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Abstract. In the present work we aim to simulate shallow water flows over mov-
able bottom with suspended and bedload transport. In order to numerically ap-

proximate such a system, we proceed step by step. We start by considering shallow
water equations with non-constant density of the mixture water-sediment. Then,

the Exner equation is included to take into account bedload sediment transport.

Finally, source terms for friction, erosion and deposition processes are considered.
Indeed, observe that the sediment particle could go in suspension into the water or

being deposited on the bottom. For the numerical scheme, we rely on well-balanced

Lagrange-projection methods. In particular, since sediment transport is generally
a slow process, we aim to develop semi-implicit schemes in order to obtain fast sim-

ulations. The Lagrange-projection splitting is well-suited for such a purpose as it
entails a decomposition of the (fast) acoustic waves and the (slow) material waves

of the model. Hence, in subsonic regimes, an implicit approximation of the acoustic

equations allows us to neglect the corresponding CFL condition and to obtain fast
numerical schemes with large time step.

AMS subject classifications: 65M08, 76M12, 35L60
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1. Introduction and mathematical model

Sediment transport is an interesting and active topic in the field of geophysical

flows. Sediment is transported by the action of a river current or due to currents near
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coastal areas mainly in two ways: a suspended load (fine fractions carried by the flow)

and bedload (coarse fractions which move close to the bottom rolling, jumping and

sliding), see [54].

Knowledge of sediment transport has different practical applications. For instance,

in civil engineering, to plan the extended life of a dam forming a reservoir. Moreover,

sediment deposition downstream reduces river capacity in that area, which may be

a potential problem in flood situations. Sediments also play an important role in some

environmental problems as well. For example, suspended sediments have a direct im-

pact on fish habitat in river or estuaries [39].

A first common approach to model sediment transport by a fluid is to couple the

shallow water equations [2, 45, 47] with the so-called Exner equation [30]. Many

works have been proposed to study such a problem, which depends on an empirical

definition of the solid transport flux for bedload transport (see [10,11,29,40,46,50,52]

among many others). This first approach is then completed by including some transport

equations for suspended sediment, that is sediment particles which have been eroded

from the bottom and remain floating in the current for some time until subsequent

sedimentation are sedimented afterwards (see [25, 39, 41, 43, 44, 49, 51] among many

others).

One of the key points of such problems is that the characteristic times associated

to sediment transport dynamics is much larger than the one corresponding to fluids.

Hence, studying sediment transport usually requires long time simulations to see sed-

iment’s evolution. As such, numerical simulations will run for long wall-clock times,

which are carried out in small time steps, mainly dominated by the characteristic fluid

speed.

To overcome this difficulty, different strategies have been proposed. The most com-

mon approach is to use semi-implicit schemes (see [13–16] among others). In particu-

lar, this approach is used in [7,35], where bedload transport with the simple Grass for-

mula is considered as well as variable density. Moreover, in [36], the authors propose

a semi-implicit scheme based on the theta method for sediment bedload transport mod-

els with gravitational effects under subcritical regimes. Another approach is the use of

the Lagrange-Projection strategy (see [12,20–22,28,48] and references therein). This

framework allows us to naturally decouple the acoustic terms of the model from the

transport ones. Such a decomposition is useful and very efficient to deal with subsonic

or near low-Froude number flows. In such cases, the usual CFL time step limitation of

Godunov-type schemes is driven by the acoustic waves and can thus be very restrictive.

The Lagrange-projection strategy allows us to design a very natural implicit-explicit and

large time step scheme, with a CFL restriction based on the (slow) transport waves and

not on the (fast) acoustic waves. Therefore, in this paper, we consider the Lagrange-

projection technique adapted to the problem of sediment transport. In particular, we

aim to define a semi-implicit scheme for sediment transport problems.

Hence, let us briefly present the corresponding mathematical model. It is deduced

from the Navier-Stokes equations under the hypothesis that the horizontal scale is much

greater than the vertical one, assuming hydrostatic pressure and incompressibility of
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the fluid. For more details about its derivation, we directly refer to [39]. As such,

the system is composed of four equations, which express the evolution in time of the

variables h(x, t) ≥ 0, hρ(x, t) ≥ 0, hρu(x, t) and z(x, t). Here h and u stand respectively

for the height and averaged velocity of the water over the bottom, whose elevation

is represented by z. Then, ρ is the density of the mixture water-sediments, where the

latter are transported by the currents and can either move along the bottom (bed-load)

or being finer fractions carried by the flow (suspended-load). Finally, using t > 0 and x
to represent the time and the axial coordinate respectively, the resulting model reads























∂th+ ∂x(hu) = ζφz, (1.1a)

∂t(hρ) + ∂x(hρu) = ζφzρz, (1.1b)

∂t(hρu) + ∂x(hρu
2 + p) + ghρ∂xz = ρz

u

2
ζφz − τf (u), (1.1c)

∂tz + ζ∂xqz = −ζφz. (1.1d)

In particular, in the third equation, the pressure term is given by p = gh2ρ/2. Then,

the evolution in time of the topography is described by the Exner equation, where

qz = qz(h, hρ, hρu) represents the solid transport discharge. For the latter, there exist

many different empirical laws for the solid transport discharge. Classically, it only

depends on the hydrodynamical variables, qz = qz(h, u), and on different parameters

that are calibrated depending on the type of the considered sediments. Among many

others, we refer for instance to the works [1, 3, 6, 9, 11, 50] for more information. For

the sake of simplicity, here we only consider two of the most used formulations: the

first one is the simplest one, namely the Grass model [40]. It expresses qz as a power

law of the velocity,

qz = Agu|u|mg−1, mg = 3 (1.2)

with Ag ∈ [0, 1] a constant which represents the strength of the interaction between

the sediment and the flow. Then, another (more realistic) possibility is given by the

Meyer-Peter & Müller (MPM) formula [46], which reads

qz = 8Q sign(u)(θ∗ − θ∗c )
3/2
+ , θ∗ =

u2∗
sgd

, u2∗ =
gµ2

fu
2

h1/3
. (1.3)

Moreover, Q = d
√
gsd is the characteristic discharge with s = ρs/ρw − 1 the relative

density, ρs is the density of the sediment and ρw is the density of water. Finally, d
represents the sediment diameter, µf is the dimensionless Manning’s coefficient and

θ∗c is the critical Shield’s stress for incipient motion. Let us observe that, depending

on the particular form of qz, the resulting system could be strictly hyperbolic or not.

Indeed, we already know that the shallow water Exner system is strictly hyperbolic,

with all real eigenvalues, in the case of Grass model (1.2). Then, regarding the MPM

formula (1.3), it has been proved that a sufficient condition for the resulting model

to be strictly hyperbolic is |u| < 6gh, which is generally true in physical situations,

see [24, 39]. In any case, we underline that our numerical strategy can be applied

whatever the formulation for qz is.
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Next, let us focus on the source terms. Here, φz = Fe − Fd expresses the sediment

exchange between the bottom and the water-sediment mixture, where Fe and Fd are

the erosion and deposition rate respectively. In particular, we state Fe = vsPEs where

vs =

√

(

13.95ν

d

)2

+ 1.09sgd − 13.95

d
ν

is the settling velocity of sediment where ν is the kinematic viscosity of the water and

d is the sediment diameter. Then, the constant P stands for the volume fraction of

the sediment in the bottom or, equivalently, 1 − P = Ψ is the porosity of the bottom

(see [38, 39]), with ζ = (1 − Ψ)−1. The value for the porosity of bed material is

determined using the formulas described in [42,56].

Subsequently, the sediment entrainment coefficient is given by

Es =
1.3× 10−7Z5

1 + 4.3× 10−7Z5
, Z =

α1
√
cD|u|
vs

Rα2

p , (1.4)

where Rp =
√
sgdd/ν is the Reynold number and cD is bed drag coefficient. Finally,

α1, α2 are two parameters depending on Rp and for which there exist different value

choices. Here we refer to [39] and take

(α1, α2) =

{

(1, 0.6), if Rp > 2.36,

(0.586, 1.23), if Rp ≤ 2.36.

Continuing with the deposition rate, we assume that Fd = vscz, where cz is the frac-

tional concentration of suspension near the bed, namely,

cz = c

(

0.4

(

d

Dsg

)1.64

+ 1.64

)

,

where c(x, t) is the volumetric sediment concentration such that

ρ(x, t) = ρw + c(x, t)(ρs − ρw)

and Dsg is the geometric mean size of the suspended sediment mixture. In particular,

in this work we take Dsg = d as all the particles are assumed to be of equal size. At

last, ρz = ρwΨ+ ρs(1−Ψ) is the density of the saturated bottom.

Lastly and for the friction term, we state τf (u) = ρu2∗(1 + rw) where rw is the ratio

of upper-interface resistance to bed resistance. For the sake of clarity, in Tables 1-1, we

include the description of the parameters and symbols used in this work.

To complete the presentation of the mathematical model, let us observe that system

(1.1) can be reformulated in compact form as follows:

∂tQ + ∂xF(Q) + B(Q)∂xQ = S(Q),
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where Q is the vector of unknowns, F(Q) is the physical flux, B(Q) is the non-conserva-

tive product matrix and S(Q) is the source term. More explicitly,

Q =









h
hρ
hρu
z









, F(Q) =













hu
hρu

hρu2 + g
h2

2
ρ

ζqz













,

B(Q) =









0 0 0 0
0 0 0 0
0 0 0 ghρ
0 0 0 0









, S(Q) =











ζφz

ζφzρz

ρz
u

2
ζφz − τf (u)

−ζφz











.

(1.5)

Then, let us recall that classic Saint Venant Exner system does not satisfy a global en-

tropy equation. Nevertheless, as shown in [31], a modified version of Saint Venant

Exner system could be introduced so that the model satisfies a global entropy. There-

fore, we do not expect to find an entropy inequality for system (1.1), unless similar

modifications are performed for Exner’s equation, which is out of the scope of this

paper. Nevertheless, we may prove a partial result which is given in the next theorem.

