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Abstract

Generalized Bézier surfaces are a multi-sided generalization of classical tensor product

Bézier surfaces with a simple control structure and inherit most of the appealing prop-

erties from Bézier surfaces. However, the original degree elevation changes the geometry

of generalized Bézier surfaces such that it is undesirable in many applications, e.g. iso-

geometric analysis. In this paper, we propose an improved degree elevation algorithm for

generalized Bézier surfaces preserving not only geometric consistency but also parametric

consistency. Based on the knot insertion of B-splines, a novel knot insertion algorithm for

generalized Bézier surfaces is also proposed. Then the proposed algorithms are employed

to increase degrees of freedom for multi-sided computational domains parameterized by

generalized Bézier surfaces in isogeometric analysis, corresponding to the traditional p-,

h-, and k-refinements. Numerical examples demonstrate the effectiveness and superiority

of our method.

Mathematics subject classification: 65D07, 65D17, 68U07.

Key words: Generalized Bézier surface, Degree elevation, Knot insertion, Isogeometric

analysis, Refinement.

1. Introduction

The representation of surfaces, as one of the core research fields of computer-aided geometric

design (CAGD) [7], has undergone tremendous advances in the past decades. Concerning

geometric modeling, multiple powerful tools have been developed, such as Bézier surfaces and

non-uniform rational B-spline (NURBS) surfaces [8,25]. Despite this advancement, the majority
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of these tools are inconvenient to represent n-sided (n > 4) surfaces required in some application

scenarios. To overcome this problem, multi-sided surfaces, e.g. S-surfaces [21] and toric surfaces

[16], are widely investigated [10, 18, 41, 42].

In 2016, Várady et al. [28] proposed a new polygonal parametric surface, named generalized

Bézier (GB) surface, which is a generalization of the classical tensor product Bézier surface. The

local coordinates of a GB surface are related to the generalized barycentric coordinates of the

polygonal parametric domain. GB surfaces inherit the most of nice properties of Bézier surfaces.

Based on [28], an enhanced version of GB surfaces was proposed in [29]. Salvi and Várady [30]

proposed a new multi-sided surface scheme that permits domains with concave angles. Recently,

Vaitkus et al. [27] introduce generalized B-spline (GBS) surfaces, which match B-spline surfaces

with arbitrary geometric continuity. Compared with toric surfaces, GB surfaces are easier to

generate high-quality parameterizations, which facilitates further analysis. In this paper, we

focus on the first version of GB surfaces [28].

Although the GB surfaces is a powerful tool in multi-sided surface modeling, the degree

elevation algorithm introduced in [28] may change the interior of the original surface. As the

degree of a GB surface increases, the weight of the central control point increases, leading

to the problem that the isoparametric curves move towards the central control point. The

parameterization goes worse as a consequence. For this reason, we propose an improved degree

elevation algorithm for GB surfaces that remains surfaces unchanged. Additionally, considering

its capability of endowing local control, the locality plays a pivotal role in a surface. Based on

the idea of deeming a Bézier surface as a B-spline surface with appropriate knot vectors, a novel

knot insertion algorithm for GB surfaces is also proposed.

In 2005, Hughes et al. [5, 11] proposed the concept of isogeometric analysis (IGA), which

has the potential for bridging the gap between finite element analysis (FEA) and computer-aid

design (CAD). Given the boundary representation of a CAD model, constructing a spline-

based mapping from its parametric domain to the computational domain is a crucial task in

IGA. The quality of parameterization dramatically affects the accuracy and efficiency of the

subsequent analysis [3, 26, 37]. To construct high-quality parameterizations, many methods

have been proposed. Some methods are suitable for genus-0 domains, such as variational

harmonic method [38] and Teichmüller mapping method [23]. For complex domains, especially

for high-genus domains, single-patch parameterizations are not sufficient due to the topological

flaw of general parametric surfaces. To this end, multi-patch configurations were extensively

adopted [1, 36, 40]. Moreover, Lei et al. [17] proposed a novel automatic hexahedral mesh

generation method, which lays a solid theoretic foundation for structured hex-meshing based

on foliations. The above works mainly focus on isotropic parameterization methods that are

independent of governing equations. With the same degrees of freedom (DOFs), anisotropic

parameterizations customized for the governing equation may yield a more accurate numerical

solution [14, 35]. Compared with the planar parameterization construction, the volumetric

case is more challenging in both robustness and efficiency [13, 24, 39]. Xie et al. [33] handle

volumetric modeling using interpolatory Catmull-Clark subdivision approaches. To improve

computational efficiency, Xu et al. [34] proposed a framework for computation reuse in IGA.

Recently, a deep-learning-based isogeometric analysis-reuse approach, called IGA-Reuse-Net,

was proposed [32].

Though many methods are proposed, most of them focus on triangular or quadrilateral

domains. However, triangular or quadrilateral representation is not suitable for multi-sided

computational domains. As pointed out in [3, 18], using quadrilateral surfaces (e.g. Bézier
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and B-spline surfaces) to parametrize multi-sided domains may cause mesh degeneration or

decreased continuity. As far as we know, only a few papers discuss the polygonal toric sur-

face techniques in the parameterization for IGA [12, 18]. However, this method is sometimes

unsatisfactory in terms of the quality of the parameterization. In this paper, GB surfaces are

employed to IGA. And it is easier to construct satisfactory parameterizations.

Besides, there are three common methods in IGA to improve the accuracy of numerical

solutions by increasing DOFs: knot insertion (h-refinement), degree elevation (p-refinement),

and the combination of these two algorithms (k-refinement) [6,11]. By using the proposed degree

elevation and knot insertion algorithms, we present the concepts of p-, h-, and k-refinements in

IGA based on GB surfaces. To verify the effectiveness and robustness of the proposed methods,

Poisson’s equations and linear elasticity problems over polygonal computational domains are

considered. Comparisons with toric and NURBS methods are also given.

The rest of the paper is organized as follows. Section 2 devotes to reviewing the definition

of GB surface and its original degree elevation. In Section 3, based on the properties of basis

functions, we present an improved degree elevation and a novel knot insertion for GB surfaces.

These proposed geometric algorithms remain the geometry and parameterization of the original

surface unchanged. In Section 4, the improved degree elevation and knot insertion are adopted

for the refinement of GB parameterizations of computational domains in IGA. Several numerical

examples and comparisons with the toric and NURBS methods are in Section 5. Finally, the

paper concludes with a summary and future work in Section 6.

2. Preliminaries

In this section, we briefly review the definition of GB surfaces and the original degree

elevation algorithm proposed in [28].

2.1. Generalized Bézier surface

A generalized Bézier surface is a rational polygonal surface defined over n-sided convex

domain P (see Fig. 2.1(a) for an example). The definition of GB surface needs local parameters

si = si(u, v) and hi = hi(u, v) which are computed by Wachspress barycentric coordinates

λi [31]. Alternatively, we follow an expression of Wachspress coordinates [9].

