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Abstract. We develop new adaptive alternative weighted essentially non-oscillatory (A-

WENO) schemes for hyperbolic systems of conservation laws. The new schemes employ

the recently proposed local characteristic decomposition based central-upwind numeri-

cal fluxes, the three-stage third-order strong stability preserving Runge-Kutta time inte-

grator, and the fifth-order WENO-Z interpolation. The adaptive strategy is implemented

by applying the limited interpolation only in the parts of the computational domain

where the solution is identified as rough with the help of a smoothness indicator. We

develop and use a new simple and robust local smoothness indicator (LSI), which is ap-

plied to the solutions computed at each of the three stages of the ODE solver. The new

LSI and adaptive A-WENO schemes are tested on the Euler equations of gas dynamics.

We implement the proposed LSI using the pressure, which remains smooth at contact

discontinuities, while our goal is to detect other rough areas and apply the limited in-

terpolation mostly in the neighborhoods of the shock waves. We demonstrate that the

new adaptive schemes are highly accurate, non-oscillatory, and robust. They outperform

their fully limited counterparts (the A-WENO schemes with the same numerical fluxes

and ODE solver but with the WENO-Z interpolation employed everywhere) while being

less computationally expensive.
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1. Introduction

This paper focuses on developing high-order finite-difference methods for hyperbolic

systems of conservation laws. We consider one-dimensional (1-D),
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Ut + F(U)x = 0, (1.1)

and two-dimensional (2-D),

Ut + F(U)x +G(U)y = 0, (1.2)

systems, though the proposed techniques can be directly extended to higher-dimensional

cases. Here, x and y are spatial variables, t is the time, U ∈ Rd is a vector of unknown

functions, and F : Rd → Rd and G : Rd → Rd are nonlinear fluxes.

It is well-known that solutions of (1.2) may develop complicated wave structures, in-

cluding shocks, rarefactions, and contact discontinuities, even when the initial data are

infinitely smooth. Therefore, it is challenging to develop highly accurate and robust nu-

merical methods for (1.2). We refer the reader to various existing numerical methods, in-

cluding high-order ones, e.g., the monographs and review papers [8,30,35,40,55,56,60]

and references therein.

Semi-discretization of (1.1) and (1.2) offers one of the popular frameworks for con-

structing high-order finite-volume and finite-difference schemes: the spatial derivatives

are approximated using appropriate numerical fluxes. At the same time, the time evolution

is conducted with the help of a high-order and stable ODE solver. To achieve a high or-

der of spatial accuracy, the numerical fluxes must be evaluated using the point values of U

obtained by an appropriate piecewise polynomial reconstruction (interpolation) of the com-

puted solution. In order to enforce nonlinear stability, the reconstructions have to employ

nonlinear limiters designed to prevent spurious oscillations in the nonsmooth parts of the

solutions. Popular finite-volume reconstructions, such as essentially non-oscillatory (ENO)

(see, e.g., [1, 28, 29, 56]) and weighted ENO (WENO) (see, e.g., [6, 31, 44, 55, 56]) ones

are highly accurate, but typically finite-volume ENO and WENO schemes are computation-

ally expensive, especially in the multidimensional case. More efficient implementations of

ENO and WENO reconstructions can be carried out within the finite-difference framework

in a dimension-by-dimension manner; see, e.g., [7, 11, 12, 31, 57, 58]. Unfortunately, the

finite-difference schemes, which are directly based on finite-volume reconstructions, rely on

flux splittings, substantially increasing the amount of numerical diffusion present in finite-

volume ENO and WENO schemes. This drawback of finite-difference WENO schemes was

overcome in [32] (also see [43]), where alternative WENO (A-WENO) schemes were in-

troduced. A-WENO schemes employ standard finite-volume numerical fluxes (without any

need for flux splitting and related modifications), whose accuracy, in the context of finite-

difference schemes, is limited to the second order, while a high order is achieved using

the flux Taylor expansion and high-order WENO-Z interpolations, which were developed

in [16,21,32,43,64]. For several recent A-WENO schemes based on different finite-volume

numerical fluxes, we refer the reader to [62–64].

