

τL,σ =
|A−B|~nL,σ ·

(

κT
L~nL,σ

)

|I − L| cos θL,σ

> 0, DL,σ =
|I − L|~νLI ·

(

κT
L~nL,σ

)

|A−B|~τL,σ cos θL,σ

,

where θL,σ is the angle between ~τLI and ~nL,σ, the diffusion tensor κL = κ(L) and the vector

~νLI = sin θL,σ~nL,σ − cos θL,σ~τAB.

In general, the coefficients in the above discrete fluxes (2.4) and (2.5) satisfy the following

relationship:

τK,σ 6= τL,σ, DK,σ 6= DL,σ.

Thus, the discrete flux defined above is non-conservative and satisfies

F1,σ + F2,σ = O(h2).

2.3. The conservative discrete flux on interior edges

It is found through numerical experiments that the accuracy of the existing positivity-

preserving finite volume scheme is lower than that of the nine-point scheme. Hence, we will

construct a positivity-preserving scheme starting from the discrete flux (2.4) and (2.5) of the

nine-point scheme on σ.

In order to obtain a new discrete flux containing only the cell-centered unknowns and the

edge unknowns, we can use an ideal from [33] to approximate the tangential difference [u(A)−

u(B)] contained in F1,σ (or F2,σ) according to the sign of DK,σ (or DL,σ). As shown in Fig. 2.2,

the tangential difference [u(A)− u(B)] will be approximated by the multiple of the directional

derivative of u(x) in a direction parallel to ~τAB or at K (or L).

For the tangential difference [u(A)− u(B)] in F1,σ, we can find a point K ′ on ∂K such that

~τK′K ‖ sgn(DK,σ)~τBA, and then

sgn(DK,σ)
u(A)− u(B)

|A−B|
= sgn(DK,σ)∇u(I) · ~τBA +O(h) = ∇u(K) · ~τK′K +O(h). (2.6)

Fig. 2.2. The stencil of the conservative flux on interior edge.
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There are two adjacent edge midpoints such that the ray originated at cell-center K along the

direction ~τKK′ intersects the segment MK,1MK,2. If we denote the angle between ~τK′K and

~τMK,1K as θK,1, and the one between ~τK′K and ~τMK,2K as θK,2, then ~τK′K can be decomposed by

~τK′K =
sin θK,2

sin θK
~τMK,1K +

sin θK,1

sin θK
~τMK,2K =

1

|A−B|
(ωK,1~τMK,1K + ωK,2~τMK,2K) (2.7)

with

θK = θK,1 + θK,2, 0 ≤ θK,1 < π, 0 ≤ θK,2 < π.

Here, we assume that θK,1, θK,2 cannot be zero at the same time and θK < π, and then we

can get

ωK,1 ≥ 0, ωK,2 ≥ 0.

Next, substituting (2.7) into (2.6) gives

F1,σ = aK,σu(K)− c̃K,σ +O(h2),

where

aK,σ = τK,σ + τK,σ|DK,σ|

(

ωK,1

|K −MK,1|
+

ωK,2

|K −MK,2|

)

,

c̃K,σ = τK,σ

[

u(I) +
|DK,σ|ωK,1

|K −MK,1|
u(MK,1) +

|DK,σ|ωK,2

|K −MK,2|
u(MK,2)

]

.

If we denote the approximate value of u(P ) as uP , we set

F̄K,σ , aK,σuK − cK,σ, (2.8)

where

cK,σ = τK,σ

(

uI +
|DK,σ|ωK,1

|K −MK,1|
uMK,1

+
|DK,σ|ωK,2

|K −MK,2|
uMK,2

)

.

Similarly, we can get the other discrete flux on σ as follows:

F̄L,σ = aL,σuL − cL,σ (2.9)

with the coefficients aL,σ and cL,σ defined as above.

Due to the error introduced in the process of approximating the tangential difference term,

we can obtain that

F̄K,σ + F̄L,σ = O(h2),

which yields, the discrete fluxes F̄K,σ and F̄L,σ constructed above are non-conservative. To

maintain local conservation, we can use the convex combination of the above non-conservative

discrete fluxes to construct a discrete normal flux on σ

FK,σ = µ1,σF̄K,σ − µ2,σF̄L,σ, (2.10)

FL,σ = −µ1,σF̄K,σ + µ2,σF̄L,σ, (2.11)

where µ1,σ, µ2,σ are coefficients satisfying µ1,σ + µ2,σ = 1 to be determined later. Substituting

(2.8) and (2.9) into (2.10) gives

FK,σ = µ1,σaK,σuK − µ2,σaL,σuL − µ1,σcK,σ + µ2,σcL,σ

= µ1,σ[aK,σ + sgn(uK)ωK,σ]uK − µ2,σ[aL,σ + sgn(uL)ωL,σ]uL

− µ1,σ(cK,σ + ωK,σ|uK |δ) + µ2,σ(cL,σ + ωL,σ|uL|δ)

+ µ1,σωK,σ(|uK |δ − |uK |)− µ2,σωL,σ(|uL|δ − |uL|), (2.12)
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where ωK,σ, ωL,σ are non-negative parameters to be determined and | · |δ is defined by

|w|δ =

{

|w|, |w| ≥ δ,

δ, |w| < δ.