Definition 2.1 ([9]). For a given n-sided convex polygonal domain P with vertices v1,v2, · · · ,

vn (n ≥ 4), denote its outward unit normal to the edge ei = vi−1vi by ni = (ni
1, n

i
2)

T. Let

g⊥i (x) be the perpendicular distance of x to the edge ei, i.e.

g⊥i (x) = (vi − x) · ni, ∀x ∈ P . (2.1)

Then Wachspress barycentric coordinates are expressed as

λi(x) =
wi(x)∑n
j=1 wj(x)

, i = 1, . . . , n, (2.2)

where

wi(x) =
ni−1 × ni

g⊥i−1(x)g
⊥
i (x)

, (2.3)

ni−1 × ni = ni−1
1 ni

2 − ni−1
2 ni

1.
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For the exceeded indexes, we set

v0 = vn, g⊥0 (x) = g⊥n (x), n0 = nn.

From the above formulas (2.1)-(2.3), the gradients of Wachspress coordinates, which play

a crucial role in many applications, e.g. Hermite interpolation and IGA, can be derived quite

easily. Let

Ri(x) =
ni−1

g⊥i−1(x)
+

ni

g⊥i (x)
,

then the gradients of Wachspress barycentric coordinates are computed by

∇λi = λi

(
Ri −

n∑

j=1

λjRj

)
. (2.4)

With Wachspress barycentric coordinates in hand, we recall the following definition of GB

surfaces.

Definition 2.2 ([28]). Given an n-sided convex polygonal domain P with vertices v1,v2, · · · ,

vn, denote the Wachspress barycentric coordinates of P by λi, i = 1, . . . , n. Let θi be the interior

angle of P at vi. Given the control points Cd,i
j,k, j = 0, . . . , d, k = 0, . . . , l − 1, where d is the

degree of surface, l = ⌈d/2⌉ is the number of control point layers. The GB surface is the image

of the mapping Sd : P → R
3, ∀(u, v) ∈ P,

Sd(u, v) =
n∑

i=1

d∑

j=0

l−1∑

k=0

µi
j,kC

d,i
j,kB

d,d
j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v), (2.5)

where

si =
sin(θi)g

⊥
i−1

sin(θi)g⊥i−1 + sin(θi−1)g⊥i+1

, hi = 1− λi−1 − λi (2.6)

are the local parameters,

Bd,d
j,k (si, hi) = Bd

j (si)B
d
k(hi) =

(
d

j

)
(1− si)

d−jsji

(
d

k

)
(1− hi)

d−khki

are Bernstein basis functions of (si, hi),

Cd
0 =

1

n

n∑

i=1

Cd,i
l,l−1 (2.7)

is the central point, and its corresponding blending function

Bd
0 (u, v) = 1−

n∑

i=1

d∑

j=0

l−1∑

k=0

µi
j,kB

d,d
j,k

(
si(u, v), hi(u, v)

)
, (2.8)

and weights

µi
j,kj≤ d

2

=





0, j < k, k ≥ 2,
1

2
, 2 ≤ j = k < l,

hi−1

hi−1 + hi
, j, k < 2,

1, otherwise,
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µi
j,kj> d

2

=






0, j > d− k, k ≥ 2,
1

2
, j = d− k, k ≥ 2,

hi+1

hi+1 + hi
, j > d− 2, k < 2,

1, otherwise.

Remark 2.1. Notice that, in Definition 2.2, the control points around the corners are shared

by the two adjacent patches. That is to say, these control points must be marked twice, i.e.

Cd,i
p,q = Cd,i−1

d−q,p, p, q = 0, . . . , l − 1.

Remark 2.2. The original definition

si =
λi

λi−1 + λi

is undefined for points on eα, α /∈ {i− 1, i, i+1} where the sum λα−1 + λα in the denominator

vanishes. This causes the basis functions and the GB surface to be discontinuous on the

boundary. To circumvent this problem, we use the equivalent definition (2.6) proposed in [28].

The resulting basis functions and their gradients are continuous on the whole parametric domain

P , which is beneficial to further analysis and computation.

Similar to tensor product Bézier surfaces, GB surfaces have many nice properties, such as

corner interpolation and affine invariance. And each boundary of P is mapped to the boundary

of the GB surface, which is a Bézier curve of degree d. More importantly, GB surfaces are

able to represent polygonal surfaces without mesh degeneration and/or decrease in continuity.

These properties play an important role in surface modeling.

Example 2.1. Consider a pentagonal parametric domain

P = Conv

{
(0, 0), (1, 0),

(
1,

1

2

)
,

(
1

2
, 1

)
, (0, 1)

}
,

as shown in Fig. 2.1(a), where Conv means the convex hull of the vertices. Given d = 4,

l = 2, n = 5 and the sets of control points

{
Cd,1

j,k

}
=
{
(−8,−15, 0), (−4,−18, 0), (0, 0, 10), (4,−18, 0), (8,−15, 0),

(−12,−10, 0), (−5,−8, 10), (0, 0, 20), (5,−8, 10), (12,−10, 0)
}
,

{
Cd,2

j,k

}
=
{
(8,−15, 0), (12,−10, 0), (0, 0, 10), (16,−4, 0), (14, 2, 0),

(4,−18, 0), (5,−8, 10), (0, 0, 20), (8, 0, 10), (10, 8, 0)
}
,

{
Cd,3

j,k

}
=
{
(14, 2, 0), (10, 8, 0), (0, 0, 10), (7, 12, 0), (0, 13, 0),

(16,−4, 0), (8, 0, 10), (0, 0, 20), (0, 8, 10), (−7, 12, 0)
}
,

{
Cd,4

j,k

}
=
{
(0, 13, 0), (−7, 12, 0), (0, 0, 10), (−10, 8, 0), (−14, 2, 0),

(7, 12, 0), (0, 8, 10), (0, 0, 20), (−8, 0, 10), (−16,−4, 0)
}
,

{
Cd,5

j,k

}
=
{
(−14, 2, 0), (−16,−4, 0), (0, 0, 10), (−12,−10, 0), (−8,−15, 0),

(−10, 8, 0), (−8, 0, 10), (0, 0, 20), (−5,−8, 10), (−4,−18, 0)
}
.
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(a) Pentagonal parametric domain (b) Pentagonal GB surface

Fig. 2.1. Pentagonal parametric domain and GB surface.

Specifically, Cd,i
l,l−1=(0, 0, 20), i=1, . . . , n, thus the central point is computed as Cd

0=(0, 0, 20).

Fig. 2.1(b) shows the corresponding 5-sided GB surface.

More details about GB surfaces are available in [27, 28] and references therein.

2.2. Original degree elevation of GB surface

In this subsection, we briefly review the original degree elevation of GB surfaces in [28].