Theorem 1.1. Consider system (1.1) without bedload transport, that is, qz = 0. Then,

smooth solutions of the system satisfy the following relation:

∂t

(

ρh
u2

2
+

g

2
ρh2 + gρhz

)

+ ∂x

(

ρhu

(

u2

2
+
g

2
h

)

+ up+ gρhuz

)

=
g

2
hζφz(ρz − ρ)+gzζφzρz − uτf .

Proof. Combining (1.1b) and (1.1c), we get

∂tu+ ∂x
u2

2
+

1

ρh
∂xp+ g∂xz = − ρz

ρh
ζφz

u

2
− 1

ρh
τf .

Multiplying this equation by ρhu and adding (1.1b) times u2/2, we obtain

∂t

(

ρh
u2

2

)

+ ∂x

(

ρhu
u2

2

)

+ u∂xp+ gρhu∂xz = −uτf . (1.6)

Now, taking into account that p = gρh2/2, from the Eq. (1.1a) we get

∂th+ u∂xh+
p

gρh/2
∂xu = ζφz,

which, combined with (1.1b), gives

∂t

(g

2
ρh2
)

+ ∂x

(g

2
ρh2u

)

+ p∂xu =
g

2
hζφz(ρ+ ρz). (1.7)
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Adding (1.6) and (1.7) gives us

∂t

(

ρh
u2

2
+

g

2
ρh2
)

+ ∂x

(

ρhu

(

u2

2
+

g

2
h

)

+ up

)

+ gρhu∂xz

= −uτf +
g

2
hζφz(ρ+ ρz).

Finally, we have

gρhu∂xz = gρhu∂xz + gρh(∂tz + ζφz) + gz
(

∂t(ρh) + ∂x(ρhu)− ζφzρz
)

= ∂t(gρhz) + ∂x(gρhuz) + gρhζφz − gzζφzρz

and the result follows.

As a last remark and referring to [39], from a physical point of view it is interesting

to consider the solutions of the model when u = 0. Indeed, in this case the solution

should satisfy


























∂th = ζφz,

∂t(hρ) = ζφzρz,

∂x

(

gh2ρ

2

)

= −ghρ∂xz,

∂tz = −ζφz.

(1.8)

Moreover, we observe that the free surface H = h+ z is constant in time but

∂x(h+ z) = − h

2ρ
∂xρ,

and in particular

∂tρ =
ζφz

h
(ρs − ρw)(1−Ψ− c).

Thus, if u = 0, we expect the free surface H to remain constant in time but the water

height to decrease and the bed level to increase, as the sediments start to accumulate

on the bottom. As a consequence, the density ρ will remain constant in time if 1−Ψ = c,
or either increase or decrease if 1−Ψ < c or 1−Ψ > c respectively.

The paper is organized as follows. To describe the numerical approach to approxi-

mate model (1.1), we will proceed step by step. We first consider a simplified version

of the system with no source terms and constant bed level in time. The Lagrangian

formulation of the resulting system is proposed. An approximate Riemann solver for

the acoustic system is also described, see Section 2. Then, in Section 3, the strategy

is extended in order to include the Exner equation. The numerical approximation is

finally presented in Section 4, the source terms related to the friction and the erosion-

deposition processes are considered as well. Section 5 is devoted to the numerical

simulations while in Section 6 we draw the conclusions.
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Table 1: Symbols with description and formula.

Symbol Description Value or formula

a Parameter in syst. (2.12), (3.4) a ≥ h2ρ2c̄2

b Parameter in syst. (3.4) u2b2 ≥ (hρu)2 + g(hρ)2∂uqz, b > 0

c Volumetric sediment concentration c(x, t) = (ρ− ρw)(ρs − ρw)
−1

c̄ Sound speed c̄ =
√
gh

cD Bed drag coefficient -

cz Fractional concentration of suspension near by the bed cz = c
(

0.4(d/Dsg)
1.64 + 1.64

)

d Sediment diameter [mm]

Dsg Geometric mean size of the suspended sediment mixture [mm]

Es Sediment entrainment coefficient
Es = (1.3× 10−7Z5)/

(1 + 4.3× 10−7Z5)

Fd Deposition rate Fd = vscz

Fe Erosion rate Fe = vsPEs

g Gravitational acceleration 9.81 [m s−2]

h Water height [m]

H Free surface elevation H = h+ z

L Volume ratio L(ξ, t) = ∂ξx(ξ, t)

m Mass variable ∂x/(h0ρ0) = ∂m

p Pressure term p = gh2ρ/2

P Volume fraction of the sediment in the bottom 1− P = Ψ

qz Solid transport discharge -

Q Characteristic discharge Q = d
√
gsd

rw Ratio of upper-interface resistance to bed resistance -

Rp Reynold number d
√
gsd/ν

s Relative density s = ρs/ρw − 1

t Time [s]

u Averaged velocity of water [m s−1]

u2
∗ Bed shear velocity u2

∗ = gµ2
fu

2/h1/3

vs Settling velocity of the sediment
vs =

√

(13.95ν/d)2 + 1.09sgd

−13.95ν/d

x Axial coordinate -

z Bed level [m]

Z Parameter in Eq. (1.4) Z = α1

√
cD|u|Rα2

p /vs

α1 Parameter in Eq. (1.4) 1 if Rp > 2.36, 0.6 otherwise

α2 Parameter in Eq. (1.4) 0.586 if Rp > 2.36, 1.23 otherwise

ζ Parameter in model (1.1) ζ = 1/(1−Ψ)

θ Variable for the inverse of the density θ = 1/ρ

θ∗ Shield’s parameter θ∗ = u2
∗/sgd

θ∗c Critical Shield’s stress for incipient motion -

λ Relaxation parameter -

µf Dimensionless Manning’s coefficient [s m−1/3]

ν Kinematic viscosity of the water 1× 10−6 [m s−2]

ξ Lagrangian coordinate -
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Table 1: Symbols with description and formula (cont’d).

Symbol Description Value or formula

Π Relaxation linearization of gh2ρ/2 -

ρ Density of mixture of water and sediment [g cm−3]

ρw Density of water 1 [g cm−3]

ρs Density of sediment [g cm−3]

ρz Density of the saturated bottom ρz = ρwΨ+ ρs(1−Ψ)

τ Variable for the inverse of the water height τ = 1/h

τf Friction term τf (u) = ρu2
∗(1 + rw)

φz Sediment exchange between the bottom and the water φz = Fe − Fd

Ψ Porosity -

Ω Relaxation linearization of ζqb -

2. Splitting strategy for shallow water equations with non-constant
density

For the sake of clearness, let us first apply the Lagrange-Projection (LP) strategy to

system (1.1) without Exner equation or any source terms, namely










∂th+ ∂x(hu) = 0,

∂t(hρ) + ∂x(hρu) = 0,

∂t(hρu) + ∂x(hρu
2 + p) = −ghρ∂xz,

(2.1)

or alternatively in compact form

∂tQ + ∂xF(Q) = S(Q),

where Q, F(Q) and S(Q) reduce themselves to

Q =





h
hρ
hρu



 , F(Q) =





hu
hρu

hρu2 + p



 , S(Q) =





0
0

−ghρ∂xz



 .

Afterwards, in Section 3, we will describe the general case, where the solid transport

flux qz is considered. Then, it is easy to prove that system (2.1) is hyperbolic. Indeed,

its Jacobian matrix reads

J(Q) =













u −u

ρ

1

ρ

0 0 1

ghρ

2
−u2 +

gh

2
2u













,

where the eigenvalues are given by u, u ± c̄ with c̄ =
√
gh sound speed. Note that, in

this particular case without solid transport flux, z is constant in time. Therefore, the

quantity ghρ∂xz in the third equation is treated as a source term.
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It is interesting to consider stationary solutions of this reduced model. Indeed,

in practical applications, we find such steady states or perturbations of them. In the

particular case of steady states with zero-velocity, we get the family

u = 0, ∂x(h+ z) = − 1

2ρ
∂x(hρ) +

1

2
∂xh, (2.2)

or, written in alternative way,

u = 0, ∂x(h+ z) = − h

2ρ
∂xρ. (2.3)

Moreover, among all the stationary solutions (2.2), it is interesting to exhibit two par-

ticular families of steady states; the one with constant bed level

u = 0,
h2ρ

2
= constant and z = constant, (2.4)

and the usual lake at rest solution

u = 0, ρ = constant and H = h+ z = constant. (2.5)

When the friction and erosion-deposition source terms are neglected, we construct our

numerical scheme in such a way that it exactly preserves the stationary solutions (2.4)

and (2.5). That is, we want our numerical method to be exactly well-balanced for

those stationary solutions (see for instance [2, 37]). Note that (2.4) and (2.5) are two

particular families of the more general case (2.3). In Sections 2.2 and 4.1, we will

see that the proposed schemes do not exactly preserve (2.3), but a discrete version of

it. In such a case, we say that the numerical scheme is well-balanced with order 2 for

(2.3), according to the definition introduced in [37]. Namely, the numerical scheme

preserves a discrete stationary solution that is a second order approximation of (2.3).

2.1. Lagrange-projection decomposition

As mentioned in the introduction, the idea of the Lagrange-projection approach

is to split the acoustic and transport terms of the model. In practice, this strategy

can be explained by using Lagrangian coordinates. The approach then results in first

considering the mathematical model formulated in Lagrangian coordinates and then

perform the projection of the Lagrangian solution onto Eulerian coordinates. We shall

detail both steps in what follows.

Let us first briefly recall the corresponding formalism. We consider a fluid particle

located at position ξ at time t = 0 and then its trajectory through time or its character-

istic curve t 7→ x(ξ, t)
{

∂tx(ξ, t) = u
(

x(ξ, t), t
)

,

x(ξ, 0) = ξ.
(2.6)
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Then, any function (x, t) 7→ ϕ(x, t) in Eulerian coordinates can be expressed in La-

grangian coordinates as in the following:

(ξ, t) 7→ ϕ(ξ, t) = ϕ
(

x(ξ, t), t
)

.