In order to maintain the precision of the numerical scheme, we choose the parameters δ as

follows:

δ = Ch2,

where the constant C is generally a positive real number not greater than 10. If we truncate

the last two terms in (2.12), we obtain an approximate flux

F δ
K,σ = µ1,σ[aK,σ + sgn(uK)ωK,σ]uK − µ2,σ[aL,σ + sgn(uL)ωL,σ]uL

− µ1,σ(cK,σ + ωK,σ|uK |δ) + µ2,σ(cL,σ + ωL,σ|uL|δ). (2.13)

To get a two-point discrete flux on σ, the third and fourth term of the above expression must

be offset, which yields

{

µ1,σ + µ2,σ = 1,

µ1,σ(cK,σ + ωK,σ|uK |δ)− µ2,σ(cL,σ + ωL,σ|uL|δ) = 0.
(2.14)

If cK,σ + cL,σ = 0, we choose ωK,σ = ωL,σ = 0 and set

µ1,σ = µ2,σ =
1

2
,

else if cK,σ + cL,σ 6= 0, we can choose

µ1,σ =
cL,σ + ωL,σ|uL|δ

cK,σ + cL,σ + ωK,σ|uK |δ + ωL,σ|uL|δ
,

µ2,σ =
cK,σ + ωK,σ|uK |δ

cK,σ + cL,σ + ωK,σ|uK |δ + ωL,σ|uL|δ
.

To preserve positivity, the coefficients µ1,σ and µ2,σ should be non-negative. When using

the improved MPFA introduced in next section to approximate the edge unknown, even if the

cell-centered unknowns used in the approximation are all non-negative, it is also possible to

obtain a negative edge unknown, and then give a negative cK,σ or cL,σ. When cK,σ (cL,σ) is

negative, we can find a positive parameter ωK,σ (ωL,σ) such that

ωK,σ|uK |δ + cK,σ > 0, ωL,σ|uL|δ + cL,σ > 0. (2.15)

Here, we can choose

ωK,σ > max

{

0,−
cK,σ

|uK |δ

}

, ωL,σ > max

{

0,−
cL,σ

|uL|δ

}

.

If σ is an interior edge, we can give the conservative discrete flux on σ

F δ
K,σ = AK,σuK −BK,σuL, (2.16)

F δ
L,σ = AL,σuL −BL,σuK , (2.17)
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where the coefficients are defined by

AK,σ = BL,σ = µ1,σ[aK,σ + sgn(uK)ωK,σ],

AL,σ = BK,σ = µ2,σ[aL,σ + sgn(uL)ωL,σ].

If the unknowns uK , uL ≥ 0, we can obtain that

AK,σ = BL,σ > 0, AL,σ = BK,σ > 0.

2.4. The conservative discrete flux on boundary edges

As shown in Fig. 2.3, if σ is a boundary edge, we denote the midpoint of σ as K. The

continuous normal flux on σ is defined as follows:

FK,σ = −

∫

σ

∇u(x) · κ(x)T~nK,σdΓ ≡

∫

σ

∇u(x) · κT (x)~nL,σdΓ = −FL,σ, (2.18)

where L is denoted as the center of cell that σ belongs to. If the endpoints of σ are denoted as

A and B, we can discretize the continuous normal flux FL,σ by

FL,σ = −τσ
[(

u(K)− u(L)
)

−Dσ

(

u(B)− u(A)
)]

+O(h2)

with τσ , τL,σ and Dσ , DL,σ defined as in [24].

According to (2.18), the flux FK,σ defined above can be discretized by

FK,σ = −τσ
[(

u(L)− u(K)
)

−Dσ

(

u(A)− u(B)
)]

+O(h2).

Then we define the discrete normal flux on σ as

F1,σ = −τσ[(uL − uK)−Dσ(uA − uB)], (2.19)

F2,σ = −τσ[(uK − uL)−Dσ(uB − uA)]. (2.20)

Since K is the midpoint of σ, we can handle the tangential difference (uA − uB) in F1,σ by

sgn(Dσ)(uA − uB) = 2(uK − uP ) +O(h2),

Fig. 2.3. The stencil of the conservative flux on boundary edge.
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where

uP =

{

uB, Dσ ≥ 0,

uA, Dσ < 0.