Even though WENO-Z interpolations are relatively computationally inexpensive and

can be applied in a dimension-by-dimension manner, the computational cost can be further

reduced by avoiding the use of any nonlinear limiters in the smooth parts of the solution

as it was done in the context of hybrid WENO schemes; see, e.g., [14, 41, 46]. In general,

in order to derive a robust scheme adaption technique, one needs to detect nonsmooth
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parts of the solution efficiently. This can be done in many ways using various existing

smoothness indicators. In [2, 46], a very simple indicator based on undivided differences

was introduced. In [9,10], discontinuities were detected using Richardson-type estimates

of the local truncation error of the solution. A total variation based troubled-cell indicator

was developed in [50, 66]. A more heuristic approach is examined in [47, 51], where the

local wave strengths of the upwind scheme were used as a measure of solution smoothness.

In [3–5,14], multiresolution coefficients of wavelets expansions were used. In [22,23], the

edges in the computed solution were detected using its Fourier coefficient. One can also

identify the rough parts of the computed solution using the numerical production of entropy

(see, e.g., [48,49]), the entropy residual (see, e.g., [26,27]), or the weak local residual (see,

e.g., [15,33,34]).

In this paper, we develop a new, very simple, and robust local smoothness indicator

based on the Taylor expansion in time, applied to the computed solutions obtained at each

stage of the three-stage third-order strong stability preserving (SSP) Runge-Kutta solver;

see, e.g., [24,25]. We first demonstrate that the proposed LSI can accurately detect smooth

and nonsmooth solution regions. We then apply the new LSI to design the following scheme

adaption strategy in the context of the A-WENO schemes: we use the fifth-order nonlinear

WENO-Z interpolation in the detected rough parts of the computed solutions while em-

ploying a nonlimited fifth-order interpolants in smooth areas.

The developed scheme adaption strategy is implemented using the recently proposed

local characteristic decomposition based central-upwind numerical flux from [13] and ap-

plied to both the 1-D and 2-D Euler equations of gas dynamics, for which we design the

LSI based on the pressure rather than on the density or any other conservative variable.

This choice is motivated by the results obtained in [15], where it has been demonstrated

that applying a nonlinear stabilization mechanism is crucial for the shock areas while iso-

lated linearly degenerate contact waves can be accurately captured using the nonlimited

high-order reconstruction. We test the resulting adaptive fifth-order A-WENO scheme on

several numerical examples and demonstrate that it outperforms the corresponding fifth-

order A-WENO the scheme, which is implemented without the proposed adaptation, that

is, employs the WENO-Z interpolation throughout the entire computational domain.

The paper is organized as follows. In Section 2, we briefly describe the proposed 1-D

and 2-D fifth-order A-WENO schemes. In Section 3, we introduce the new LSI and then

illustrate its performance on the Sod shock-tube problem for the 1-D Euler equations of gas

dynamics. In Section 4, we describe 1-D and 2-D scheme adaption strategies based on the

proposed LSI. In Section 5, we present a number of the 1-D and 2-D numerical results to

demonstrate the performance of the proposed adaptive A-WENO schemes and compare it

with the fully limited A-WENO schemes. Finally, in Section 6, we give concluding remarks.

2. Fifth-Order A-WENO Schemes

In this section, we describe the fifth-order finite-difference A-WENO schemes introduced

in [32] (see also [43,62–64]).
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2.1. 1-D A-WENO schemes

We first consider the 1-D system (1.1) and introduce uniform cells C j := [x j−1/2, x j+1/2]

of size x j+1/2 − x j−1/2 ≡∆x centered at x j = (x j−1/2 + x j+1/2)/2 for j = 1, . . . , Nx , so that

the computational domain is [x1/2, xNx+1/2]. We suppose that at a certain time t ≥ 0, the

point values of the computed solution, U j(t), are available, and in what follows, we will

suppress the time-dependence of all of the indexed quantities for the sake of brevity.

Following [32], U j are evolved in time by numerically solving the following system of

ODEs:
dU j

dt
= −
F j+1/2 −F j−1/2

∆x
, (2.1)

where F j+1/2 is the fifth-order accurate numerical flux defined by

F j+1/2

�
U
−
j+1/2

,U+
j+1/2

�
=F FV

j+1/2

�
U
−
j+1/2

,U+
j+1/2

�
− 1

24
(∆x)2(Fx x) j+1/2

+
7

5760
(∆x)4(Fx x x x ) j+1/2. (2.2)

Here, F FV
j+1/2

is a finite-volume numerical flux, and (Fx x ) j+1/2 and (Fx x x x ) j+1/2 are the

higher-order correction terms computed by the fourth- and second-order accurate finite

differences, respectively

(Fx x) j+1/2 =
1

48(∆x)2

�
−5Fj−2 + 39Fj−1 − 34Fj − 34Fj+1+ 39Fj+2 − 5Fj+3

�
,

(Fx x x x ) j+1/2 =
1

2(∆x)4

�
Fj−2 − 3Fj−1 + 2Fj + 2Fj+1 − 3Fj+2 + Fj+3

�
,

where Fj := F(U j).