Assume that we have a GB surface of degree d with l layers, then the new control points

for this GB surface of degree d+ 1 are computed as

Cd+1,i
j,k = ηjυkC

d,i
j−1,k−1 + (1− ηj)υkC

d,i
j,k−1

+ ηj(1− υk)C
d,i
j−1,k + (1− ηj)(1 − υk)C

d,i
j,k, (2.9)

where ηj = j/(d+ 1), υk = k/(d+ 1), j = 0, . . . , d+ 1, k = 0, . . . , ⌈d+ 1/2⌉. And those control

points Cd,i
j,k are set as 0, if j /∈ {0, . . . , d} or k /∈ {0, . . . , l−1}. Besides, the central control point

Cd+1
0 is computed as

Cd+1
0 =

1

n

n∑

i=1

Cd+1,i

⌈ d+1

2
⌉,⌈ d+1

2
⌉−1

, (2.10)

as described in (2.7). And its corresponding basis function is

Bd+1
0 (u, v) = 1−

n∑

i=1

d+1∑

j=0

⌈ d+1

2
⌉−1∑

k=0

µi
j,kB

d+1,d+1
j,k

(
si(u, v), hi(u, v)

)
. (2.11)

Conclusively, the elevated GB surface of degree d+ 1 is written as

Sd+1(u, v) =

n∑

i=1

d+1∑

j=0

⌈ d+1

2
⌉−1∑

k=0

µi
j,kC

d+1,i
j,k Bd+1,d+1

j,k

(
si(u, v), hi(u, v)

)
+Cd+1

0 Bd+1
0 (u, v).

Though boundaries and cross-derivatives preserve, one major drawback of this approach is

that the geometry and parameterization of the interior of the elevated GB surface change. As

the degree d increases, the weight of Cd
0 also increases. As shown in Fig. 3.1(b), the elevated

surface is distinct compared with the initial surface in Fig. 3.1(a). This drawback makes the

original degree elevation not suitable for some applications, especially for IGA. In the following,

therefore, we propose an improved degree elevation and a novel knot insertion of GB surfaces

to improve their applicability in IGA.
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3. Improved Degree Elevation and Knot Insertion of GB Surface

In this section, we propose an improved degree elevation, which increases the degree of GB

surface while keeping the surface consistent. Besides, surfaces with locality are more favorable in

practical applications. For example, the sparsity of mass and stiffness matrix will be introduced

by using basis functions with the local support property in IGA. Therefore, we also propose a

novel knot insertion for GB surfaces to introduce locality in Section 3.2.

3.1. Improved degree elevation

Our improved degree elevation is based on the fact that every Bernstein basis function of

degree d can be written as linear combination of Bernstein basis functions of degree d+ 1, i.e.

Bd
j =

d+ 1− j

d+ 1
Bd+1

j +
j + 1

d+ 1
Bd+1

j+1 . (3.1)

Then, we have

Bd,d
j,k = Bd

jB
d
k =

(
d+ 1− j

d+ 1
Bd+1

j +
j + 1

d+ 1
Bd+1

j+1

)(
d+ 1− k

d+ 1
Bd+1

k +
k + 1

d+ 1
Bd+1

k+1

)

= ηj+1υk+1B
d+1,d+1
j+1,k+1 + (1− ηj)υk+1B

d+1,d+1
j,k+1

+ ηj+1(1 − υk)B
d+1,d+1
j+1,k + (1 − ηj)(1− υk)B

d+1,d+1
j,k , (3.2)

where ηj = j/(d+ 1), υk = k/(d+ 1), j = 0, . . . , d, k = 0, . . . , d. Besides, we treat each µi
j,kC

d,i
j,k

in form as a new control point C̃d,i
j,k. Then we obtain the following result.

Theorem 3.1. A GB surface of degree d

Sd(u, v) =

n∑

i=1

d∑

j=0

l−1∑

k=0

C̃d,i
j,kB

d,d
j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v)

can be represented as a GB surface of degree d+ 1 as

Sd+1(u, v) =

n∑

i=1

d+1∑

j=0

l∑

k=0

C̃d+1,i
j,k Bd+1,d+1

j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v), (3.3)

where C̃d,i
j,k = µi

j,kC
d,i
j,k, and the control points C̃d+1,i

j,k satisfy

C̃d+1,i
j,k = ηjυkC̃

d,i
j−1,k−1 + (1− ηj)υkC̃

d,i
j,k−1

+ ηj(1− υk)C̃
d,i
j−1,k + (1− ηj)(1 − υk)C̃

d,i
j,k, (3.4)

in which ηj = j/(d+ 1), υk = k/(d+ 1), j = 0, . . . , d+1, k = 0, . . . , l. Besides, for j /∈ {0, . . . , d}

or k /∈ {0, . . . , l − 1}, we set C̃d,i
j,k = 0.

Proof. From the definition of GB surface in (2.5) and the two-scale relation (3.2), we have

n∑

i=1

d+1∑

j=0

l∑

k=0

C̃d+1,i
j,k Bd+1,d+1

j,k

(
si(u, v), hi(u, v)

)
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=

n∑

i=1

d+1∑

j=0

l∑

k=0

(
ηjυkC̃

d,i
j−1,k−1 + (1− ηj)υkC̃

d,i
j,k−1 + ηj(1− υk)C̃

d,i
j−1,k

+ (1− ηj)(1 − υk)C̃
d,i
j,k

)
Bd+1,d+1

j,k

=

n∑

i=1

d∑

j=0

l−1∑

k=0

ηj+1υk+1C̃
d,i
j,kB

d+1,d+1
j+1,k+1 +

n∑

i=1

d∑

j=0

l−1∑

k=0

(1− ηj)υk+1C̃
d,i
j,kB

d+1,d+1
j,k+1

+

n∑

i=1

d∑

j=0

l−1∑

k=0

ηj+1(1− υk)C̃
d,i
j,kB

d+1,d+1
j+1,k +

n∑

i=1

d∑

j=0

l−1∑

k=0

(1− ηj)(1 − υk)C̃
d,i
j,kB

d+1,d+1
j,k

=

n∑

i=1

d∑

j=0

l−1∑

k=0

(
ηj+1υk+1B

d+1,d+1
j+1,k+1 + (1− ηj)υk+1B

d+1,d+1
j,k+1

+ ηj+1(1− υk)B
d+1,d+1
j+1,k + (1− ηj)(1 − υk)B

d+1,d+1
j,k

)
C̃d,i

j,k

=

n∑

i=1

d∑

j=0

l−1∑

k=0

C̃d,i
j,kB

d,d
j,k

(
si(u, v), hi(u, v)

)
.

This means a GB surface Sd of degree d is represented by a surface Sd+1 of degree d + 1

as (3.3). �

Theorem 3.1 presents the degree elevation for GB surface from degree d to degree d + 1

while keeps geometry and parameterization consistent. For brevity and practical application,

this degree elevation can be expressed in the form of matrixes.

Let

Pd,i =
[
C̃d,i

j,k

]d,l−1

j=0,k=0
, Pd+1,i =

[
C̃d+1,i

j,k

]d+1,l

j=0,k=0

denote the matrices composed of the parametric control points of GB surfaces Sd and Sd+1,

respectively. Then the result in Theorem 3.1 is written in the following matrix form:

Pd+1,i = Td+1
d Pd,iRd+1

d , (3.5)

where

Td+1
d =

1

d+ 1




d+ 1

1 d

2 d− 1
. . .