Substituting it into (2.19) gives

F1,σ = aK,σuK − bK,σuL − cK,σ +O(h2) , F̄K,σ +O(h2) (2.21)

with the coefficients defined as follows:

aK,σ = τσ(1 + 2|Dσ|), bσ = τσ, cK,σ = 2τσ|Dσ|uP .

As for the tangential difference (uB − uA) in F2,σ, using the method proposed in the previous

subsection gives

F2,σ = aL,σuL − bL,σuK − cL,σ +O(h2), (2.22)

where

aL,σ = τL,σ + τL,σ|DL,σ|

(

ωL,1

|L−ML,1|
+

ωL,2

|L−ML,2|

)

,

bL,σ = τL,σ,

cL,σ = τL,σ

[

|DL,σ|ωL,1

|L−ML,1|
uML,1

+
|DL,σ|ωL,2

|L−ML,2|
uML,2

]

.

Next, we construct the conservative discrete flux on σ by a convex combination of the above

non-conservative discrete fluxes

FK,σ = µ1,σF̄K,σ − µ2,σF̄L,σ, (2.23)

FL,σ = −µ1,σF̄K,σ + µ2,σF̄L,σ. (2.24)

Substituting F̄K,σ and F̄L,σ into the above expression gives

FK,σ = (µ1,σaK,σ + µ2,σbL,σ)uK − (µ1,σbK,σ + µ2,σaL,σ)uL

− µ1,σcK,σ + µ2,σcL,σ

=
[

µ1,σ

(

aK,σ + sgn(uK)ωK,σ

)

+ µ2,σbL,σ

]

uK

−
[

µ1,σbK,σ + µ2,σ

(

sgn(uL)ωL,σ + aL,σ

)]

uL

− µ1,σ(cK,σ + ωK,σ|uK |δ) + µ2,σ(cL,σ + ωL,σ|uL|δ)

+ µ1,σωK,σ(|uK |σ − |uK |)− µ2,σωL,σ(|uL|σ − |uL|), (2.25)

where ωK,σ, ωL,σ are non-negative parameters to be determined. Choosing δ = Ch2 and

truncating the last two terms in (2.25) yields an approximate flux

F δ
K,σ =

[

µ1,σ

(

aK,σ + sgn(uK)ωK,σ

)

+ µ2,σbL,σ

]

uK

−
[

µ1,σbK,σ + µ2,σ

(

sgn(uL)ωL,σ + aL,σ

)]

uL

− µ1,σ(cK,σ + ωK,σ|uK |δ) + µ2,σ(cL,σ + ωL,σ|uL|δ). (2.26)

To get a two-point discrete flux on σ, the third and fourth terms of the above expression must

be removed, which yields
{

µ1,σ + µ2,σ = 1,

µ1,σ(cK,σ + ωK,σ|uK |δ)− µ2,σ(cL,σ + ωL,σ|uL|δ) = 0.
(2.27)
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Using the method mentioned in the previous subsection, we can select the appropriate convex

combination coefficients µ1,σ and µ2,σ.

In summary, we can give the conservative discrete flux on σ

F δ
K,σ = AK,σuK −BK,σuL, (2.28)

F δ
L,σ = AL,σuL −BL,σuK , (2.29)

where the coefficients are defined by

AK,σ = BL,σ = µ1,σ[aK,σ + sgn(uK)ωK,σ] + µ2,σbL,σ,

AL,σ = BK,σ = µ1,σbK,σ + µ2,σ[aL,σ + sgn(uL)ωL,σ].

If the unknowns uK , uL ≥ 0, we can obtain that

AK,σ = BL,σ > 0, AL,σ = BK,σ > 0.

In order to obtain a complete finite volume scheme, we need to discretize the boundary

conditions on σ.

Dirichlet boundary condition. If Dirichlet boundary condition is given on σ, direct dis-

cretization gives

uK = g(K),

and then the discrete flux on σ is given by

F δ
L,σ = AL,σuL −BL,σg(K) = AL,σuL − aL,σ. (2.30)

Robin boundary condition. As for the Robin boundary condition, integrating it on σ gives

∫

σ

α(x)κ(x)∇u(x) · ~ndΓ +

∫

σ

β(x)u(x)dΓ =

∫

σ

h(x)dΓ,

and then we can discretize the above formula as follows:

αKF δ
K,σ + βK |σ|uK = |σ|h(K),

that is,

(αKAK,σ + βK |σ|)uK − αKBK,σuL = |σ|h(K). (2.31)

2.5. The finite volume scheme

By discretizing the flux and the boundary value conditions as above, we can get the following

finite volume scheme for solving the diffusion equation (2.1):

∑

σ⊂∂K

F δ
K,σ = m(K)fK , ∀K ∈ Pint, (2.32)

uK = gK , ∀K ∈ Pout

⋂

Γ1, (2.33)