In the numerical experiments reported in Section 5.1, we have used a recently proposed

local characteristics decomposition (LCD) based central-upwind (CU) numerical flux from

[13], which reads as

F
FV
j+1/2

�
U
−
j+1/2

,U+
j+1/2

�
=

Fj + Fj+1

2
+ Dj+1/2

�
U
−
j+1/2

,U+
j+1/2

�
, (2.3)

where Dj+1/2 is the following numerical diffusion term:

Dj+1/2

�
U
−
j+1/2

,U+
j+1/2

�
= R j+1/2Pj+1/2R−1

j+1/2

�
F

�
U
−
j+1/2

�
−

Fj + Fj+1

2

�

+ R j+1/2M j+1/2R−1
j+1/2

�
F

�
U
+
j+1/2

�
−

Fj + Fj+1

2

�

+ R j+1/2Q j+1/2R−1
j+1/2

�
U
+
j+1/2
−U
−
j+1/2

�
. (2.4)

Here, R j+1/2 is the matrix used for the LCD in the neighborhood of x = x j+1/2 (see Ap-

pendix B),

Pj+1/2 = diag
�
(P1) j+1/2, . . . , (Pd) j+1/2

�
,
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M j+1/2 = diag
�
(M1) j+1/2, . . . , (Md ) j+1/2

�
,

Q j+1/2 = diag
�
(Q1) j+1/2, . . . , (Qd) j+1/2

�

with
�
(Pi) j+1/2, (Mi) j+1/2, (Q i) j+1/2

�

=






1

∆λ j+1/2

�
(λ+

i
) j+1/2,−(λ−

i
) j+1/2, (λ+

i
) j+1/2(λ

−
i
) j+1/2

�
, if ∆λ j+1/2 > ǫ,

0, otherwise,

where ∆λ j+1/2 := (λ+
i
) j+1/2 − (λ−i ) j+1/2. The one-sided local characteristic speeds,

(λ+i ) j+1/2 =max
¦
λi

�
A(U−

j+1/2
)
�
, λi

�
A(U+

j+1/2
)
�
, 0
©

,

(λ−
i
) j+1/2 =min
¦
λi

�
A(U−

j+1/2
)
�
, λi

�
A(U+

j+1/2
)
�
, 0
©

,
i = 1, . . . , d (2.5)

are computed using the eigenvalues λ1(A)≤ · · · ≤ λd(A) of the Jacobian A= ∂ F/∂U , and ǫ

is a very small desingularization constant, taken ǫ = 10−10 in all of the numerical examples

reported in Section 5.

In (2.3)-(2.5), U
±
j+1/2

are the right/left-sided values of U at the cell interface x = x j+1/2.

In order to ensure the desired fifth order of accuracy, one needs to use a fifth order accurate

approximation of the point values U
±
j+1/2

. It is also important to guarantee that the resulting

scheme is (essentially) non-oscillatory. This can be done by implementing a certain nonlin-

ear limiting procedure like the fifth-order WENO-Z interpolation from [16, 21, 32, 43, 64]

(see Appendix A) applied to the local characteristic variables (see Appendix B), or a certain

adaption strategy like the one we will introduce in Section 4.

2.2. 2-D A-WENO schemes

We now turn our attention to the 2-D system (1.2) and describe 2-D fifth-order A-WENO

schemes.

We consider a rectangular computational domain [x1/2, xNx+1/2]×[y1/2, yNy+1/2], which

is covered with uniform cells C j, k := [x j−1/2, x j+1/2]×[yk−1/2, yk+1/2] centered at (x j, yk) =

((x j−1/2+ x j+1/2)/2, (yk−1/2+ yk+1/2)/2) with x j+1/2− x j−1/2 ≡∆x and yk+1/2− yk−1/2 ≡
∆y for j = 1, . . . , Nx and k = 1, . . . , Ny . We also assume that the computed point values

U j,k ≈ U(x j , yk, t) are available at a certain time level t. We then evolve U j,k in time by

numerically solving the following system of ODEs:

dU j,k

dt
= −
F j+1/2,k −F j−1/2,k

∆x
−
G j,k+1/2 −G j,k−1/2

∆y
, (2.6)

where F j+1/2,k and G j,k+1/2 are the fifth-order accurate numerical fluxes defined by