In particular, using the volume ratio L(ξ, t),

L(ξ, t) = ∂ξx(ξ, t), (2.7)

which satisfies
{

∂tL(ξ, t) = ∂ξu
(

x(ξ, t), t
)

,

L(ξ, 0) = 1,
(2.8)

we can easily write the original system (2.1) in Lagrangian coordinates, namely















∂t(Lh̄) = 0,

∂t(Lhρ) = 0,

∂t(Lhρu) + ∂ξ

(

gρ̄
h̄2

2

)

= −gh̄ρ̄∂ξ z̄.

(2.9)

More details about the Lagrange-projection decomposition applied to the shallow wa-

ter system can be found for instance in [12, 48]. Let us remark that the Lagrangian

formulation (2.9) will reveal itself to be very useful and convenient when trying to in-

clude the Exner equation in the model in Section 3. Indeed, we will see that it is easier

to consider the Lagrangian formulation with the variable Lz rather than z, see [17].

Let us point out that system (2.9) may also be formulated in a different way. Indeed,

observing that both Lh̄ and Lh̄ρ̄ do not depend on time, we get

Lh̄(ξ, t) = Lh̄(ξ, 0) = h(ξ, 0) = h0 and consequently L =
h0
h̄
,

and therefore 0 = ∂t(Lh̄ρ̄) = Lh̄∂tρ, which means that

∂tρ̄ = 0 and in particular ρ̄(ξ, t) = ρ(ξ, 0) = ρ0.

Defining now the variables τ̄ = 1/h̄ and θ̄ = 1/ρ̄, we find the equivalent form of system

(2.9),














∂tθ̄ = 0,

∂t(h0ρ0τ̄ θ̄)− ∂ξū = 0,

∂t(h0ρ0ū) + ∂ξ

( g

2τ̄2θ̄

)

= − g

τ̄ θ̄
∂ξ z̄,

and, alternatively, neglecting the bar for the sake of simplicity,















∂tθ = 0,

∂t(h0ρ0τθ)− ∂ξu = 0,

∂t(h0ρ0u) + ∂ξ

( g

2τ2θ

)

= − g

τθ
∂ξz.

(2.10)
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In this framework, the numerical strategy could be once again summarized in two

steps. First, we need to numerically solve the Lagrangian-acoustic system (2.9)-(2.10).

Then, we project its solution into Eulerian coordinates. We will see that the most prob-

lematic part of this strategy will not be the approximation of the projection step but that

of the Lagrangian system, especially when trying to satisfy the well-balanced property.

In particular, for these equations (2.10), we describe an approximate Riemann solver

which will be used to define the associated Godunov-type scheme. For this reason,

it is convenient to reformulate system (2.10) exploiting the so-called mass variable m,

which is given by h0ρ0/∂ξ = ∂m. Thus, it is easy to show that Eqs. (2.10) are equivalent

to the following system:














∂tθ = 0,

∂t(τθ)− ∂mu = 0,

∂tu+ ∂mp = − g

τθ
∂mz,

(2.11)

where we recall that p = gθ/(2(τθ)2). We will refer to Eqs. (2.11) as the acoustic

system, as it can be obtained from the starting system (2.1) by considering only the

acoustic phenomena and the topography variations. See [17, 22, 27] for more details

about the acoustic-transport interpretation. Moreover, the eigenvalues of system (2.11)

are given by 0 and ±hρc̄, where the latter are the speed of propagation of the acoustic

waves; the material (transport) waves being related to the projection step. Thus, in

situations in which the acoustic waves are much faster than the material ones, it can

be very convenient to exploit an implicit approximation for the acoustic equations, ob-

taining in this way very fast implicit-explicit method. Further details about the implicit

formulation for the acoustic system are given in Section 4.1. See also [19, 22, 26] for

implicit-explicit Lagrange-projection numerical methods.

Looking for an approximate Riemann solver associated to system (2.11), we fol-

low the Suliciu relaxation approach [55] and we introduce the following approximate

relaxation system:






















∂tθ = 0,

∂t(τθ)− ∂mu = 0,

∂tu+ ∂mΠ = − g

τθ
∂mz,

∂tΠ+ a2∂mu = 0,

(2.12)

where Π is a new variable such that Π = p at time t = 0. Our approximate Riemann

solver will consist in an exact Riemann solver associated with system (2.12). Moreover,

a2 is a constant which linearizes h2ρ2c̄2 and which is taken as a2 ≥ h2ρ2c̄2 according

to the sub-characteristic condition. Then, easy computations show that the eigenvalues

of (2.12) are given by λ = 0, λ±a = ±a and that the associated characteristic fields

are all linearly degenerate. This property is well-known to provide an exact and easy

solution of the Riemann problem. Indeed, we will obtain three waves that correspond

to contact discontinuities. Then, exploiting the Rankine-Hugoniot relations across each

wave, we are able to exactly define the solution of the Riemann problem associated to
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system (2.12) (see for instance [33, 34] for more details). For applications related to

the Suliciu relaxation approach, see for instance [5,8,19,22,23].

2.2. Approximate Riemann solver

In this section, we aim to briefly describe the approximate Riemann problem solu-

tion for system (2.11), which is found solving the Riemann problem associated with

the relaxation system (2.12). The initial data of the Riemann problem are given by

(θ, τθ, u,Π)T (m, t = 0) =

{

(θL, τLθL, uL,ΠL)
T , if m < 0,

(θR, τRθR, uR,ΠR)
T , if m ≥ 0,

where ΠL,R = g(h2ρ)L,R/2. Then, its solution would be composed of four different

states separated by the three discontinuities,

Û(m/t;UL,UR) =























UL, if m/t < λ−
a = −a,

U∗

L, if − a < m/t < λ0 = 0,

U∗

R, if 0 < m/t < λ+
a = a,

UR, if m/t > a,

where U = (θ, τθ, u,Π)T . The definition of U∗

L and U∗

R relies on the validity of the

Rankine Hugoniot relations across each wave (recall that the characteristic fields are

linearly degenerate) and, in particular, on a consistent approximation

M = M(UL,UR) = g{hρ}ST (zR − zL)

of the source term in (2.12), such that across the stationary wave one has

{

u∗ = u∗L = u∗R,

Π∗

R −Π∗

L +M = 0.
(2.13)

Here, {hρ}ST needs to be specified in a consistent way, namely

lim
hL,hR→h
ρL,ρR→ρ

{hρ}ST = hρ.

For the sake of brevity, we shall not give all the details here and we refer the reader

to [22] for further informations. The star values U∗

L,U
∗

R are then given by

θ∗L = θL, (2.14a)

θ∗R = θR, (2.14b)

(τθ)∗L = τLθL +
1

a
(u∗ − uL), (2.14c)

(τθ)∗R = τRθR − 1

a
(u∗ − uR), (2.14d)
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u∗ =
1

2
(uL + uR)−

1

2a
(ΠR −ΠL)−

M
2a

, (2.14e)

Π∗

L =
1

2
(ΠL +ΠR)−

a

2
(uR − uL) +

M
2
, (2.14f)

Π∗

R =
1

2
(ΠL +ΠR)−

a

2
(uR − uL)−

M
2
. (2.14g)

2.2.1. Well-balanced property and definition of M

The definition of M is driven by the well-balanced property. More precisely, assume

that we want to preserve a discrete approximation of stationary solutions with zero-

velocity, namely the ones defined in formula (2.2), and consider the following dis-

cretization of such stationary solutions:

(zR − zL) +
hR − hL

2
= −1

2

{

1

ρ

}

StS

(hRρR − hLρL), (2.15)

where the term {1/ρ}StS needs to be specified and consistent such that

lim
ρL,ρR→ρ

{

1

ρ

}

StS

=
1

ρ
.

Hence, when UL and UR satisfy (2.15), we require U∗

L = UL and U∗

R = UR in order for

the approximate Riemann solver to be well-balanced. On the one hand, (2.13) imposes

ΠR −ΠL +M = 0, M = g
{

hρ
}

ST
(zR − zL), (2.16)

so that, inserting (2.15) into (2.16), we find

h2RρR
2

− h2LρL
2

= −{hρ}ST (zR − zL)

=
1

2
{hρ}ST

(

hR − hL +

{

1

ρ

}

StS

(hRρR − hLρL)

)

.

On the other hand, we have

h2RρR
2

− h2LρL
2

=
1

2

(

(hRρR − hLρL)
hR + hL

2
+ (hR − hL)

(

hRρR + hLρL
2

))

.

Hence, a possibility is to set














{hρ}ST =
hRρR + hLρL

2
,

{

1

ρ

}

StS

=
1

{hρ}ST
hR + hL

2
,

which is clearly consistent. In particular, we would define

M = g

(

hRρR + hLρL
2

)

(zR − zL), (2.17)
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which allows us to preserve the stationary solutions which, according to (2.15), satisfy

the following discretization:

(zR − zL) +
hR − hL

2
= −1

2

hR + hL
hRρR + hLρL

(hRρR − hLρL), (2.18)

together with zero-velocity. Note that, if ρL = ρR and uL = uR = 0, we recover the

well-known lake at rest stationary solution (2.5) as (2.18) gives hL + zL = hR + zR.

Moreover, the stationary solution (2.4) such that zL = zR, uL = uR = 0 and ρLh
2
L =

ρRh
2
R gives M = 0 and u∗L = uL, u

∗

R = uR from (2.14). In other words, our scheme

is well-balanced with order 2 for the stationary solutions (2.2) and it is exactly well-

balanced for the stationary solutions (2.4) and (2.5).

Finally, observe that in practice the constant a is defined as in the following:

a = max(ε, hLρLc̄L, hRρRc̄R),

where ε is a tolerance value so that a will not be zero. In practice, we take ε = ∆x.