αKF δ
K,σ + βK |σ|uK = |σ|hK , ∀K ∈ Pout

⋂

Γ2, (2.34)

where we denote fK = f(K), gK = g(K), hK = h(K) and m(K) is the area of the cell K.
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Let us denote Uc as the vector consisting of all cell-centered unknowns and the boundary

unknowns on Γ2, and Ue is the vector consisting of auxiliary unknowns. And then the finite

volume scheme (2.32)-(2.34) can be rewritten as the following matrix form:

A(Ue)Uc = F+G, (2.35)

where

A(Ue) =
∑

σ∈E orσ⊂Γ2

NσAσ(Ue)N
T
σ , (2.36)

F =

(

∑

σ∈E

m(K)fK +
∑

σ⊂Γ2

|σ|hK

)

K∈Pint

⋃
(Pout

⋂
Γ2)

, (2.37)

G =

(

∑

σ⊂K
⋂

Γ1

aK,σ

)

K∈Pint

⋃
(Pout

⋂
Γ2)

. (2.38)

Here, the matrices Aσ(Ue) are 2× 2 matrices

Aσ(Ue) =

(

AK,σ −AL,σ

−AK,σ AL,σ

)

, σ ∈ E , (2.39)

Aσ(Ue) =

(

αKAK,σ + βK |σ| −αKAL,σ

−αKAK,σ − βK |σ| αKAL,σ

)

, σ ⊂ Γ2 (2.40)

for σ ∈ E or σ ⊂ Γ2 and are 1×1 matrices Aσ(Ue) = AK,σ for σ ⊂ Γ1. Besides, the assembling

matrices Nσ only consist of zeros and ones.

2.6. Picard iteration and monotonicity

We will use the Picard iterative method to solve the above system of nonlinear equations

(2.35)

A
(

U(s)
e

)

U(s+1)
c

= F+G, s = 0, 1, 2, . . . . (2.41)

For the auxiliary unknowns Ue, we need to use the cell-centered unknowns for locally interpo-

lation approximation

U(s)
e

≈ BU(s)
c

, (2.42)

and then we can obtain

A
(

BU(s)
c

)

U(s+1)
c

= F+G, s = 0, 1, 2, . . . . (2.43)

According to numerical evidence, this iteration always converge if the linear system can be

solved with a small tolerance εlinear . The slow convergence rate of Picard iteration can be

accelerated by Anderson-mixing method [29].

Referring to [34], we can prove that the nonlinear finite volume scheme (2.32)-(2.34) is

monotone.

Theorem 2.1. Assume the vectors F,G,U0
c
≥ 0 and linear systems in Picard iterations are

solved exactly. Then all iterates U
(s)
c are non-negative vectors

U(s)
c

≥ 0, s = 1, 2, 3, . . . .
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If the Picard iterative method converges, we can further prove the nonlinear scheme (2.32)-

(2.34) is strongly positivity-preserving.

Theorem 2.2. Assume the vectors F,G ≥ 0 and F + G 6= 0. Then the solution of the

nonlinear finite volume scheme (2.32)-(2.34) is positive for the interior cell, that is

uK > 0, ∀K ∈ Pint. (2.44)

Proof. Since F,G ≥ 0, the solution of the nonlinear finite volume scheme (2.32)-(2.34) is

non-negative according to the monotonicity. The matrix A(Ue) is non-symmetric and weak

diagonal dominance in column. Hence, A(Ue) is an M-matrix and all entries of A−1(Ue) are

non-negative. And then the entries of Uc are not all zero since F+G 6= 0.

If the cell-centered unknowns are not all positive, we can find an interior cell K such that

uK = 0,
∑

Kσ
⋂

K 6=∅

uKσ > 0, (2.45)

and
∑

σ⊂∂K

F δ
K,σ = m(K)fK ≥ 0. (2.46)

According to the construction process of the conservative discrete flux F δ
K,σ in the previous

section, we have that

AK,σ > 0, BK,σ > 0, ∀σ ⊂ ∂K. (2.47)

And then combining (2.45) and (2.47), we can get that

∑

σ⊂∂K

F δ
K,σ =

∑

σ⊂∂K

(AK,σuK −BK,σuKσ) < 0,

which contradicts (2.46). Thus, the cell-centered unknowns are all positive. �

Remark 2.1. When the vectors F ≥ 0, G ≥ 0 and F+G 6= 0, the cell-centered unknowns uK

are all positive due to Theorem 2.2. By the definition of | · |δ, we have |uK |δ = uK . And

then, we can obtain F δ
K,σ = FK,σ . Hence, the nonlinear finite volume scheme (2.32)-(2.34) has

a second-order truncation accuracy while maintaining the positivity.