F j+1/2,k =F
FV
j+1/2,k

�
U

E
j,k

,UW
j+1,k

�
− 1

24
(∆x)2(Fx x) j+1/2,k

+
7

5760
(∆x)4(Fx x x x ) j+1/2,k, (2.7a)
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G j,k+1/2 = G
FV
j,k+1/2

�
U

N
j,k

,US
j,k+1

�
− 1

24
(∆y)2(Gy y ) j,k+1/2

+
7

5760
(∆y)4(Gy y y y ) j,k+1/2. (2.7b)

Here, F FV
j+1/2,k

and G FV
j,k+1/2

are finite-volume fluxes, whereas (Fx x) j+1/2,k, (Gy y ) j,k+1/2,

(Fx x x x ) j+1/2,k, and (Gy y y y ) j,k+1/2 are the higher-order correction terms computed by the

fourth- and second-order accurate finite differences, respectively

(Fx x ) j+1/2,k =
1

48(∆x)2

�
−5Fj−2,k + 39Fj−1,k − 34Fj,k − 34Fj+1,k + 39Fj+2,k − 5Fj+3,k

�
,

(Fx x x x ) j+1/2,k =
1

2(∆x)4

�
Fj−2,k − 3Fj−1,k + 2Fj,k + 2Fj+1,k − 3Fj+2,k + Fj+3,k

�
,

(Gy y ) j,k+1/2 =
1

48(∆y)2

�
−5G j,k−2 + 39G j,k−1− 34G j,k − 34G j,k+1+ 39G j,k+2− 5G j,k+3

�
,

(Gy y y y ) j,k+1/2 =
1

2(∆y)4

�
G j,k−2 − 3G j,k−1+ 2G j,k + 2G j,k+1− 3G j,k+2 +G j,k+3

�
,

where Fj,k := F(U j,k) and G j,k := G(U j,k).

In the numerical experiments reported in Section 5.2, we have used the 2-D LCD-based

CU numerical fluxes from [13]

F
FV
j+1/2,k

�
U

E
j,k

,UW
j+1,k

�
=

Fj,k + Fj+1,k

2
+ Dj+1/2,k

�
U

E
j,k

,UW
j+1,k

�
,

G
FV
j,k+1/2

�
U

N
j,k

,US
j,k+1

�
=

G j,k +G j,k+1

2
+ Dj,k+1/2

�
U

N
j,k

,US
j,k+1

�
,

(2.8)

where Dj+1/2,k and Dj,k+1/2 are numerical diffusion terms defined by

Dj+1/2,k

�
U

E
j,k

,UW
j+1,k

�
= R j+1/2,kPj+1/2,kR−1

j+1/2,k

�
F

�
U

E
j,k

�
−

Fj,k + Fj+1,k

2

�

+ R j+1/2,kM j+1/2,kR−1
j+1/2,k

�
F

�
U

W
j+1,k

�
−

Fj,k + Fj+1,k

2

�

+ R j+1/2,kQ j+1/2,kR−1
j+1/2,k

�
U

W
j+1,k
−U

E
j,k

�
,

Dj,k+1/2

�
U

N
j,k

,US
j,k+1

�
= R j,k+1/2Pj,k+1/2R−1

j,k+1/2

�
G

�
U

N
j,k

�
−

G j,k +G j,k+1

2

�

+ R j,k+1/2M j,k+1/2R−1
j,k+1/2

�
G

�
U

S
j,k+1

�
−

G j,k +G j,k+1

2

�

+ R j,k+1/2Q j,k+1/2R−1
j,k+1/2

�
U

S
j,k+1
−U

N
j,k

�
.

(2.9)

The matrices R j+1/2,k and R j,k+1/2 are used for the LCD in the neighborhoods of (x , y) =

(x j+1/2, yk) and (x , y) = (x j , yk+1/2), respectively, and

Pj+1/2,k = diag
�
(P1) j+1/2,k, . . . , (Pd) j+1/2,k

�
,
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Pj,k+1/2 = diag
�
(P1) j,k+1/2, . . . , (Pd) j,k+1/2