Remark 2.1. The proposed definition of M is not unique. Indeed, let us consider

the following discretization of the stationary solutions based on (2.3) (instead of (2.2)

above)

zR + hR − (zL + hL) = −1

2

{

h

ρ

}

StS

(ρR − ρL), (2.19)

where the term {h/ρ}StS needs to be specified. Similar calculations lead to

M =
g

2

(

ρR + ρL
2

hR + hL
2

+
hRρR + hLρL

2

)

(zR − zL), (2.20)

which allows to preserve stationary solutions defined by (2.19) with

{

h

ρ

}

StS

=

(

hR + hL
2

)2 8

(ρR + ρL)(hR + hL) + 2(hRρR + hLρL)
.

Hence, in this section we have considered system (2.1) as a starting point to show

how to include the evolution equation for the density variable in the Lagrange-projec-

tion approach. We have also defined an approximate Riemann solver for the resulting

Lagrangian system. Let us now extend this strategy by including the Exner equation in

the model.

3. Including the Exner equation in the splitting strategy

Moving to the following step, we now aim to include the Exner equation in the

splitting strategy. Thus, we consider system (1.1) without source terms associated to

friction and erosion-deposition processes, namely
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





























∂th+ ∂x(hu) = 0,

∂t(hρ) + ∂x(hρu) = 0,

∂t(hρu) + ∂x

(

hρu2 + g
h2

2
ρ

)

+ ghρ∂xz = 0,

∂tz + ζ∂xqz = 0.

(3.1)

In the following section, we show its Lagrangian-acoustic formulation with the aim of

describing an associated approximate Riemann solver.

Referring to the previous works [17, 18], we consider two different strategies to

take into account the Exner equation. In the first one, we update it directly in the

projection step (Section 4.2), resembling an usual splitting strategy: we first approxi-

mate the shallow water equations with variable density and then also the topography

is updated. Thus, here we do not have to give further details about its Lagrangian

formulation. Moreover, we will see that this strategy could be particularly useful when

considering the implicit-explicit version of the scheme. As for the second strategy, we

propose to decouple the Exner equation in both steps, which would be the most nat-

ural approach in the Lagrange-projection framework, see next Section 3.1. Observe

that even the latter strategy is only weakly-coupled and not fully-coupled in order to

preserve the well-balanced property. Let us recall that decoupled approaches applied

to the Exner system could produce unphysical oscillations in the numerical results due

to the different eigenstructure of the shallow water model with and without the Exner

equation (systems (2.1) and (3.1) respectively), see [24]. In this sense, the method

that decouples the Exner equation in both steps proved to be more stable than the

other one, especially at second-order of accuracy, refer to [17]. For this reason, here

we consider and extend both strategies.

3.1. Updating the bed level in both steps

Exploiting once again the Lagrangian formalism introduced in Section 2.1, few com-

putations allow us to write system (3.1) in Lagrangian coordinates, namely


























∂t(Lh̄) = 0,

∂t(Lhρ) = 0,

∂t(Lhρu) + ∂ξ

(

g
h̄2

2
ρ̄

)

= −gh̄ρ̄∂ξz,

∂t(Lz)− ∂ξ(zu) + ζ∂ξqz = 0,

(3.2)

or equivalently, using once again the change of variables τ̄ = 1/h̄ and θ̄ = 1/ρ̄,


























∂tθ̄ = 0,

∂t(h0ρ0τ̄ θ̄)− ∂ξū = 0,

∂t(h0ρ0ū) + ∂ξ

( g

2τ̄2θ̄

)

= − g

τ̄ θ̄
∂ξ z̄,

∂t(h0ρ0z)−
ū

τ̄ θ̄
∂ξz +

ζ

τ̄ θ̄
∂ξqz = 0.

(3.3)
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Let us observe that the evolution equation for the bed elevation z is written as a conser-

vation law in system (3.2), contrarily to the one in system (3.3). Then, neglecting the

bars and exploiting again the mass variable m, the Lagrangian system (3.3) can also be

reformulated as






























∂tθ = 0,

∂t(τθ)− ∂mu = 0,

∂tu+ ∂mp = − g

τθ
∂mz,

∂tz −
u

τθ
∂mz +

ζ

τθ
∂mqz = 0.

Proceeding with the relaxation system, we consider the same variable Π to linearize

the pressure term p = gh2ρ/2, while for the solid transport discharge qz we introduce

Ω such that Ω = ζqz at time t = 0 and suggest the linearized system






























































∂tθ = 0,

∂t(τθ)− ∂mu = 0,

∂tu+ ∂mΠ = − g

τθ
∂mz,

∂tz −
u

τθ
∂mz +

1

τθ
∂mΩ = 0,

∂tΠ+ a2∂mu = 0,

∂tΩ+ u2
(

b2τθ − 1

τθ

)

∂mz +
u

τθ
∂mΩ = 0,

(3.4)

where the sub-characteristic condition is now given by a2 ≥ h2ρ2c̄2 and u2b2 ≥ (hρu)2+
g(hρ)2∂uqz, b > 0, see [17]. In compact form, system (3.4) is equivalent to

∂tU + A(U)∂xU = S(U)

with

U =

















θ
τθ
u
z
Π
Ω

















, A(U) =























0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 1 0

0 0 0 − u

τθ
0

1

τθ
0 0 a2 0 0 0

0 0 0 u2
(

b2τθ − 1

τθ

)

0
u

τθ























,

S(U) =



















0
0

− g

τθ
ρ∂mz

0
0
0



















. (3.5)
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Considering only the convective part of system (3.4), namely neglecting the term re-

lated to z in the third equation, we find that the eigenvalues are given by λ = 0,
λ±a = ±a, λ±b = ±|u|b and that once again the associated characteristic fields are all

linearly degenerate. We remark that system (3.4) is not strictly hyperbolic anymore for

u = 0 and that the eigenvalues are not ordered a priori, see again [17].

3.1.1. Approximate Riemann solver

Here we solve the Riemann problem associated to system (3.4) with initial data

(θ, τθ, u, z,Π,Ω)T (m, t = 0) =

{

(θL, τLθL, uL, zL,ΠL,ΩL)
T , if m < 0,

(θR, τRθR, uR, zR,ΠR,ΩR)
T , if m > 0

with ΠL,R = pL,R and ΩL,R = (ζqz)L,R. Since the eigenvalues are not ordered a priori,

at a continuous level there exists two different cases depending on whether a < |u|b
or not (recall that a and b are positive). In practice, we will distinguish between the

following two cases a < |uL|b, a < |uR|b and a > |u∗|b. As a consequence, if a <
|uL|b, a < |uR|b, the solution reads

Û(m/t;UL,UR) =











































UL, if m/t < λ−

b = −|uL|b,
U∗

b,L, if − |uL|b < m/t < λ−
a = −a,

U∗

a,L, if − a < m/t < λ0 = 0,

U∗

a,R, if 0 < m/t < λ+
a = a,

U∗

b,R, if a < m/t < λ+
b = |uR|b,

UR, if m/t > |uR|b

with

U∗

b,L =













τL
uL
z∗

ΠL

Ω∗













, U∗

a,L =













τ∗L
u∗

z∗

Π∗

L

Ω∗













, U∗

a,R =













τ∗R
u∗

z∗

Π∗

R

Ω∗













, U∗

b,R =













τR
uR
z∗

ΠR

Ω∗













. (3.6)

On the other hand, if a > |u∗|b, the solution is given by

Û(m/t;UL,UR) =











































UL, if m/t < −a,

U∗

a,L, if − a < m/t < −|u∗|b,
U∗

b,L, if − |u∗|b < m/t < 0,

U∗

b,R, if 0 < m/t < |u∗|b,
U∗

a,R, if |u∗|b < m/t < a,

UR, if m/t > a
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with

U∗

a,L =













τ∗L
u∗

zL
Π∗

L

ΩL













, U∗

b,L =













τ∗L
u∗

z∗

Π∗

L

Ω∗













, U∗

b,R =













τ∗R
u∗

z∗

Π∗

R

Ω∗













, U∗

a,R =













τ∗R
u∗

zR
Π∗

R

ΩR













. (3.7)

In order to define the star states in (3.6) and (3.7), we exactly follow the same lines

as in Section 2.2. In particular, it is worth noticing that z and Ω are constant through

the waves with ±a-velocity and zero-velocity, therefore we only need to find a single

star value z∗,Ω∗ for these two variables. Similarly for the variables θ, τ, u and Π, since

they are constant through the waves with ±|u|b-velocity, at most two star values are

necessary. This property is related to the fact that in the third equation we treat the

coupling term −g∂mz/τθ as a source term.

Moreover, in both cases we exploit the same star values for the variables θ, τθ, u,
given by (2.14) and (2.17). Regarding z∗ and Ω∗, we need to separate the two cases

and, in particular, if a < |uL|b and a < |uR|b, we get















































z∗ =
|uR|

(

sign(uR) + bτRθR
)

zR − |uL|
(

sign(uL)− bτLθL
)

zL

|uR|(sign(uR) + bτRθR)− |uL|(sign(uL)− bτLθL)

− ΩR − ΩL

|uR|(sign(uR) + bτRθR)− |uL|(sign(uL)− bτLθL)
,

Ω∗ =
ΩR +ΩL

2
+

|uR|
2

(sign(uR) + bτRθR)(z
∗ − zR)

+
|uL|
2

(sign(uL)− bτLθL)(z
∗ − zL),

(3.8)

otherwise we state










































(z|u|)∗ = |u∗|
(

sign(u∗) + bτ∗RθR
)

zR −
(

sign(u∗)− bτ∗LθL
)

zL

b
(

τ∗RθR + τ∗LθL
)

− ΩR − ΩL

b
(

τ∗RθR + τ∗LθL
) ,

Ω∗ =
ΩR +ΩL

2
+

1

2

(

(sign(u∗) + bτ∗RθR)
(

(z|u|)∗ − |u∗|zR
)

+(sign(u∗)− bτ∗LθL)((z|u|)∗ − |u∗|zL)
)

.