3. Method Eliminating the Auxiliary Unknowns

In this section, we will introduce a new method eliminating the auxiliary unknowns.

We can use a method shown in [25] that is derived from the idea of MPFA (multi-point

flux approximations) to express the auxiliary unknowns, and it shows in [25] that the algorithm

has a relatively high numerical accuracy. However, this algorithm cannot converge on some

deformed meshes, such as the triangular Kershaw meshes.

As shown in Fig. 3.1(a), for a given vertex P , we denote {xck}
m
k=1 as the centers of the cells

around P and {xck}
m
k=1 is sorted counterclockwise, besides, we denote {xek}

m
k=1 as the midpoints

of the edges around P and {xek}
m
k=1 is also sorted counterclockwise, moreover, xck is adjacent to

xek and xek+1.

Inspired by the work in [8], we consider the quadrilateral pressure support Ωk with xck, x
e
k+1,

P and xek as vertices, as shown in Fig. 3.1(b), instead of a triangular pressure support considered
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(a) (b)

Fig. 3.1. The stencil of improved MPFA: (a) some notation around P ; (b) some notation on Ωk.

in [25]. Then, we propose a new method with full pressure support (FPS) to improve the above

method expressing the auxiliary unknowns.

For simplicity, we will denote the above point as {xj}
4
j=1, and let ekj be the edge with two

endpoints xj , xj+1 and an outer normal vector ~νkj . Integrating the gradient ∇u(x) on Ωk and

using the Green’s formula in vector calculus, we have

∫

Ωk

∇u(x)dx =

4
∑

j=1

∫

ek
j

u(x)~νkj dΓ.

If we approximate u(x) linearly, then we can define the approximate gradient ∇Uk on Ωk as

follows:

∇Uk ,

4
∑

j=1

|ekj |~ν
k
j

2|Ωk|

[

u(xj) + u(xj+1)
]

,

thus, the continuous normal flux on ek2 can be written as

F1
k =

∫

ek
2

κ(x)∇u(x) · ~n1
kdΓ =

4
∑

j=1

|ekj ||e
k
2 |~ν

k
j · κT

k ~n
1
k

2|Ωk|

[

u(xj) + u(xj+1)
]

+O(h2).

Hence, we can give a second-order approximation of the continuous flux F1
k

F 1
k =

4
∑

j=1

|ekj ||e
k
2 |~ν

k
j · κT

k ~n
1
k

2|Ωk|

[

u(xj) + u(xj+1)
]

. (3.1)

Similarly, we can get a second-order approximation of the normal flux F2
k on ek3

F 2
k =

4
∑

j=1

|ekj ||e
k
3 |~ν

k
j · κT

k ~n
2
k

2|Ωk|

[

u(xj) + u(xj+1)
]

. (3.2)

Then the continuity of the normal flux on ek2 gives

F 1
k + F 2

k+1 = 0.

If we denote uk = u(xck), ūk = u(xek) and ūm+1 = ū1, um+1 = u1, we have

akkūk + ak+1
k ūk+1 + ak+2

k ūk+2 + am+1
k uP = bkkuk + bk+1

k uk+1, (3.3)
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where the coefficients are defined by

akk =
|ek2 |

2|Ωk|

[

|ek3 |~ν
k
3 · κT

k ~n
1
k + |ek4 |~ν

k
4 · κT

k ~n
1
k

]

,

ak+1
k =

|ek+1
2 |

2|Ωk+1|

[

|ek+1
3 |~νk+1

3 · κT
k+1~n

2
k+1 + |ek+1

4 |~νk+1
4 · κT

k+1~n
2
k+1

]

+
|ek1 |

2|Ωk|

[

|ek1 |~ν
k
1 · κT

k ~n
1
k + |ek2 |~ν

k
2 · κT

k ~n
1
k

]

,

ak+2
k =

|ek+1
1 |

2|Ωk+1|

[

|ek+1
1 |~νk+1

1 · κT
k+1~n

2
k+1 + |ek+1

2 |~νk+1
2 · κT

k+1~n
2
k+1

]

,

am+1
k =

|ek+1
2 |

2|Ωk+1|

[

|ek+1
3 |~νk+1

3 · κT
k+1~n

2
k+1 + |ek+1

2 |~νk+1
2 · κT

k+1~n
2
k+1

]

+
|ek1 |

2|Ωk|

[

|ek3 |~ν
k
3 · κT

k ~n
1
k + |ek2 |~ν

k
2 · κT

k ~n
1
k

]

,

bkk = −
|ek2 |

2|Ωk|

[

|ek1 |~ν
k
1 · κT

k ~n
1
k + |ek4 |~ν

k
4 · κT

k ~n
1
k

]

,

bk+1
k =

|ek+1
1 |

2|Ωk+1|

[

|ek+1
1 |~νk+1

1 · κT
k+1~n

2
k+1 + |ek+1

4 |~νk+1
4 · κT

k+1~n
2
k+1

]

.