. . .

d− 1 2

d 1

d+ 1




(d+2)×(d+1)

,

Rd+1
d =

1

d+ 1




d+ 1 1

d 2
. . .

. . .

l− 1

d− l + 2 l




l×(l+1)

.
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Successively applying the two-scale relation in (3.2) and (3.5), we obtain multi-degree elevation

between Pd+r,i = [C̃d+r,i
j,k ]d+r,l+r−1

j=0,k=0 of (d + r)-degree GB surface Sd+r and Pd,i of the initial

GB surface Sd

Pd+r,i = Td+r
d Pd,iRd+r

d , (3.6)

where the matrix operatorsTd+r
d =Td+r

d+r−1T
d+r−1
d+r−2 · · ·T

d+1
d , Rd+r

d =Rd+1
d · · ·Rd+r−1

d+r−2R
d+r
d+r−1, re-

spectively.

3.2. Knot insertion

To introduce the locality of GB surfaces, we propose a knot insertion algorithm for GB

surfaces in this section. The basic idea is that we deem a biparametric Bernstein basis function

Bd,d
j,k of degree d as a tensor product B-spline basis Nd,d

j,k of the same degree with knot vectors

U =
{

0, · · · , 0︸ ︷︷ ︸
(d+1) times

, 1, · · · , 1︸ ︷︷ ︸
(d+1) times

}

in the u-direction and

V =
{

0, · · · , 0︸ ︷︷ ︸
(d+1) times

, 1, · · · , 1︸ ︷︷ ︸
(d+1) times

}

in the v-direction. Thus, the original GB surface (2.5) is expressed by

Sd(u, v) =

n∑

i=1

d∑

j=0

l−1∑

k=0

C̃d,i
j,kN

d,d
j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v). (3.7)

We denote the spline spaces spanned by these B-spline basis Nd,d
j,k by Sd,d

U,V, i.e., Sd,d
U,V =

span(Nd,d
j,k ).

Denote the knot vector in the u-direction after inserting mu new knots by

Ū =
{
ξ̄1 = ξ1, ξ̄2, · · · , ξ̄2d+mu+2 = ξ2d+2

}
⊃ U,

and denote the knot vector in the v-direction after inserting mv new knots by

V̄ = {η̄1 = η1, η̄2, · · · , η̄2d+mv+2 = η2d+2} ⊃ V,

where ξ1, ξ2d+2, η1 and η2d+2 are the start knots and end knots of U and V respectively, i.e.,

ξ1 = η1 = 0, ξ2d+2 = η2d+2 = 1. In addition, we emphasize that only the interior knots are

inserted in our method and the maximum multiplicity of each interior knot value is limited to d.

Then the spline space Sd,d
U,V is a subspace of the enriched spline space Sd,d

Ū,V̄
since the relations

between the knot vectors U ⊂ Ū and V ⊂ V̄. Therefore, we have the following two-scale

relation [25]:

Nd,d
j,k =

mu+d+1∑

p=1

mv+d+1∑

q=1

cp,q
(
Nd,d

j,k

)
N̄d,d

p,q , (3.8)

where cp,q(N
d,d
j,k ) are non-negative coefficients and the B-spline basis N̄d,d

p,q ∈ Sd,d

Ū,V̄
.

Finally, the following knot insertion for GB surfaces is derived.
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Theorem 3.2. Assume that { 0, · · · , 0︸ ︷︷ ︸
(d+1) times

, 1, · · · , 1︸ ︷︷ ︸
(d+1) times

}⊂Ū and { 0, · · · , 0︸ ︷︷ ︸
(d+1) times

, 1, · · · , 1︸ ︷︷ ︸
(d+1) times

}⊂V̄, then

the GB surface in (3.7)

Sd(u, v) =

n∑

i=1

d∑

j=0

l−1∑

k=0

C̃d,i
j,kN

d,d
j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v) (3.9)

can be represented as the following GB surface:

S̄d(u, v) =

n∑

i=1

mu+d∑

j=0

mv+l−1∑

k=0

C̄d,i
j,kN̄

d,d
j,k

(
si(u, v), hi(u, v)

)
+Cd

0B
d
0 (u, v), (3.10)

where N̄d,d
j,k are B-spline basis functions of spline space Sd,d

Ū,V̄
, and the collection of control points

Pd,i =
[
C̃d,i

j,k

]d,l−1

j=0,k=0
, P̄d,i =

[
C̄d,i

j,k

]mu+d,mv+l−1

j=0,k=0

satisfies

P̄d,i = Td
ξP

d,iTd
η, (3.11)

where the (α, β)-th component of Td
ξ are recursively computed by

Tr+1
ξ,αβ =

ξ̄α+r − ξβ
ξβ+r − ξβ

Tr
ξ,αβ +

ξβ+r+1 − ξ̄α+r

ξβ+r+1 − ξβ+1
Tr

ξ,α,β+1 (3.12)

for r = 0, 1, . . . , d− 1, α = 1, . . . , d+mu + 1, β = 1, . . . , d+ 1, starting with

T0
ξ,αβ =

{
1, ξ̄α ∈ [ξβ , ξβ+1),

0, otherwise,

and the (α, β)-th component of Td
η are recursively computed by

Ts+1
η,αβ =

η̄α+s − ηβ
ηβ+s − ηβ

Ts
η,αβ +

ηβ+s+1 − η̄α+s

ηβ+s+1 − ηβ+1
Ts

η,α,β+1 (3.13)

for s = 0, 1, . . . , d− 1, α = 1, . . . , l, β = 1, . . . , l +mv, starting with

T0
η,αβ =

{
1, η̄α ∈ [ηβ , ηβ+1),

0, otherwise.

By Theorem 3.2, a GB surface is represented by a linear combination of B-spline basis and

Bd
0 (u, v) after knot insertion. Then the locality of GB surface holds by the locality of B-spline

basis functions.

3.3. Comparisons with original degree elevation

To compare the proposed algorithms with the original degree elevation in [28] and illustrate

their difference clearly, we add texture mappings to GB surfaces after degree elevation and

knot insertion, as shown in Figs. 3.1-3.2. The initial hexagonal and heptagonal GB surfaces of

degree 4 are shown in Figs. 3.1(a) and 3.2(a). After elevating the degrees of initial surfaces to

24 by the original degree elevation, as shown in Figs. 3.1(b) and 3.2(b), one can observe that



Degree Elevation and Knot Insertion for Generalized Bézier Surfaces 11

(a) Initial surface (b) Original degree elevation [28]

(c) Improved degree elevation (ours) (d) Knot insertion (ours)

Fig. 3.1. Comparison with original degree elevation for hexagonal GB surface.