�
,

M j+1/2,k = diag
�
(M1) j+1/2,k, . . . , (Md) j+1/2,k

�
,

M j,k+1/2 = diag
�
(M1) j,k+1/2, . . . , (Md) j,k+1/2

�
,

Q j+1/2,k = diag
�
(Q1) j+1/2,k, . . . , (Qd) j+1/2,k

�
,

Q j,k+1/2 = diag
�
(Q1) j,k+1/2, . . . , (Qd) j,k+1/2

�

with
�
(Pi) j+1/2,k, (Mi) j+1/2,k, (Q i) j+1/2,k

�

=






1

∆(λi) j+1/2,k

�
(λ+

i
) j+1/2,k,−(λ−

i
) j+1/2,k, (λ+

i
) j+1/2,k(λ

−
i
) j+1/2,k

�
, if ∆(λi) j+1/2,k > ǫ,

0, otherwise,
�
(Pi) j,k+1/2, (Mi) j,k+1/2, (Q i) j,k+1/2

�

=






1

∆(µi) j,k+1/2

�
(µ+

i
) j,k+1/2,−(µ−

i
) j,k+1/2, (µ+

i
) j,k+1/2(µ

−
i
) j,k+1/2

�
, if ∆(µi) j,k+1/2 > ǫ,

0, otherwise.

Here,

∆(λi) j+1/2,k := (λ+i ) j+1/2,k − (λ−i ) j+1/2,k,

∆(µi) j,k+1/2 := (µ+
i
) j,k+1/2 − (µ−i ) j,k+1/2,

and

(λ+i ) j+1/2,k =max
¦
λi

�
A(UE

j,k)
�
, λi

�
A(UW

j+1,k)
�
, 0
©

,

(λ−
i
) j+1/2,k =min
¦
λi

�
A(UE

j,k
)
�
, λi

�
A(UW

j+1,k
)
�
, 0
©

,

(µ+i ) j,k+1/2 =max
¦
µi

�
B(UN

j,k
)
�
, µi

�
B(US

j,k+1
)
�
, 0
©

,

(µ−i ) j,k+1/2 =min
¦
µi

�
B(UN

j,k
)
�
, µi

�
B(US

j,k+1
)
�
, 0
©

,

(2.10)

where λ1(A) ≤ · · · ≤ λd(A) and µ1(B) ≤ · · · ≤ µd(B) are the eigenvalues of the Jacobians

A= ∂ F/∂U and B = ∂G/∂U , respectively.

In (2.8)-(2.10), U
E
j,k

, U
W
j+1,k

and U
N
j,k

, U
S
j,k+1

are the one-sided values of U at the cell

interfaces (x , y) = (x j+1/2 ± 0, yk) and (x , y) = (x j, yk+1/2 ± 0), respectively. In order to

achieve fifth-order accuracy, U
E(W)

j,k
and U

N(S)

j,k
are, as in the 1-D case, approximated either

using the fifth-order WENO-Z interpolant applied to the local characteristic variables in the

x - and y-directions, respectively, or with the help of the adaptive strategy, which we will

introduce in Section 4.

3. A New Local Smoothness Indicator (LSI)

In this section, we introduce a very simple LSI, which we will later use as a base for

a scheme adaption strategy.



8 A. Chertock, S. Chu and A. Kurganov

We first consider a function ψ(·, t) and introduce the following quantity:

Dψ(·, t −τ) :=
1

2
|ψ(·, t − 2τ)− 2ψ(·, t −τ) +ψ(·, t)| , (3.1)

where τ > 0 and · stand for a certain spatial coordinate. If ψ is smooth, then one can use

the Taylor expansion about the point (·, t −τ) to obtain

Dψ(·, t −τ) = τ
2

2
ψt t(·, t −τ) + O (τ4). (3.2)

This suggests that for piecewise smoothψ the magnitude of Dψ is proportional to τ2 in the

areas where ψ is smooth and is O (1) elsewhere.

In order to design an LSI based on (3.1), we proceed as follows. We begin with the 1-D

case, denote by U(t) := {U j(t)}, and let L [U(t)] be the nonlinear operator representing

the right-hand side (RHS) of (2.1). Assuming that the computed solution is available at

a certain discrete time level t = tn, we evolve it to the next time level tn+1 := tn +∆tn by

numerically integrating the ODE system (2.1) using the three-stage third-order SSP Runge-

Kutta method, which reads as (see [24,25])