(3.9)

Finally, the parameters a and b are defined as a = max(∆x, hLρLc̄L, hRρRc̄R) and

b = max

(

ε,

√

(hLρL)2 + g
(hLρL)2

u2L
∂u(qb)L,

√

(hRρR)2 + g
(hRρR)2

u2R
∂u(qb)R

)

. (3.10)

However, since assuming a ≥ |uL|b or a ≥ |uR|b does not necessarily imply that a >
|u∗|b, in practice we need to do the following. If a and b are such that a ≥ |uL|b
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or a ≥ |uR|b but a ≤ |u∗|b, we need to increase the value of a and redefine it as

a = (1+ ǫ)|u∗|b (with typically ǫ = 0.01). We underline that, once we have redefined a,

we have to recompute the value of u∗, and more generally the quantities in (2.14). In

practice, this iterative process usually converges in one or two iterations. See again the

previous work [17] for more details about this approximate Riemann solver applied to

system (3.2) with constant density ρ in time and space.

Finally, let us remark that the choice not to use a fully coupled approximation for

this system also contributes to the fulfillment of the well-balanced property, namely to

the preservation of the stationary solutions (2.2). Indeed, uz∗ and Ω∗ are automatically

equal to zero when the steady state condition (2.2) is satisfied.

4. Numerical method

Notation. First, we define the constant space step ∆x and constant time step ∆t. The

mesh interfaces are given by xj+1/2 = j∆x for j ∈ Z and the intermediate times by

tn = n∆t for n ∈ N. At each time tn, we seek for an approximation Qn
j of the solution

in the interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant approximate

solution x → Q∆t,∆x(x, t
n) of the solution Q is given by

Q∆t,∆x(x, t
n) = Qn

j for all x ∈ Cj = [xj−1/2;xj+1/2), j ∈ Z, n ∈ N.

Numerical strategy. As it has already been explained in the previous sections, the

numerical scheme consists of three steps: first one has to solve the acoustic-Lagrangian

step, then the transport-projection one and, finally, we need to include the source terms.

Thus, using the above notations and Lagrangian coordinates we have

1. Update Qn to LQn+ solving the Lagrangian system (Section 4.1).

2. Project LQn+ into Eulerian coordinates, finding Qn+1− (Section 4.2).

3. Consider the erosion, deposition and friction source terms and update Qn+1− to

Qn+1 (Section 4.3).

4.1. Lagrangian step

As we have already anticipated, in order to approximate the acoustic or Lagrangian

step, we exploit a first-order Godunov-type scheme associated with the approximate

Riemann solver for the acoustic system that we have built in the previous sections.

Since the approximate Riemann problem solution appears to be the same for the vari-

ables τ, θ and u both with and without the contribution of the Exner equation, we can

immediately write their numerical approximation. Indeed, we have














Ln+
j hn+j = Ln

j h
n
j ,

Ln+
j hn+j ρn+j = Ln

j h
n
j ρ

n
j ,

Ln+
j (hρu)n+j = Ln

j (hρu)
n
j − ∆t

∆x

(

Π∗

j+1/2 −Π∗

j−1/2

)

−∆t{ghρ∂xz}nj ,
(4.1)
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where

Ln+
j = Ln

j +
∆t

∆x

(

u∗j+1/2 − u∗j−1/2

)

, Ln
j = 1 (4.2)

with star values u∗j+1/2,Π
∗

j+1/2 being locally defined at each interface xj+1/2 using for-

mulas (2.14). For the source term, we simply state

snj = {ghρ∂xz}nj =
1

2

(

snj+1/2 + snj−1/2

)

, snj+1/2 = −
Mn

j+1/2

∆x
, (4.3)

and

Mn
j+1/2 = M

(

(hnj , h
n
j ρ

n
j ; z

n
j ); (h

n
j+1, h

n
j+1ρ

n
j+1; z

n
j+1)

)

, ∀j
given by (2.20). Few algebraic computations give a completely equivalent numerical

approximation for the relaxation acoustic system (2.12), namely











































θn+j = θnj , (4.4a)

τθn+j = τθnj +
∆t

∆mj

(

u∗j+1/2 − u∗j−1/2

)

, (4.4b)

un+j = unj − ∆t

∆mj

(

Π∗

j+1/2 −Π∗

j−1/2

)

−∆t
{ g

τθ
∂mz

}n

j
, (4.4c)

Πn+
j = Πn

j −
(

anj+1/2

)2 ∆t

∆mj

(

u∗j+1/2 − u∗j−1/2

)

. (4.4d)

Remark 4.1. It is particularly useful to show the latter formulation as it can be inter-

preted in an implicit way by defining the star values as in the following:

u∗j+1/2 =
1

2

(

un+j+1 + un+j
)

− 1

2anj+1/2

(

Πn+
j+1 −Πn+

j

)

−
Mn

j+1/2

2anj+1/2

,

Π∗

j+1/2 =
1

2

(

Πn+
j+1 +Πn+

j

)

−
anj+1/2

2

(

un+j+1 − un+j
)

.

(4.5)

Hence, for an implicit approximation of the acoustic step, we highlight that first we

solve the evolution equations for u and Π and then we use the obtained solution to

compute τθn+. In particular, the Eqs. (4.4c) and (4.4d) can be reformulated as a linear

system and, as such, their resolution is not computationally expensive. Here we do not

provide further details, see either Appendix A or refer respectively to [19, 22] for this

approach applied to the shallow water equations and to the gas dynamics equations.

Then, let us focus on the numerical approximation of the topography by considering

the two different possibilities already described.

Exner equation in the projection step. It is evident that in this case we simply have

zn+ = zn as the Exner equation is completely taken into account in the transport

system. As such, for the stability of the numerical scheme, we ask for the following CFL

condition for the time step:
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∆t ≤ CFLl
∆x

maxj{max(τnj θ
n
j , τ

n
j+1θ

n
j+1)max(aj+1/2)}

(4.6)

with CFLl a constant value. Clearly, we do not need anymore condition (4.6) if we use

the implicit version of the numerical approximation.

Exner equation in both steps. Using the approximate Riemann solver presented in

Section 3.1.1, here we state

Ln+
j zn+j = Ln

j z
n
j − ∆t

∆x

(

(Ω − zu)∗j+1/2 − (Ω − zu)∗j−1/2

)

. (4.7)

Let us remark that we could envisage to compute implicitly the variables Lz and LΩ as

well without an excessive computational cost. Indeed, once we have found un+, Πn+

and τn+ by solving the implicit linear system given by formula (4.5), the star values

z∗,n+ and Ω∗,n+ lead to another linear system thanks to the fact that un+, Πn+ and τn+

are now fixed values.

In this case, the CFL condition on the time step for the explicit approximation is

given by

∆t ≤ CFLl
∆x

maxj
{

max(τnj θ
n
j , τ

n
j+1θ

n
j+1)max(aj+1/2, (|u|b)j+1/2)

} . (4.8)

4.2. Projection step

In this section we present the numerical approximation for the projection step.

Since it has already been presented in different papers for other systems, here we give

few details about it (see for instance [17,27,48]).

Aiming to project the Lagrangian solution into Eulerian coordinates, we consider

the following identity:
∫ ξ2

ξ1

L(ξ, t)X(ξ, t)dξ =

∫ x(ξ2,t)

x(ξ1,t)
X(x, t)dx

with X = h, hρ, hρu and, if needed, X = z. Then, we define ξ̂j+1/2 such that

x
(

ξ̂j+1/2, t
n+1
)

= xj+1/2, x
(

ξ̂j+1/2, t
n
)

= ξ̂j+1/2 for all j.

Subsequently, we can start writing

Xn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

X(x, tn+1)dx

=
1

∆x

∫ x(ξ̂j+1/2,t
n+1)

x(ξ̂j−1/2,tn+1)
X(x, tn+1)dx

=
1

∆x

∫ ξ̂j+1/2

ξ̂j−1/2

L(ξ, tn+1−)X(ξ, tn+1−)dξ,
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and splitting the last integral into three parts

1

∆x

∫ ξ̂j+1/2

ξ̂j−1/2

L(ξ, tn+1−)X(ξ, tn+1−)dξ

=
1

∆x

∫ ξj−1/2

ξ̂j−1/2

L(ξ, tn+1−)X(ξ, tn+1−)dξ

+
1

∆x

∫ ξj+1/2

ξj−1/2

L(ξ, tn+1−)X(ξ, tn+1−)dξ

+
1

∆x

∫ ξ̂j+1/2

ξj+1/2

L(ξ, tn+1−)X(ξ, tn+1−)dξ. (4.9)

Then, estimating ξ̂j+1/2 such that

xj+1/2 = x
(

ξ̂j+1/2, t
n+1
)

≃ x
(

ξ̂j+1/2, t
n
)

+∆t∂tx
(

ξ̂j+1/2, t
n
)

≃ ξ̂j+1/2 +∆tu∗j+1/2,

we approximate the last three integrals in (4.9) and obtain

Xn+1−
j = (LX)n+j − ∆t

∆x

(

u∗j+1/2(LX)n+j+1/2 − u∗j−1/2(LX)n+j−1/2

)

, (4.10)

where for all j

(LX)n+j+1/2 =

{

(LX)n+j , if u∗j+1/2 ≥ 0,

(LX)n+j+1, if u∗j+1/2 < 0.

For the projection step, the CFL condition on the time step is the following:

∆t ≤ CFLt
∆x

maxj
{

u+j−1/2 − u−j+1/2

} (4.11)

with CFLt a constant value and

u+j−1/2 = max
(

u∗j−1/2, 0
)

, u−j+1/2 = min
(

u∗j+1/2, 0
)

.

As for the final time step, we take the minimum between the Lagrangian and projection

ones. Then, we only need to specify the numerical approximation of the topography.

Exner equation in the transport step. Referring to the previous work [18], for the

numerical approximation of the Exner equation we state

zn+1−
j = znj − ζ

∆t

∆x

(

u∗j+1/2

(qb
u

)n+

j+1/2
− u∗j−1/2

(qb
u

)n+

j−1/2

)

, (4.12)

where
(qb
u

)n+

j+1/2
=







(qb
u

)(

(LQ)n+j+1

)

, if u∗j+1/2 ≤ 0,
(qb
u

)(

(LQ)n+j

)

, if u∗j+1/2 > 0.
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Exner equation in both steps. In this case the numerical approximation for z is

similar to the one of the other variables with the only difference that, in the numerical

flux, we use the values zn+j instead of its Lagrangian counterpart (Lz)n+j . Namely, we

state

zn+1−
j = (Lz)n+j − ∆t

∆x

(

u∗j+1/2z
n+
j+1/2 − u∗j−1/2z

n+
j−1/2

)

. (4.13)

This choice is actually related to the second-order extension of this scheme, for which

we refer to [17].