If we use (3.3) to express the auxiliary edge unknowns {uk}
m
k=1, we need to eliminate the

vertex unknown uP . We will use the method mentioned in [27] to represent the vertex unknown

as a convex combination of {ūk}
m
k=1 and {uk}

m
k=1

am+1
m+1up +

m
∑

k=1

akm+1ūk =

m
∑

k=1

bkm+1uk, (3.4)

where the interpolation coefficients satisfy

akm+1 ≤ 0, bkm+1 ≥ 0, k = 1, 2, . . . ,m, am+1
m+1 = 1,

and
m
∑

k=1

(

|bkm+1|+ |akm+1|
)

= 1.

If we denote ū = (ū1, · · · , ūm, uP )
T and u = (u1, · · · , um)T , then (3.3) and (3.4) give the

following system of linear equations:

Āū = B̄u,

where the coefficient matrix Ā = (ajk)(m+1)×(m+1) and B̄ = (bjk)(m+1)×m. Denote C = Ā−1B̄,

and then we can express the auxiliary edge unknowns as follows:

ūk =

m
∑

j=1

cjkuj, k = 1, 2, . . . ,m. (3.5)

Remark 3.1. For each auxiliary edge unknown, the improved MPFA proposed above can give

two different interpolation approximations. It can be found from numerical experiments that

when the sum of the absolute values for the interpolation coefficients is large, some interpolation

coefficients are more likely to be negative. Hence, we choose the one with the smaller sum of

the absolute values for the interpolation coefficients.

It can be seen from the numerical experiments that the improved MPFA has wider applica-

bility than MPFA and can handle more complex meshes.
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4. Numerical Experiments

We give some numerical experiments to test the robustness and accuracy of the new proposed

scheme. We define the discrete L2-norm error of u(x) as

εu2 =

[

∑

K∈T

(

uK − u(K)
)2
m(K)

]
1

2

,

and the discrete error for the normal flux F as

εFh =

[

∑

σ∈E

(FK,σ −FK,σ)
2

]
1

2

.

Besides, the number of nonlinear iterations is recorded as it#non.

For the sake of brevity, the new proposed positivity-preserving scheme with the auxiliary

unknowns approximated by the improved MPFA is denoted as Scheme 1, and the new proposed

scheme with the auxiliary unknowns approximated by the method proposed in [25] is denoted

as Scheme 2.

4.1. Anisotropic diffusion problem

We will use the finite volume scheme (2.32)-(2.34) to solve the anisotropic diffusion problem

on Ω = [0, 1]2 with a diffusion tensor κ = RDRT , where

R =

(

cos θ − sin θ

sin θ cos θ

)

, D =

(

k1 0

0 k2

)

.

Here, we choose θ = 5π/12, k1 = 1+2x2+y2 and k2 = 1+x2+2y2. And the analytical solution

is chosen as u(x, y) = sin(πx) sin(πy).

At first, we use our scheme to solve the anisotropic diffusion problems on the random

quadrilateral and the random triangular meshes. In addition, we use the scheme in [25, 26] for

comparison. The numerical experiment results show that the new proposed scheme (2.32)-(2.34)

gives calculation results similar to the scheme in [25, 26].

We also test our scheme on the quadrilateral Kershaw meshes shown in Fig. 4.1 and the

triangular Kershaw meshes shown in Fig. 4.2.

Fig. 4.1. The quadrilateral Kershaw mesh. Fig. 4.2. The triangular Kershaw mesh for

anisotropic diffusion problems.
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Table 4.1 gives the numerical results of the new proposed scheme on the quadrilateral

Kershaw meshes, and compares them with the numerical results in [25, 27]. The Kershaw

meshes are highly distorted, but our positivity-preserving finite volume scheme can still have

a convergence rate close to second order for the solution and a first-order convergence rate for

the flux. On the coarse meshes, if improved MPFA is used to approximate the auxiliary edge

unknowns, the accuracy for the solution is less than second order, moreover the accuracy of the

new proposed scheme is better than that of the scheme in [25]. Besides, the scheme in [27] has

lower accuracy on the quadrangular Kershaw meshes.

Table 4.2 shows the numerical accuracy of our positivity-preserving finite volume scheme

on the triangular Kershaw meshes, and compares it with the calculation results in [27]. Here,

we use improved MPFA for calculation.

From Table 4.2, it can be seen that our positivity-preserving finite volume scheme can give

a higher convergence rate on the triangular Kershaw meshes than the scheme in [27].