(a) Initial surface (b) Original degree elevation [28]

(c) Improved degree elevation (ours) (d) Knot insertion (ours)

Fig. 3.2. Comparison with original degree elevation for heptagonal GB surface.

the elevated surfaces have a distinct deformation. Meanwhile, the elevated surfaces obtained

by the proposed degree elevation in Theorem 3.1 still keep consistent with the initial surfaces

as shown in Figs. 3.1(c) and 3.2(c). Besides, the refined surfaces obtained by the proposed knot

insertion in Theorem 3.2 share the same property of keeping GB surfaces consistently.

Remark 3.1. As pointed out in Section 2.2, the central control point Cd
0 and its corresponding

basis function need to be re-computed after the original degree elevation. In the proposed

methods, however, we just keep Cd
0 and its corresponding basis function the same as the original

GB surface of degree d. This treatment is the key point to keeping the elevated/refined surface

unchanged and avoiding redundant computation.
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4. Applications to IGA

When NURBS basis functions are used for IGA, there are three main methods for increasing

the DOFs: h-refinement by knot insertion, p-refinement by degree elevation, and k-refinement

by the combination of the above. In this section, as an illustration, a brief review of Poisson’s

equation and linear elasticity problem is presented in Section 4.1. Then the proposed degree

elevation is applied to the p-refinement method of parameterization in IGA using GB surfaces.

And knot insertion of GB surfaces is applied to the h-refinement method. Finally, we combine

these two methods to propose the k-refinement method. Note that the linearly independent

of blending functions is of great importance for IGA. Otherwise, the stiffness matrix becomes

singular. Li et al. firstly recognized this and identified a class of T-splines whose blending

functions are guaranteed to be linearly independent [20], and then proposed analysis-suitable

T-splines [19]. Actually, the linear independence of the blending functions of initial/refined GB

surface can be obtained easily by their definitions and linear independence of Bernstein basis

functions, and we will omit the proof in detail here.

4.1. Model problems

4.1.1. Poisson’s equation

The Poisson’s equation with homogeneous Dirichlet and Neumann boundary conditions over

polygonal computational domain Ω is defined as

−∇2T (x) = s(x), x ∈ Ω, (4.1a)

T (x) = 0, x ∈ ∂ΩD, (4.1b)

∂T

∂n
= Φ(x), x ∈ ∂ΩN , (4.1c)

where T (x) is the unknown temperature field, s(x) is a known source term, ∂Ω = ∂ΩD

⋃
∂ΩN ,

and n is the outward unit normal vector to the boundary ∂ΩN . To verify the effectiveness of

the proposed methods, computational domain Ω is parameterized by GB surface.

Multiplying the Eq. (4.1a) by an arbitrary test function ψ ∈ H1
∂Ω(Ω), we have

−

∫

Ω

∇2T (x)ψ(x)dΩ =

∫

Ω

s(x)ψ(x)dΩ. (4.2)

According to the Dirichlet and Neumann boundary conditions (4.1b), (4.1c) and integrating

(4.2) by parts, the resulting weak formulation of problem (4.1) is now: Seek for T ∈ H1
D(Ω)

such that for all ψ ∈ H1
∂Ω(Ω)

∫

Ω

∇T (x)∇ψ(x)dΩ −

∫

∂ΩN

Φ(x)ψ(x)dΓ =

∫

Ω

s(x)ψ(x)dΩ. (4.3)

According to the paradigm of IGA, the temperature field is approximated by the linear

combination of the same basis functions used for geometry, which are also adopted as test

functions. Denote the parameterization as σ : P → Ω, i.e. the geometry mapping from the

parametric domain P to the computational domain Ω. Then test functions are

ψ(x) = B̂p(x) = Bp ◦ σ
−1(x) = Bp(u), (4.4)
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where u = (u, v)T, Bp(u) are the rearranged basis functions of GB surface through certain

numbering rule. Thus, the temperature field is represented by

T (x) =

n(d+1)l+1∑

p=1

T h
p Bp(u) =

n(d+1)l+1∑

p=1

T h
p B̂p(x). (4.5)

Substituting (4.5) and (4.4) into Eq. (4.3), we obtain the corresponding linear system

KTh = f , (4.6)

where

Kp,q =

∫

Ω

∇B̂p(x)∇B̂q(x)dΩ (4.7)

are the components of stiffness matrix K, and

fp =

∫

Ω

s(x)B̂p(x)dΩ +

∫

∂ΩN

Φ(x)B̂p(x)dΓΩ (4.8)

are the components of right-hand side f . Eventually, the numerical solution Th is obtained by

solving the linear system (4.6).

4.1.2. Linear elasticity problem

To demonstrate the robustness of the proposed scheme, the linear elasticity problem is also con-

sidered, which is a more complicated vector filed problem. The equations of the two-dimensional

linear elasticity problem are given as






LT
σ(x) = s(x),

σ(x) = Dε(x) in Ω,

ε(x) = Lv(x),

(4.9)

where x=(x, y)T∈Ω, v(x)=(vx(x), vy(x))
T are the displacements, ε(x)=(εx(x), εy(x), γxy(x))

T

are the stains, σ(x) = (σx(x), σy(x), τxy(x))
T are the stresses, s(x) = (sx(x), sy(x))

T are the

given body loads,

L =




∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x




T

is the linear differential operator,

D =
E

1− ν2



1 ν 0

ν 1 0

0 0
1− ν

2




is the elastic matrix, and E and ν are Young’s modulus and Poisson’s ratio, respectively.
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For brevity, we consider Eqs. (4.9) with homogeneous Dirichlet boundary conditions in the

following, i.e., v = 0 along the boundary ∂Ω. In this case, the weak formulation of (4.9) is:

Find a v ∈ H1(Ω) such that for all w ∈ H1
∂Ω(Ω)∫

Ω

ε(v)TDε(w)dΩ =

∫

Ω

swdΩ. (4.10)

The components of the stiffness matrix and force vector are

Kp,q =

∫

Ω

RT
pDRqdΩ, (4.11)

fp =

∫

Ω

s(x)B̂p(x)dΩ, (4.12)

respectively, where

Rp =




∂B̂p(x)

∂x
0

∂B̂p(x)

∂y

0
∂B̂p(x)

∂y

∂B̂p(x)

∂x




T

.

4.2. p-refinement method for generalized Bézier surfaces

Above all, we have the following theorem to reveal that the basis functions of GB surface

can be used as test functions in IGA.

Theorem 4.1. Given a GB surface defined on an convex polygonal domain P. The basis func-

tions of the surface are in H1(P).

Proof. As mentioned in Remark 2.2, the basis functions and their gradients of the GB

surface are continuous on a whole domain P which is a bounded closed domain. So they are

integrable on P . According to Lebesgue integrability criteria, it is easy to obtain that the basis

functions and their gradients are square-integrable on P . This means the basis functions of the

GB surface are in H1(P). �

In the following, we denote the degree of the initial GB surface by d0 and the degree after

p-refinement by d, respectively. During the refinement procedure by the proposed p-refinement,

the values and their gradients of basis functions need to be evaluated. Since ∇g⊥i = −ni and

the gradient of Wachspress coordinates in (2.4), then we have

∇usi =
sin(θi) sin(θi−1)

(
g⊥i−1ni+1 − g⊥i+1ni−1

)
(
sin(θi)g⊥i−1 + sin(θi−1)g⊥i+1

)2 ,

∇uhi = −∇uλi−1 −∇uλi.