For the reader’s sake, let us summarize which formulas we use for each scheme:

• Explicit scheme with topography only updated at the end of the transport step:

formulas (4.4), (4.10), (4.12).

• Implicit-explicit scheme with topography only updated at the end of the transport

step: formulas (4.4), (4.5), (4.10), (4.12).

• Explicit scheme with topography updated in both the acoustic and transport step:

formulas (4.4), (4.7), (4.10), (4.13).

Finally, let us sum up the properties of the numerical schemes we presented so far

in the following theorem.

Theorem 4.1. Consider the three LP numerical schemes we presented so far, namely the

explicit method with Exner equation in the transport step (formulas (4.4), (4.10), (4.12)),

its implicit-explicit version (formulas (4.4), (4.5), (4.10), (4.12)) and finally the scheme

with Exner equation in both steps (formulas (4.4), (4.7), (4.10), (4.13)).

a) The above-mentioned numerical schemes are well-balanced in the following sense.

They are able to exactly preserve the stationary solutions (2.4)-(2.5). Whereas,

concerning the steady state (2.2), the methods are well-balanced with order two:

they preserve its second-order discretization (2.15).

b) Under the CFL condition (4.11) with CFLt = 0.5, the above-mentioned numerical

schemes preserve the positivity of the water height h.

c) Under the CFL condition (4.11) with CFLt = 0.5, the assumption of the positivity of

the water height (point b) and of hn+1−
j 6= 0 ∀j, if ρw ≤ ρnj ≤ ρs ∀j, then it follows

that ρw ≤ ρn+1−
j ≤ ρs ∀j. This statement is true for any of the above-mentioned

numerical schemes.

Proof.

a) The well-balanced property results from the definition of the approximate Rie-

mann solver presented in Section 2.2 (Section 3.1.1 with the Exner equation). In

particular, in the acoustic step we find u∗j+1/2 = 0 ∀j and LQn+
j = Qn

j after few

computations. Then, regarding the transport step, it is enough to observe that

Qn+1−
j = LQn+

j as u∗j+1/2 = 0. Finally, observe that at this stage the source terms
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are not considered, otherwise the stationary solutions would no longer be such.

For this reason, we automatically have Qn+1
j = Qn+1−

j .

b) Assume hnj ≥ 0 ∀j. It is straightforward to see that Ln+
j hn+j ≥ 0 ∀j from dis-

cretization (4.1). Furthermore, given hnj > 0 we can also show that hn+j > 0
under the CFL condition (4.11) with CFLt = 1.

Then, considering the transport approximation (4.10) with X = h, we have

hn+1−
j = Ln+

j hn+j − ∆t

∆x

(

u∗j+1/2(Lh)
n+
j+1/2 − u∗j−1/2(Lh)

n+
j−1/2

)

= Ln+
j hn+j − ∆t

∆x

(

(u∗j+1/2)
+(Lh)n+j + (u∗j+1/2)

−(Lh)n+j+1

− (u∗j−1/2)
+(Lh)n+j−1 − (u∗j−1/2)

−(Lh)n+j

)

= Ln+
j hn+j

(

1− ∆t

∆x

(

(u∗j+1/2)
+ − (u∗j−1/2)

−

)

)

− ∆t

∆x

(

(u∗j+1/2)
−(Lh)n+j+1 − (u∗j−1/2)

+(Lh)n+j−1

)

.

Then, it is clear that

−∆t

∆x

(

(u∗j+1/2)
−(Lh)n+j+1 − (u∗j−1/2)

+(Lh)n+j−1

)

≥ 0.

Hence, if

∆t

∆x

(

(u∗j+1/2)
+ − (u∗j−1/2)

−

)

≤ 1, (4.14)

we have hn+1−
j ≥ 0. Finally, let us observe that condition (4.11) with CFLt = 0.5

implies condition (4.14).

c) Let us assume that ρw ≤ ρnj ≤ ρs ∀j. To prove that ρw ≤ ρn+1−
j ≤ ρs ∀j, we start

by showing that ρw ≤ ρn+1−
j ∀j and then that ρn+1−

j ≤ ρs ∀j. We also assume

hnj ≥ 0 and hn+1−
j > 0.

First of all, we define the new variable ρ̃ = ρ− ρw. As such, it is clear that its

evolution equation is given by ∂t(hρ̃) + ∂x(hρ̃u) = 0 and its approximation reads

(hρ̃)n+1−
j = (Lhρ̃)n+j − ∆t

∆x

(

u∗j+1/2(Lhρ)
n+
j+1/2 − u∗j−1/2(Lhρ)

n+
j−1/2

)

+ ρw
∆t

∆x

(

u∗j+1/2(Lh)
n+
j+1/2 − u∗j−1/2(Lh)

n+
j−1/2

)

= (Lhρ̃)n+j − ∆t

∆x

(

u∗j+1/2(Lhρ̃)
n+
j+1/2 − u∗j−1/2(Lhρ̃)

n+
j−1/2

)

.
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Now, we aim to prove that ρ̃n+1−
j ≥ 0, namely that ρn+1−

j ≥ ρw. Hence, we use

the same strategy as in point (b). We have

(hρ̃)n+1−
j = (Lhρ̃)n+j − ∆t

∆x

(

u∗j+1/2(Lhρ̃)
n+
j+1/2 − u∗j−1/2(Lhρ̃)

n+
j−1/2

)

= (Lhρ̃)n+j − ∆t

∆x

(

(u∗j+1/2)
+(Lhρ̃)n+j + (u∗j+1/2)

−(Lhρ̃)n+j+1

− (u∗j−1/2)
+(Lhρ̃)n+j−1 − (u∗j−1/2)

−(Lh)n+j

)

= (Lhρ̃)n+j

(

1− ∆t

∆x

(

(u∗j+1/2)
+ − (u∗j−1/2)

−

)

)

− ∆t

∆x

(

(u∗j+1/2)
−(Lhρ̃)n+j+1 − (u∗j−1/2)

+(Lhρ̃)n+j−1

)

,

and then, as in point (b), it follows that (hρ̃)n+1−
j ≥ 0 under condition (4.11) with

CFLt = 0.5. Namely, we found ρn+1−
j ≥ ρw as we already know that hn+1−

j > 0.

As a second step, we want to prove that ρn+1−
j ≤ ρs. This time we define the

variable ρ̃ = ρs − ρ, whose approximation reads

(hρ̃)n+1−
j = (Lhρ̃)n+j − ∆t

∆x

(

u∗j+1/2(Lhρ̃)
n+
j+1/2 − u∗j−1/2(Lhρ̃)

n+
j−1/2

)

once again. Then, we just follow the same strategy as before to prove that

ρ̃n+1−
j ≥ 0 and thus ρs ≥ ρn+1−

j .

4.3. Including the source terms for friction and erosion/deposition fluxes

The last step consists in including the erosion, deposition and friction terms in the

mathematical model. Following the lines of [39], we aim at exploiting a semi-implicit

approximation for the source terms. Hence, considering first the variables hρ and z,

their updating formulas read


























hn+1
j ρn+1

j = hn+1−
j ρn+1−

j

+∆tζρz

(

(1−Ψ)vsE
n+1−
s,j

zn+1

j

zn+1−

j

− vsc
n+1−
z,j

hn+1

j ρn+1

j

hn+1−

j ρn+1−

j

)

,

zn+1
j = zn+1−

j −∆tζ

(

(1−Ψ)vsE
n+1−
s,j

zn+1

j

zn+1−

j

− vsc
n+1−
z,j

hn+1

j ρn+1

j

hn+1−

j ρn+1−

j

)

,

(4.15)

where we recall that

φz = Fe − Fd, Fe = (1−Ψ)vsEs, Fd = vscz.

Then, the solution of this linear system (4.15) can be explicitly found, we just refer

to [39] for more details about it. Subsequently, as we have found hn+1
j ρn+1

j and zn+1
j ,

we can automatically define φz as

φz =
1−Ψ

ρz∆t

(

hn+1
j ρn+1

j − hn+1−
j ρn+1−

j

)

,
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and thus update hn+1
j and (hρu)n+1

j , for which the friction term is treated semi-implicit-

ly as well, see [39] for more details.

Remark 4.2. The numerical treatment for the erosion and deposition terms correspond

to the approach used in [39]. Following the same ideas, one can prove that, provided

that both hρn+1−
j and zn+1−

j are positive, hρn+1
j and zn+1

j remain positive. Let us re-

mark that the positivity of z is not a requirement in the case of the model presented

here, where the sediment bed is assumed to be as large as required and erosion is lim-

ited. Nevertheless this is not usually the case in practical situations where we have

a limited erodible bed. In such scenarios this condition would be relevant, which jus-

tifies this approach. The result easily follows only for hρn+1
j if no limitation for the

erodible bottom is made.

5. Numerical simulations

This section is devoted to the presentation of the numerical results. Here we con-

sider the three different numerical methods we have presented so far. For the sake of

brevity, we call them as in the following:

• LP-TrZ if the topography is updated at the end of the transport step and the ap-

proximation of the acoustic step is explicit;

• LP-TrZ-Imp if the topography is updated at the end of the transport step and the

approximation of the acoustic step is implicit;

• LP-AcTrZ if the topography is updated in both the acoustic and transport step.

If not otherwise specified, in the numerical simulations we take CFLl = 0.45 and

CFLt = 0.99. Finally, we underline that for all the numerical simulations, we exploited

MATLAB language with a single Intel Core i7 CPU.

5.1. Lake at rest solution with suspended sediment

In [39], it has been presented the following numerical test, which is useful to check

if our numerical scheme produces indeed the physical solution described in Section 1.