The absolute values of the interpolation coefficients obtained by the method in [25] on

the triangular Kershaw meshes are often large. In numerical experiments, no matter what

initial value is selected, the nonlinear iteration to solve the finite volume scheme in [25] cannot

converge. Hence, using MPFA to approximate auxiliary unknowns cannot obtain a convergent

solution.

Combining the calculation results on random triangular, quadrilateral meshes and Kershaw

meshes, we can see that our positivity-preserving finite volume scheme can deal with anisotropic

Table 4.1: Accuracy on the quadrilateral Kershaw meshes.

The number of cell 144 576 2304 9216 36864

ε
u

2 2.50e-2 8.58e-3 1.71e-3 3.48e-4 7.99e-5

rate - 1.54 2.33 2.30 2.12

Scheme 1 ε
F

h 7.15e-1 2.73e-1 8.80e-2 2.88e-2 1.02e-2

rate - 1.39 1.63 1.61 1.50

it
#
non 64 122 171 211 242

ε
u

2 1.90e-2 5.91e-3 1.27e-3 3.56e-4 9.72e-5

rate - 1.68 2.22 1.83 1.87

Scheme 2 ε
F

h 6.51e-1 2.64e-1 1.04e-1 3.86e-2 1.40e-2

rate - 1.31 1.34 1.43 1.47

it
#
non 64 133 186 230 262

ε
u

2 1.96e-2 5.91e-3 1.24e-3 3.47e-4 9.49e-5

rate - 1.73 2.25 1.84 1.87

The scheme in [25] ε
F

h 7.00e-1 2.66e-1 1.04e-1 3.85e-2 1.39e-2

rate - 1.40 1.35 1.43 1.47

it
#
non 64 134 187 231 262

ε
u

2 3.14e-2 1.62e-2 6.44e-3 2.02e-3 5.48e-4

rate - 0.95 1.33 1.67 1.88

The scheme in [27] ε
F

h 9.10e-1 4.88e-1 2.10e-1 7.57e-2 2.51e-2

rate - 0.90 1.22 1.47 1.59

it
#
non 70 129 212 287 382
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Table 4.2: Accuracy on the triangular Kershaw meshes.

The number of cell 288 1152 4608 18432 73728

ε
u

2 3.29e-2 1.18e-2 2.91e-3 7.03e-4 1.75e-4

rate - 1.48 2.02 2.05 2.01

Scheme 1 ε
F

h 1.34 5.33e-1 1.87e-1 6.17e-2 1.97e-2

rate - 1.32 1.51 1.60 1.65

it
#
non 107 235 397 517 690

Scheme 2 Not work!

ε
u

2 1.84e-2 1.25e-2 5.78e-3 1.93e-3 5.36e-4

rate - 0.56 1.11 1.58 1.85

The scheme in [27] ε
F

h 1.31 6.96e-1 3.24e-1 1.30e-1 5.02e-2

rate - 0.91 1.10 1.32 1.37

it
#
non 104 131 234 336 534

The scheme in [25] Not work!

diffusion problems on highly distorted meshes and is more robust. Especially on Kershaw

meshes, which are highly distorted meshes, our positivity-preserving finite volume scheme can

give a higher convergence rate than some existing finite volume schemes.

4.2. The diffusion problem with point source

Consider the anisotropic diffusion problem on Ω = [0, 1]2 with a point source. We choose

an anisotropic diffusion tensor κ = RDRT , where

R =

(

cos θ − sin θ

sin θ cos θ

)

, D =

(

k1 0

0 k2

)

,

and we choose θ = π/6, k1 = 10000, k2 = 1. We put a point source at the center of Ω. To

facilitate numerical calculations, we select the source term as

f(x, y) =











101× 101, (x, y) ∈

[

50

101
,
51

101

]2

,

0, otherwise.

Besides, the homogeneous Dirichlet boundary condition is imposed on ∂Ω. We solve the strongly

anisotropic diffusion problem with point source on a random quadrilateral mesh shown in

Fig. 4.3. Although the analytical solution cannot be obtained, according to the maximum

principle, we know that the solution should be positive.

Fig. 4.4(a) gives an image of the numerical solution for the point source problem on the

random quadrilateral mesh given by our positivity-preserving finite volume scheme. It can be

seen that all the numerical solutions on the interior cell are positive, so the scheme is positivity-

preserving. And from the contour map in Fig. 4.4(b), it is obvious that our numerical solution

captures the strong anisotropy of the diffusion tensor, which leads to the phenomenon that the

solution is concentrated near the line 3y − x = 0.
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Fig. 4.3. The random quadrilateral mesh for the diffusion problem with point source (101×101).

Fig. 4.4. Numerical results of the diffusion problem with point source: (a) numerical solution image;

(b) contour map.