(4.13)

Using the above formulas and chain rule, we obtain the gradient of Bd,d
j,k (si(u), hi(u)) with

respect to u

∇uB
d,d
j,k = d

(
Bd−1,d

j−1,k −Bd−1,d
j,k

)
∇usi + d

(
Bd,d−1

j,k−1 − Bd,d−1
j,k

)
∇uhi.

Since the central control point Cd0

0 and its basis function Bd0

0 remain unchanged during

p-refinement procedure, the gradient of Bd0

0 is evaluated as follows:

∇uB
d0

0 = −

n∑

i=1

d0∑

j=0

⌈
d0
2
⌉∑

k=0

(
∇uµ

i
j,kB

d0,d0

j,k + µi
j,k∇uB

d0,d0

j,k

)
, (4.14)
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where

∇uµ
i
j,k =





hi∇uhi−1 − hi−1∇uhi
(hi−1 + hi)2

, k < 2, j < 2,

hi∇uhi+1 − hi+1∇uhi
(hi+1 + hi)2

, k < 2, j > d0 − 2,

0, otherwise.

4.3. h-refinement method for generalized Bézier surfaces

Due to the locality of GB surfaces after h-refinement, its treatment in IGA is different from

p-refinement. Now, if the numerical integration is performed over the parametric domain P ,

there will be many invalid integration points, which may increase error. Therefore, during

h-refinement, we perform the numerical integration over the domain P̃ = [0, 1]2 consists of

si = (si, hi)
T.

As mentioned in [30], the mapping (2.6) between P and P̃ is bijective. Hence, we denote

its inverse mapping by

u = τ(si). (4.15)

Then the test function is rewritten as

Ap(si) = Bp

(
τ(si)

)
= Bp(u) = B̂p(x),

where Bp(u) is the rearranged basis function of GB surface.

Similarly, the gradient of basis functions Nd,d
j,k (sq, hq) with respect to si is calculated by

chain rule, i.e.,

∇si
Nd,d

j,k (sq, hq) = (∇si
u,∇si

v)(∇usq,∇uhq)∇sq
Nd,d

j,k (sq, hq)

= (∇usi,∇uhi)
−1(∇usq,∇uhq)∇sq

Nd,d
j,k (sq, hq), (4.16)

where ∇sq
Nd,d

j,k (sq, hq) is the gradient of B-spline basis function. To the central basis function

Bd0

0 , its gradient is calculated as

∇si
Bd0

0 = (∇si
u,∇si

v)∇uB
d0

0 = (∇usi,∇uhi)
−1∇uB

d0

0 . (4.17)

4.4. k-refinement method for generalized Bézier surfaces

By combining the improved degree elevation algorithm with the knot insertion algorithm,

k-refinement is proposed as follows. First, the degree of GB surface is elevated by Theorem 3.1,

and then Theorem 3.2 is used to insert knots. The calculation of gradients of basis functions

in k-refinement is similar to that in h-refinement.

Compared with h-refinement, the k-refinement method has higher continuity in the same

DOFs. However, we note that unlike p- and h-refinement, the sequence of solution spaces in

k-refinement is not nested, i.e., each refinement should start with the initial surface [5].

5. Numerical Examples

To demonstrate the effectiveness and superiority of the proposed methods in refinement

for IGA, several numerical examples are given in this section. A comparison with the original

degree elevation in [28] and with other parameterization methods, including NURBS and toric

surface methods, is also available.
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5.1. Implementation details

We consider three types of parameterizations in the experiments, including GB, NURBS,

and toric surfaces. For a fair comparison, all the parameterizations are constructed by the

method in [15]. The NURBS and toric parameterizations are constructed by adjusting inner

control points and weights, but the GB parameterizations are constructed by adjusting inner

control points only.

For refinement, h-refinement and p-refinement [18] are adopted in NURBS and toric meth-

ods, respectively. For the h-refinement in NURBS and GB methods, we insert a new knot

between every two distinct knots in two directions at a time. For each k-refinement, the degree

of the GB surfaces is elevated 2r times in each direction first and then perform h-refinement

r times.

5.2. Quality measures

As we know, the quality of parameterization seriously affects the accuracy of subsequent

analysis. To characterize the quality of parameterizations, we use the following two quality

measures.

The scaled Jacobian

Js =
detJ

‖σu‖2‖σv‖2
(5.1)

is used to describe the orthogonality of the parameterization σ, where J is the Jacobian matrix

of σ and ‖ · ‖2 is L2 norm. It is clear that Js ∈ [−1, 1], and Js is closer to 1, the better

orthogonality the parameterization has.

The absolute relative area

Sa =

∣∣∣∣
detJ− S

S

∣∣∣∣ (5.2)

reflects the uniformity of the parameterization, where S = Area(Ω)/Area(P) is the ratio of the

area of the computational domain Ω to the area of parametric domain P . The smaller value of

Sa means the uniformity of parameterization is better.

5.3. Poisson’s equation

For Poisson’s equation, the error is measured by

e =

√√√√√√√

∫

Ω

(T − T h)T(T − T h)dΩ
∫

Ω

TTTdΩ
, (5.3)

where (·)T means the transpose of a matrix, T and T h are the exact solution and the numerical

solution respectively.

Example 5.1 (Cup). First, we consider Poisson’s equation with homogeneous Dirichlet boun-

dary conditions (4.1) over a hexagonal computational domain (cup model), and the correspond-

ing exact solution is shown in Fig. 5.1(a). Let us denote the boundary representation of the

computational domain by li, i = 1, . . . , 6, as shown in Fig. 5.1(a). To construct a benchmark

test satisfying the boundary condition as (4.1b), we set the exact solution as T =
∏6

i=1 li.

Accordingly, we obtain the source term s(x) = −∇2T (x) as (4.1a).
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Figs. 5.1(b) and 5.1(c) show the parametric domain of GB parameterization, and the lattice

points and parametric domain of toric parameterization, respectively. By using the parameter-

ization technique in [15], various resulting parameterizations are shown in the second row of

Fig. 5.1. One can observe a distinctly decreased continuity (C0 continuity) around the lower

right corner in Fig. 5.1(f), while good smoothness in the interior of the computational domain

is obtained by the GB and toric parameterizations. Compared with toric parameterization, the

smoothness and uniformity of the GB parameterization are much better.

To quantitate the quality of parameterizations, the scaled Jacobian and absolute relative

area of three different parameterizations are illustrated in Fig. 5.2. Compared with toric param-

eterization, the scaled Jacobian of GB parameterization is larger and the absolute relative area

is smaller, that is, the orthogonality and uniformity of GB parameterization are better. Hence,

(a) Exact solution (b) Parametric domain of GB surface (c) Lattice points of toric surface

(d) GB parameterization (e) Toric parameterization (f) NURBS parameterization

Fig. 5.1. Hexagonal computational domain (cup).