We consider a closed channel of length L = 2 m, where the water is still u = 0, the free

surface is constant in space (h+z = 3 m) as well as the bed height (z = 1.05 m). Then,

the diameter of the sediments is given by d = 3.9 mm and the sediment concentration

is c(x, t) = 0.2. Finally, we also impose the following parameter values, ρs = 1.580,
θ∗c = 0.045 and µf = 0.03. The solution is computed at final time tEnd = 30 s. As

explained in Section 1, we expect the bed level to increase due to sediment deposition

and, consequently, the water height to decrease as the free surface should remain con-

stant in time. Moreover, the velocity should remain null as the channel is closed and

the pressure term is constant in the domain. Finally, since c < 1−Ψ, the density of the

mixture water sediment is expected to decrease. All these remarks are indeed verified
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Figure 1: Lake at rest solution with suspended sediment in Section 5.1: M = 256 cells, reference solution
(red line), tend = 30s (blue dashed line), t0 = 0s (magenta line). Free surface and bed level (left), density
and velocity (right).

by our numerical outputs, reported in Fig. 1. The solution is computed using the LP-

AcTrZ method. We do not report here the results obtained with the other schemes, as

they give analogous solution. Finally, remark that we also insert a reference solution

found by solving the ODE system (1.8) with a second-order Runge-Kutta method. The

reference and LP solutions are analogous as expected.

5.2. Turbidity currents

In this section we want to simulate how the bed elevation evolves in time when

imposing turbidity currents into a channel with clear water. Thus, as initial condition

we take h(x, t = 0) = 4m, ρ(x, t = 0) = 1, z(x, t = 0) = 1m and q(x, t = 0) = 0.001
m2/s. Moreover, we consider the erosion-deposition source terms together with the

friction one but we neglect the solid transport discharge qz in the Exner equation.

Then, we impose ρs = 2.650 and rw = 2.5 while, for the other parameter values, we

use the ones of the previous Section 5.1. Then, for the left boundary condition we do

the following:

q(x = 0, t) =







3

2

(

1 + sin

(

πt

2

))

, if (t ≤ 20s ∨ 60s ≤ t ≤ 90s),

q1(t), otherwise,

ρ(x = 0, t) =







1 + 0.2max

(

sin

(

πt

2

)

, 0

)

, if (t ≤ 20s ∨ 60s ≤ t ≤ 90s),

ρ1(t), otherwise,

(5.1)

where the index 1 indicates the value of the variable in the first cell of the mesh.

Otherwise, we ask for transmissive boundary conditions. Then, in Fig. 2, we insert the
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(d) Time= 120s

Figure 2: Turbidity test in Section 5.2: bed level and density computed with explicit (blue dashed line)
and implicit (magenta line) methods with M = 256 cells. Reference solution (red line) computed with the
explicit scheme and M = 1024 cells. Solutions at times t = 30s (up-left), t = 50s (up-right), t = 100s
(bottom-left) and t = 120s (bottom-right).

bed elevation and density outputs at times t = 30s, t = 50s, t = 100s and t = 120s

using both explicit and implicit LP-TrZ schemes. Notice that, for the latter, we used

a time step based only on the transport CFL condition (4.11). Hence, in this case the

implicit time step is at least 14 times larger than the explicit time step, where the latter

is about ∆t ≈ 0.0026. Notice that we also inserted a reference solution computed with

M = 1024 cells and the explicit LP-TrZ scheme.

The two schemes give similar results even if some differences can be observed,

mainly in the density outputs. This is probably due to the different time steps used

for the two simulations. Indeed, differences are reduced if we consider the same time

step for the two schemes. Moreover, we verified that the two schemes give analogous

solutions when refining the mesh. We stress, anyway, that in this type of test we are

mainly interested in understanding how the topography evolves over long periods of
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(a) LP-TrZ scheme
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(b) LP-TrZ-Imp scheme

Figure 3: Turbidity test in Section 5.2: bed level (up) and density (bottom) computed with explicit (left)
and implicit (right) methods and M = 256 cells. Solution at times t = 30s (blue), t = 50s (red), t = 100s
(yellow) and t = 120s (purple).

time rather than density, whose values change several times due to boundary condi-

tions. We can observe that the two schemes give similar pattern for the topography

outputs. Moreover, even if the implicit scheme overestimate the topography values,

it seems to capture the waveform better, in the sense that the fluctuations are more

damped when using the explicit scheme.

Then, to better highlight how the bed elevation changes in time, we insert the out-

puts at different times in the same figure for the two schemes, see Fig. 3. In particular,

we observe that, when inserting the flow with sediment in the channel, the bed eleva-

tion increases. On the other hand, when no sediments are imposed, the bed elevation

decreases while the density of sediment augments. This is probably due to the fact that

here erosion is greater than deposition and, as such, there is an increase of suspended

sediments in the water.

Finally, it is interesting to show the errors in norm L1 and the computational times

for both the explicit and implicit schemes, see Table 2. We can conclude that, even if

errors are greater when using the implicit scheme, it allows much faster simulation.

This explains why the implicit version of the method is useful.

Table 2: CPU time in seconds and errors in norm L
1 for the variables z and ρ computed at times t = 30s,

t = 60s, t = 100s and t = 120s using LP-TrZ and LP-TrZ-Imp schemes.

Time
Error L1 of z Error L1 of ρ CPU [s]

LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp

30s 0.1669 0.5107 0.0216 0.0988 72.4549 4.1708

50s 0.1175 1.4431 0.0103 0.2778 124.0635 6.2851

100s 1.4623 1.6950 0.2042 0.1127 245.2995 15.2274

120s 1.6630 3.4737 0.1265 0.3918 287.0587 17.9937
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5.3. Dune evolution test case

For this test case we refer to [4] and we use the following parameters values: L =
1000m, ζ = 1/(1 − 0.47), Grass formula with Ag = 1 and CFLt = 0.5. Then, the initial

conditions (IC) are given by

zIC =











0.1 +

(

sin

(

Π(x− 300)

200

))2

, if 300 ≤ x ≤ 500,

0.1, otherwise,

hIC = 10 − zIC and qIC = 10. We show the results in Fig. 4, obtained using the LP-TrZ

and LP-TrZ-Imp methods. Here the reference solution is computed with M = 1024 cells

and an implicit-explicit second-order scheme for which we refer to [26]. The numerical

solution seems to be in agreement with the one reported in [4]. Let us underline that

here we use the implicit-explicit version of the scheme as the dune evolution problem

is in general a slow test case. Indeed, the regime is already sub-critical with a Froude

number Fr ≈ 0.1. If we set M = 256 cells, for the semi-implicit scheme, the time step is

about ∆t ≈ 1.8s, whereas for the explicit version of the method, the time step is limited

to ∆t ≈ 0.176s approximately. For the sake of completeness, in Tables 3-4, we show

the errors in norm L1 and the computational times computed with not only the LP-TrZ

and LP-TrZ-Imp methods, but also a path-conservative (complete) Riemann Solver (RS)

described in [39]. For the variables h and z, we also insert the comparison between the

CPU and the errors in log scale in Fig. 5.
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Figure 4: Dune evolution test case in Section 5.3, water height (up) and bed level (bottom). Ending time
tend = 700s. LP-TrZ (blue line) and LP-TrZ-Imp (magenta dashed line) with M = 256 cells and reference
solution with M = 1024 cells (red line).
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Table 3: Errors in norm L
1 of h and hu using LP-TrZ, LP-TrZ-Imp and path-conservative RS methods.

Mesh of size M = (64, 128, 256, 512) and space step ∆x = (15.625, 7.8125, 3.90625, 1.953125).

Mesh ∆x
Error L1 of h Error L1 of hu

LP-TrZ LP-TrZ-Imp RS LP-TrZ LP-TrZ-Imp RS

64 15.625 74.7145 80.0825 61.1780 30.7352 36.3154 24.8945

128 7.8125 52.8432 57.6222 41.8925 21.6851 26.6577 17.3262

256 3.90625 33.3327 37.0244 25.1158 13.8278 18.3581 10.6593

512 1.953125 19.0688 21.6013 13.6145 8.0738 11.1259 6.0475

Table 4: Errors in norm L
1 of z and computational cost using LP-TrZ, LP-TrZ-Imp and path-conservative RS

methods. Mesh of size M = (64, 128, 256, 512) and space step ∆x = (15.625, 7.8125, 3.90625, 1.953125).

Mesh ∆x
Error L1 of z CPU [s]

LP-TrZ LP-TrZ-Imp RS LP-TrZ LP-TrZ-Imp RS

64 15.625 74.2672 79.8077 60.9452 1.2478 0.1833 1.4491

128 7.8125 52.6857 57.4422 41.7470 4.2625 0.4024 4.7655

256 3.90625 33.2159 36.8888 25.0112 15.4166 1.9843 20.0654

512 1.953125 18.9822 21.4826 13.5388 61.2181 9.5504 183.2754

We highlight that, for this test, we considered a long channel (L = 1000m) with

relatively coarse meshes and large space steps ∆x. As a consequence, also the errors

appear to be big, which is normal as we assume them to be of the same order of ∆x.

Then, we observe that the errors of the LP explicit scheme are a bit smaller than the

LP implicit ones when using the same mesh values. This is expected as the implicit

method is more diffusive than the explicit one. On the other hand, it is immediately
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Figure 5: Dune evolution test case in Section 5.3: CPU against error in norm L
1 for the variables h (left)

and z (right). Mesh of size M = (64, 128, 256, 512). LP-TrZ (blue line), LP-TrZ-Imp (red line) and path-
conservative RS (yellow line) schemes.
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evident that the LP-TrZ-Imp scheme is much faster than its explicit version. Therefore,

it is clear that the LP-TrZ method is more accurate, but the difference on CPU time when

compared to the implicit scheme makes the LP-TrZ-Imp method a very good alternative

for long time simulations. This fact is made even clearer by Fig. 5, where we observe

that the line for the LP-TrZ-Imp scheme is always under the LP-TrZ one, confirming

our previous statement. Then, let us compare the LP schemes with a more classical

method: a first-order complete Riemann solver. It appears clear that, even if the RS

is more accurate than both the LP methods for a fixed mesh, it also has a greater

computational cost. This is due to the smaller time steps which are used to advance in

time. To make a comparison, for M = 256 and CFL = 0.45, we approximately need

to impose ∆t ≈ 0.118 for the RS method. This confirms that implicit LP-methods are

indeed competitive compared to other conventional schemes when working in subsonic

regimes, in which long ending times are required.