4.3. Vertical fault

Consider the vertical fault problem taken from [11]. We divide the calculation area Ω =

[0, 1]2 into two parts: the black area in Fig. 4.5 Ω1 = Ωl
1

⋃

Ωr
1, where

Ωl
1 = (0.0, 0.5]×

(

4
⋃

k=0

[

0.05 + 2k × 0.1, 0.05 + (2k + 1)× 0.1
)

)

,

Ωr
1 = (0.5, 1.0)×

(

4
⋃

k=0

[

2k × 0.1, (2k + 1)× 0.1
)

)

,

and the white area in Fig. 4.5 Ω2 = Ω \ Ω1. Then, we choose the following layered anisotropic

diffusion tensor:

κ =

(

α 0

0 β

)

,

where α = 100, β = 10 on Ω1 and α = 10−2, β = 10−3 on Ω2. It can be seen that a vertical fault

will appear at x = 0.5. We use a random quadrilateral mesh shown in Fig. 4.6 for calculation,

where the mesh edges are divided along the discontinuity of the diffusion tensor.
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Here, the Dirichlet boundary condition u(x, y) = 1 − x are imposed on ∂Ω, and we choose

a zero force term. Then, according to the maximum principle, we know that the internal

solution of the vertical fault problem should be between 0 and 1. Fig. 4.7 shows an approximate

solution to the vertical fault problem on the random quadrilateral mesh shown in Fig. 4.6, which

is obtained by using our positivity-preserving finite volume scheme. The maximum value of the

numerical solution on the interior cell is 0.995, and the minimum value is 5.30e-3.

Fig. 4.5. Computation area for vertical fault problems.

Fig. 4.6. The random quadrilateral mesh for

vertical fault problems (60× 60).

Fig. 4.7. Numerical results of vertical faults.

4.4. Heterogeneous diffusion tensor

Finally, we consider the heterogeneous diffusion tensor problem on Ω = [0, 1]2 shown in

Fig. 4.8. We choose a full diffusion tensor κ(x, y) = RDRT , where

R =

(

cos θ − sin θ

sin θ cos θ

)

, D =

(

k1 0

0 k2

)

.
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k1 = 10

k1 = 10

k2 = 1

k2 = 1

k1 = 1000

k2 = 1

k2 = 1

k1 = 1000

� = � � / 6

� = � � / 6

� = � / 6

� = � / 6

x

y

(0, 0) 0.5 1.0

0.5

1.0

Fig. 4.8. The heterogeneous diffusion tensor.

When 0 ≤ x, y < 0.5 or 0.5 < x, y ≤ 1, we set

θ =
π

6
, k1 = 1000, k2 = 1,

and on the rest of the calculation domain we choose

θ = −
π

6
, k1 = 10, k2 = 1.

Thus, the diffusion tensor κ(x, y) is anisotropic over Ω and is strongly discontinuous on x = 0.5

or y = 0.5. We examine the numerical solution on a random quadrilateral mesh shown in

Fig. 4.9 by our positivity-preserving scheme. We choose the force term as

f(x, y) =







10000,
7

18
≤ x, y ≤

11

18
,

0, otherwise,

and the homogeneous Dirichlet boundary condition g(x, y) = 0 is imposed on ∂Ω.

Fig. 4.10 shows the numerical solution for the problem with the heterogeneous diffusion

tensor obtained by our positivity-preserving scheme on the random quadrilateral mesh. Fig. 4.10

gives the image of the numerical solution. It can be seen that even if the diffusion tensor is

strongly anisotropic and discontinuous, the numerical solution given by our positivity-preserving

scheme is still positive on the interior cell. Fig. 4.11(a) gives the contour map of the numerical

solution, which clearly shows the influence of different diffusion coefficients in different regions.

Fig. 4.11 shows the numerical solutions obtained by our schemes and the nine-point scheme

in [24]. It can be seen from these figures that nine-point scheme produces negative values,

however, our scheme preserves the positivity of the continuous solution.
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Fig. 4.9. The random quadrilateral mesh for problem with heterogeneous diffusion tensor (72× 72).

Fig. 4.10. Numerical solution of the problem with heterogeneous diffusion tensor.

Fig. 4.11. Comparison of our scheme and the nine-point scheme in [24] on random quadrilateral meshes:

(a) our scheme; (b) the nine-point scheme (umin = −0.5901, the negative part is shown in white).
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5. Conclusion

We introduce a nonlinear combination technique to correct the nine-point scheme proposed

in [24] for solving the diffusion equation. The auxiliary edge unknowns are eliminated locally

by the improved MPFA, which results in a cell-centered scheme. The new proposed scheme is

strongly positivity-preserving and can deal with some distorted grids, such as the triangular

Kershaw meshes, but some existing positivity-preserving finite volume schemes could not handle

well. The numerical tests show that the new proposed scheme positivity-preserving scheme is

more robust than some existing positivity-preserving finite volume schemes.
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