(a) Js on GB surface (b) Js on toric surface (c) Js on NURBS surface

(d) Sa on GB surface (e) Sa on toric surface (f) Sa on NURBS surface

Fig. 5.2. Scaled Jacobian Js and absolute relative area Sa for Example 5.1.
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GB parameterization is able to maintain high quality while keeping high continuity within the

domain.

The error colormaps of various methods are shown in Fig. 5.3. To facilitate comparison,

the errors are plotted with the same colorbar. One can observe that the GB surface behaves

better than the other two methods in terms of error. This is because the GB surface has good

smoothness and high-quality parameterization. Due to the decreased continuity around the

lower right corner, as shown in Fig. 5.3(e), NURBS is the worst performer. Besides, compared

with h-refinement, p- and k-refinements are more effective, this is because they have higher

continuity.

The error history during refinement is shown in Fig. 5.4. An oscillation behavior can be seen

in the error curve of the original degree elevation. This is because the parameterization changes

after the original degree elevation. Our approach effectively avoids the oscillation problem and

the errors monotonically decrease.

(a) Error on GB surface by

p-refinement (DOFs=529)

(b) Error on GB surface by

h-refinement (DOFs=649)

(c) Error on GB surface by

k-refinement (DOFs=649)

(d) Error on toric surface

(DOFs=583)

(e) Error on NURBS surface

(DOFs=780)

Fig. 5.3. Absolute errors for Example 5.1.
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Fig. 5.4. Example 5.1: Error history of different methods.
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Example 5.2 (Fish). In this example, we solve Poisson’s equation in the pentagonal com-

putational domain (fish model) with the exact solution T =
∏4

i=1 li, as shown in Fig. 5.5(a).

The corresponding Neumann boundary condition along the right boundary is computed by

Φ(x) = ∂T/∂n as (4.1c). Neumann boundary condition is applied to the right edge (fishtail)

and homogeneous Dirichlet boundary conditions are applied to the other edges. The pentago-

nal parametric domain of GB parameterization, and the lattice points and parametric domain

of toric parameterization are provided in Figs. 5.5(b) and 5.5(c). The second row of Fig. 5.5

depicts the resulting parameterizations through the parameterization technique in [15]. As

shown in Fig. 5.5(e), a toric parameterization with high distortion is obtained. By contrast,

GB and NURBS parameterization perform better in terms of distortion. GB parameteriza-

tion is smooth inside globally, while continuity degradations along the symmetric line occur in

NURBS parameterization as shown in Fig. 5.5(f).

Fig. 5.6 shows the scaled Jacobian and absolute relative area of three different parameteri-

zations. It is manifest that NURBS parameterization is partitioned along the axis of symmetry

of the domain due to its tensor product structure.

(a) Exact solution (b) Parametric domain of GB surface (c) Lattice points of toric surface

(d) GB parameterization (e) Toric parameterization (f) NURBS parameterization

Fig. 5.5. Pentagonal computational domain (fish).

(a) Js on GB surface (b) Js on toric surface (c) Js on NURBS surface

(d) Sa on GB surface (e) Sa on toric surface (f) Sa on NURBS surface

Fig. 5.6. Scaled Jacobian Js and absolute relative area Sa for Example 5.2.
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The colormaps of absolute error are illustrated in Fig. 5.7. To compare clearly, the errors

are plotted on an identical scale. It can be seen that the error of the NURBS surface is much

higher than the other two methods. This is caused by low continuity within the parameteri-

zation. Compared with the NURBS surface, GB and toric surfaces have a natural advantage

in representing polygonal regions because of their properties. Therefore, both of them behave

better than NURBS.

Fig. 5.8 shows the error history during refinement. In this example, the toric surface be-

haves slightly better than the GB surface. This is because toric parameterization has better

orthogonality where the exact solution varies greatly (i.e. the fish head in Fig. 5.5(a)).

(a) Error on GB surface by

p-refinement (DOFs=441)

(b) Error on GB surface by

h-refinement (DOFs=541)

(c) Error on GB surface by

k-refinement (DOFs=541)

(d) Error on toric surface

(DOFs=391)
(e) Error on NURBS surface

(DOFs=780)

Fig. 5.7. Absolute errors for Example 5.2.
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Fig. 5.8. Example 5.2: Error history of different methods.

5.3.1. High-genus domain

In this section, we consider Poisson’s equations with homogeneous Dirichlet boundary conditions

over two more complicated high-genus domains. The computational domains with hole(s) are

parameterized in two different ways. In Example 5.3, a single GB patch representation is

employed to represent genus-1 domain. On the contrast, a multi-patch configuration is adopted

to generate a parameterization with low distortion in Example 5.4.
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Example 5.3 (Single Patch Case). Consider a Poisson’s equation with the exact solution

T =
∏4

i=1 li, as shown in Fig. 5.9(a). As shown in Fig. 5.9(b), the computational domain

is parameterized by a hexagonal GB patch, and two boundaries coincide to generate this

genus-1 geometry. The GB parameterization is smooth apart from the superposed boundaries.

Fig. 5.9(c) shows the NURBS parameterization. Two repetitive knots are needed to represent

the computational domain restricted to the quadrilateral nature of NURBS. Therefore, three

C0 isoparametric lines exist in NURBS-based parameterization. Although the control points

for internal repetitive knots serve as optimization variables in parameterization construction,

distinct continuity degeneration is visible around the left bottom and right bottom corners.

The colormaps of the absolute errors under an identical scale are shown in Fig. 5.10. Com-

pared with p-refinement and h-refinement schemes, k-refinement scheme shows a better error

performance. Moreover, the absolute error of the NURBS method is higher around the bottom

of the computational domain where the exact solution sharply changes. The error history dur-

ing various refinement schemes is illustrated in Fig. 5.11. Compared with NURBS method, the

GB method performs better in terms of numerical accuracy.

(a) Exact solution

superposed

boundaries

(b) GB parameterization

superposed

boundaries

 
! line  

! line

(c) NURBS parameterization

Fig. 5.9. Genus-1 computational domain.

(a) Error on GB surfaces by p-refinement

(DOFs=502)

(b) Error on GB surfaces by h-refinement

(DOFs=619)

(c) Error on GB surfaces by k-refinement

(DOFs=619)

(d) Error on NURBS surfaces

(DOFs=1140)

Fig. 5.10. Absolute errors for Example 5.3.
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Fig. 5.11. Example 5.3: Error history of different methods.