Moreover, here we have taken Ag = 1, meaning that the interaction between the

fluid and the sediments of the bottom is strong. In this way we are able to see in

a relative short time substantial changes in the bed elevation. However, if we consider

a weaker interaction, for instance Ag < 0.1, the evolution of the bottom height is slower

and we need a greater ending time to be able to see significant changes in z, hence the

usefulness of the implicit-explicit version of the method. Finally, we underline that if we

are in a low Froude number regime (Fr < 10−2), the CFL condition for the acoustic time

step is even more limited and difference in value between the acoustic and transport

time steps could be more remarkable.

Finally, for the sake of completeness, in Table 5 we insert the empirical conver-

gence rates for the LP-TrZ and LP-TrZ-Imp schemes in order to show that their order of

accuracy tends to one.

Table 5: Empirical convergence rates in norm L
1 of h, hu, z using LP-TrZ and LP-TrZ-Imp methods. Mesh

of size M = (64, 128, 256, 512).

Mesh
O(L1) of h O(L1) of hu O(L1) of z

LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp LP-TrZ LP-TrZ-Imp

64 − − − − − −
128 0.4997 0.4749 0.5032 0.4460 0.4953 0.4744

256 0.6648 0.6381 0.6491 0.5381 0.6655 0.6389

512 0.8057 0.7774 0.7763 0.7225 0.8072 0.7800

5.4. Dam break problems

Here we present two different dam break problems for which the experimental re-

sults are available. The experiments are selected from [32, 53]. We consider the MPM

formulation (1.3) for qz and describe the parameters values in Table 6. We also take

M = 500 cells. Let us remark that for these dam break problems, we need to use

a smaller time step value for the LP-TrZ method in order to avoid unphysical oscilla-

tions.
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Table 6: Parameters values for dam break problems in Section 5.4, two different experiments.

Experiment hL [m] hR [m] L [m] d [mm] ρs [g cm−3] µf [s m−1/3] θ∗c rw
1 0.1 0 2.5 3.2 1.540 0.02 0.045 1

2 0.35 0 6 3.9 1.580 0.0165 0.047 2.5

Experiment 1. This experiment has been carried on at the Université Catholique de

Louvain and is in particular described in [32]. We report the LP-AcTrZ and LP-TrZ

results for this first dam break experiment in Fig. 6. In particular, on the left we insert

the LP-AcTrZ solution against the experimental results, while we compare the two LP-

AcTrZ and LP-TrZ methods on the right. We consider three different ending times,

namely tend = 5t0, 7.5t0, 10t0 s with t0 =
√
gh0 ≈ 0.101. In general, the numerical

outputs seem to be in agreement with the ones reported in [39] and they are also close

to the experimental solution. We can also observe that the two LP-AcTrZ and LP-TrZ

methods give similar results, even if the LP-TrZ method is less diffusive, see again Fig. 6.

Finally, we do not report here the implicit LP-TrZ outputs as they are analogous to the

ones of the explicit version of the scheme.

Experiment 2. The second dam break experiment was selected from [53]. In Fig. 7,

once again we show the LP-AcTrZ and LP-TrZ outputs for the second dam break prob-

lem. Analogous comments to what we have made for the first experiment may be said:

our numerical solution correctly describe the solution in the sense that it is close to the

experimental one. The position of the front is correct as well. Finally, the LP-TrZ is

slightly less diffusive than the LP-AcTrZ one but it may require the use of a smaller CFL

number to avoid possible spurious oscillations.

Remark 5.1. Let us observe that for these two dam break problems, the regime is

supercritical. As such, to exploit the implicit version of the method does not lead to an

actual improvement of the numerical simulation in the sense that CPU times are not

necessarily better. On the other hand, while the first-order numerical scheme LP-TrZ

does not produce spurious oscillations, its second (or higher) order extension could,

see [17]. Hence, the usefulness of the LP-AcTrZ method, which is more stable.

6. Conclusion and perspectives

In this work, we have presented both explicit and implicit-explicit well-balanced

Lagrange-projection schemes applied to the shallow water system with moving topog-

raphy and variable density of the mixture water-sediment. In particular, we assumed

that sediments could move along the bottom (bed-load) or being finer fraction that

could be carried in suspension into the water or be deposited on the bed.

Since sediment transport is generally a slow process, which requires long-in-time

simulation in order to see appreciable changes in the bed elevation, implicit-explicit

method can be very useful. We considered academic problems to show that the implicit-
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Figure 6: Dam break problem, Experiment 1, Section 5.4: free surface and bed level, M = 500 cells. Ending
time tend = 5t0s (up), tend = 7.5t0s (middle), tend = 10t0s (bottom). On the left, LP-AcTrZ free surface
(blue line), LP-AcTrZ bottom (red line) and experimental values (red symbol). On the right, LP-AcTrZ
(continuous blue line) and LP-TrZ (black dashed line) numerical methods.

explicit version of the Lagrange-projection numerical scheme allows very fast simula-

tions, especially when we are in subsonic or low-Froude number regimes. Indeed, the

LP approach entails a decomposition of the acoustic and transport waves of the model

leading to the possibility of implicitly approximating only the acoustic equations. As

a consequence, the CFL condition on the time step can be based only on the transport

waves. Finally, we also provided comparison between experimental and numerical re-

sults.
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Figure 7: Dam break problem, Experiment 2, Section 5.4: free surface and bed level, M = 500 cells. Ending
time tend = 1s (up), tend = 1.25s (middle), tend = 1.5s (bottom). On the left, LP-AcTrZ free surface
(blue line), LP-AcTrZ bottom (red line) and experimental values (red symbol). On the right, LP-AcTrZ
(continuous blue line) and LP-TrZ (black dashed line) numerical methods.

We note that two explicit LP schemes have been described, which differ only in the

approximation of the bed elevation z, namely the LP-TrZ and the LP-AcTrZ. Indeed,

while the former is easier, the latter proved to be more stable in situations in which

we could expect unphysical oscillation in the numerical outputs of fully decoupled

methods.

Improvements could be related to the design and implementation of high order

extension of implicit-explicit well-balanced Lagrange-projection schemes.
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Finally, we want to highlight that the numerical method presented here could be

applied in situations with or without bedload transport. Moreover, it can be extended

to more sophisticated models like multi-layer or multi-phase flows.

Appendix A. Linear system for the implicit acoustic approximation

In this section we briefly show how to write the implicit version of the numerical

scheme which approximates the Exner equation directly in the transport step. For this

purpose, we reformulate the third and fourth equations of system (4.4) as the following

linear system A
−→
X =

−→
b , where

−→
X =


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∆t

∆m1
sn1

Πn
1−a23/2

∆t

2∆m1

(

sn3/2

a3/2
−

sn1/2

a1/2

)

...

unj +
∆t

∆mj
snj

Πn
j−a2j+1/2

∆t

2∆mj

(

snj+1/2

aj+1/2
−

snj−1/2

aj−1/2

)

...

unM +
∆t

∆mM
snM

Πn
M−a2M+1/2

∆t

2∆mM

(

snM+1/2

aM+1/2
−

snM−1/2

aM−1/2

)



























































(A.1)

and

A =

















































c1 f1 d1 g1 0 . . . . . . . . . . . . 0

c̃1 f̃1 d̃1 g̃1 0 . . . . . . . . . . . . 0
b2 e2 c2 f2 d2 g2 0 . . . . . . 0

b̃2 ẽ2 c̃2 f̃2 d̃2 g̃2 0 . . . . . . 0

0
. . .

. . .
. . .

. . .
. . .

. . . 0 . . . 0
. . . 0 bj ej cj fj dj gj 0 . . .

. . . 0 b̃j ẽj c̃j f̃j d̃j g̃j 0 . . .

0 . . . 0
. . .

. . .
. . .

. . .
. . .

. . . 0

0 . . . . . . 0
. . .

. . .
. . .

. . .
. . .

. . .

0 . . . . . . . . . 0
. . .

. . .
. . .

. . .
. . .

0 . . . . . . . . . . . . 0 bM eM cM fM
0 . . . . . . . . . . . . 0 b̃M ẽM c̃M f̃M

















































(A.2)



Lagrange-Projection Schemes for Shallow Water Flows 37

with

bj = − ∆t

2∆mj
anj−1/2, cj = 1 +

∆t

∆mj

(

anj+1/2 + anj−1/2

2

)

,

dj = − ∆t

2∆mj
anj+1/2, ej = − ∆t

2∆mj
, fj = 0,

gj = +
∆t

2∆mj
, b̃j = − ∆t

2∆mj

(

anj+1/2

)2
, c̃j = 0,

d̃j = +
∆t

2∆mj

(

anj+1/2

)2
, ẽj = −

(anj+1/2)
2∆t

2anj−1/2∆mj
,

f̃j = 1 +
(anj+1/2)

2∆t

2∆mj

(

1

an
j+1/2

+
1

an
j−1/2

)

, g̃j = −
(anj+1/2)

2∆t

2an
j+1/2

∆mj
.

By the index 1 and M we indicate the value of the variable in the first and last cell

respectively, where M is the number of cells. Finally, it is clear that the first and last

line of the system should be modified according to the considered boundary condition.

Then, once un+ and Πn+ have been recovered, it is straightforward to update the

variables Lhn+, Lhρn+ and Lhρun+ by considering the Lagrangian approximation (4.1)

with star values at time tn+.

Acknowledgments

A. Del Grosso research has been supported by a grant from Région Île-de-France.
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