Example 5.4 (Multi-Patch Case). For the computational domain with multi-holes inside,

it is hard to ensure the quality of a single patch parameterization. To this end, multi-patch

configurations are usually adopted [1, 36, 40]. In this example, the geometry of computational

domain and the exact solution T =
∏10

i=1 li are shown in Fig. 5.12(a). Thanks to the virtue

of GB surface in representing multi-sided domains, it is possible to use fewer patches than

NURBS-based multi-patch parameterization. As shown in Fig. 5.12(b), two hexagonal patches

and four pentagonal patches are used for multi-patch GB parameterization. A NURBS-based

multi-patch parameterization composed of twelve quadrilateral patches is shown in Fig. 5.12(c).

The colormaps of the absolute error distribution and the error history using various re-

finement schemes are shown in Figs. 5.13 and 5.14. Again, a lower numerical error of GB

patches can be observed compared with NURBS patches. In this example, k-refinement and

p-refinement schemes have a similar performance in terms of numerical error as shown in the

error history, which are better than h-refinement scheme. It demonstrates that our approach

can be applied to multi-patch configurations seamlessly.

(a) Exact solution

(b) GB parameterization (c) NURBS parameterization

Fig. 5.12. Genus-2 computational domain.
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(a) Error on GB surfaces by p-refinement

(DOFs=2633)

(b) Error on GB surfaces by h-refinement

(DOFs=3252)

(c) Error on GB surfaces by k-refinement

(DOFs=3252)
(d) Error on NURBS surfaces (DOFs=4086)

Fig. 5.13. Absolute errors for Example 5.4.
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Fig. 5.14. Example 5.4: Error history of different methods.

5.4. Linear elasticity problem

In the following, the errors are computed by displacement error norm

e1 =

√∫

Ω

(v − vh)T(v − vh)dΩ, (5.4)

and energy error norm

e2 =

√∫

Ω

(ε− ε
h)T(σ − σ

h)dΩ, (5.5)

where v,σ and ε are the exact displacement, stress, and strain, and vh,σh and ε
h are the

numerical displacement, stress, and strain, respectively.

Consider linear elasticity problem (4.9) over a heptagonal computational domain, the exact

solutions of displacement in x- and y-directions are given as vx = vy = 10−3
∏7

i=1 li as shown
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in Fig. 5.15(a). The body force is obtained by s(x) = LT
σ(x). The parametric domains

of GB and toric parameterizations are provided in Figs. 5.15(b) and 5.15(c). Figs. 5.15(d)-

5.15(e) illustrate the exact solutions of stress in x- and y-direction respectively. The last row

of Fig. 5.15 shows the resulting parameterizations of three methods. Fig. 5.16 provides the

consequence of scaled Jacobian and absolute relative area on three different surfaces. One can

observe that GB parameterization has better uniformity and orthogonality compared with toric

parameterization.

(a) Exact solution vx (b) Parametric domain of GB

surface

(c) Lattice points of toric surface

(d) Exact solution of stress σx (e) Exact solution of stress σy

(f) GB parameterization (g) Toric parameterization (h) NURBS parameterization

Fig. 5.15. Pentagonal computational domain.

(a) Js on GB surface (b) Js on toric surface (c) Js on NURBS surface

(d) Sa on GB surface (e) Sa on toric surface (f) Sa on NURBS surface

Fig. 5.16. Scaled Jacobian Js and absolute relative area Sa for Example 5.3.
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For comparison purposes, all the following figures of computational error are rendered with

the same colormap. Fig. 5.17 provide the error colormaps of displacement vx in the x-direction.

The errors of stresses in the x-direction of various methods are shown in Fig. 5.18. The GB

and toric parameterizations behave better than the NURBS parameterization due to the high

continuity inside, which is similar to Poisson’s equation in the previous examples. Fig. 5.19

displays the error history of displacement and energy norm. This example demonstrates the

effectiveness and robustness of the proposed refinement methods.

Most importantly, we emphasize that the numerical stress obtained by NURBS parameteri-

zation is discontinuous along the interfaces due to the reduced continuity for geometry require-

ments (please refer to Fig. 5.20). On the contrary, the proposed method produces continuous

stress, which is one of the advantages of our method.

(a) |vx − vh
x |, GB surface,

p-refinement (DOFs=1234)

(b) |vx − vh
x |, GB surface,

h-refinement (DOFs=1514)

(c) |vx − vh
x |, GB surface,

k-refinement (DOFs=1514)

(d) |vx − vh
x |, toric surface

(DOFs=1124)

(e) |vx − vh
x |, NURBS surface

(DOFs=2090)

Fig. 5.17. Absolute errors of displacement in x-direction.

(a) |σx − σh
x |, GB surface,

p-refinement (DOFs=1234)

(b) |σx − σh
x |, GB surface,

h-refinement (DOFs=1514)

(c) |σx − σh
x |, GB surface,

k-refinement (DOFs=1514)

(d) |σx − σh
x |, toric surface

(DOFs=1124)

(e) |σx − σh
x |, NURBS surface

(DOFs=2090)

Fig. 5.18. Absolute errors of stress in x-direction.
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Fig. 5.19. History of displacement error norm (left) and energy error norm (right).

(a) Exact stress σy (b) σh
y , NURBS surface

(DOFs=266)

(c) σh
y , GB surface, p-refinement

(DOFs=254)

Fig. 5.20. The exact and numerical stresses in y-direction.

6. Conclusions and Future Work

In this paper, an improved degree elevation and a novel knot insertion for GB surfaces are

proposed, which keep surfaces unchanged. The control points and weights of the GB surface

are evaluated together based on the degree elevation of tensor product Bézier surface and

the knot insertion of tensor product B-spline surface. For IGA applications, GB surfaces are

used to generate high-quality parameterizations of multi-sided computational domains. The

applications to Poisson’s equations and linear elasticity problems demonstrate the effectiveness

and robustness of the proposed p-refinement using the proposed degree elevation, h-refinement

using the knot insertion, and k-refinement combining the above two methods.

However, the control points obtained by the proposed methods are with parameters, and it is

not friendly to some applications. Therefore, we hope to present a refinement method enriching

control points without parameters in the future. Besides, the construction of high-quality

volumetric parameterization is more challenging and of practical application significance. The

difficulties are two-fold. First, 3D generalized barycentric coordinates are needed. As far as the

authors know, some well-defined 3D generalized barycentric coordinates might be helpful [9].

Second, an appropriate definition of 3D local parameters, which maps a polyhedron to a unit

cube and guarantees the bijectivity, is difficult to acquire. Extending the proposed method to

3D problems is one of our ongoing works.

Moreover, extending the proposed techniques to adaptive refinement/coarsening would be

of theoretical and practical significance. A possible implementation might be replacing the

B-spline basis functions in (3.10) with splines with local refinement ability, such as THB-

splines [2, 4, 22]. Therefore, adaptive refinement/coarsening techniques for GB surfaces will be

an interesting future direction.
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of Technology and Economics, Hungary, for valuable discussions of GB surfaces.

This work was supported by the National Natural Science Foundation of China (Grant

Nos. 12071057, 11671068, 12001327), and by the Fundamental Research Funds for the Central

Universities. Y. Ji was also partially supported by the China Scholarship Council (Grant No.

202106060082).

References
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