U
(1)(tn) = U

(0)(tn) +∆tnL
�
U
(0)(tn)
�

,

U
(2)(tn) =

3

4
U
(0)(tn) +

1

4

�
U
(1)(tn) +∆tnL

�
U
(1)(tn)
��

,

U
(3)(tn) =

1

3
U
(0)(tn) +

2

3

�
U
(2)(tn) +∆tnL

�
U
(2)(tn)
��

,

(3.3)

where U
(0)(tn) := U(tn), U

(1)(tn) and U
(2)(tn) are the intermediate stage solutions, which

are lower-order approximations of U at time levels tn+1 and tn+1/2 := tn + ∆tn/2, re-

spectively, and U
(3)(tn) := U(tn+1). In (3.3), the time step ∆tn is selected based on the

following CFL-based stability restriction:

∆tn ≤ ∆x

2a
, a :=max

j

�
max
�
(λ+

d
) j+1/2,−(λ−1 ) j+1/2

�	
. (3.4)

Next, we introduce quantities ψ
(ℓ)
j
(tn) := ψ(U

(ℓ)
j
(tn)), ℓ = 0,1,2,3, and the corre-

sponding LSI based on (3.1) with τ =∆tn/2

D
ψ

j
(tn) =

1

2

���ψ(0)j
(tn)− 2ψ

(2)

j
(tn) +ψ

(3)

j
(tn)

���. (3.5)

Similarly, the 2-D LSI is given by

D
ψ

j,k
(tn) =

1

2

���ψ(0)
j,k
(tn)− 2ψ

(2)

j,k
(tn) +ψ

(3)

j,k
(tn)

���, (3.6)

where ψ j,k(t
n) :=ψ(U

(ℓ)

j,k
(tn)), ℓ= 0,1,2,3.
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Remark 3.1. We note that in the formulae (3.5) and (3.6) for the LSI we have not used

ψ
(1)

j
(tn) and ψ

(1)

j,k
(tn) as these values are lower-order approximations of the quantities,

which are more accurately approximated by ψ
(3)

j
(tn) and ψ

(3)

j,k
(tn), respectively.

While the computation in (3.2) is based on the smoothness of ψ, the LSIs (3.5) and

(3.6) can, in principle, be used for detecting rough areas of nonsmooth computed solu-

tions. However, before these LSIs can be used for the development of the robust adaptation

strategies, one may need to smear the introduced quantities in space by introducing

D
ψ

j (t
n) :=

1

6

�
D
ψ

j−1
(tn) + 4D

ψ

j
(tn) + D

ψ

j+1
(tn)
�

(3.7)

and

D
ψ

j,k(t
n) =

1

36

�
D
ψ

j−1,k−1
(tn) + D

ψ

j−1,k+1
(tn) + D

ψ

j+1,k−1
(tn) + D

ψ

j+1,k+1
(tn)

+ 4
�
D
ψ

j−1,k
(tn) + D

ψ

j,k−1
(tn) + D

ψ

j,k+1
(tn) + D

ψ

j+1,k
(tn)
�
+ 16D

ψ

j,k
(tn)

�

in the 1-D and 2-D cases, respectively.

In order to verify the plausibility of possible adaptation strategies based on the intro-

duced LSI, we measure its size in the following numerical example in which we compute the

solution of a benchmark using the fully limited A-WENO scheme that employs the WENO-Z

interpolant throughout the entire computational domain (see Section 2.1).

Example 3.1 (Sod Shock-Tube Problem for Euler Equations of Gas Dynamics). We consider

the 1-D Euler equations of gas dynamics, which reads as

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

Et + [u(E + p)]x = 0,

(3.8)

where ρ, u, p, and E are the density, velocity, pressure, and total energy, respectively. The

system (3.8) is completed through the following equations of state:

p = (γ− 1)
�
E − 1/2ρu2
�

, (3.9)

where the parameter γ represents the specific heat ratio (we take γ = 1.4). We consider

the following initial conditions [59]:

(ρ,u, p)(x , 0) =

¨
(1,0,1.0), x < 0.5,

(0.125,0,0.1), x > 0.5,
(3.10)

prescribed in the interval [0,1] subject to the free boundary conditions.

We compute the numerical solution by the A-WENO scheme introduced in Section 2.1

until the final time t = 0.16 on a uniform mesh with ∆x = 1/100. In Fig. 1, we plot the
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Figure 1: Density (left) and the corresponding values of the pressure-based LSI (right).

obtained density together with the reference solution computed on a much finer uniform

mesh with ∆x = 1/4000 and the pressure-based LSI (D
p

j defined in (3.7) with ψ = p)

computed at the final time step. As one can see, the LSI can detect the shock wave’s location

and indicate the area of a rarefaction corner. At the same time, the LSI values in the contact

discontinuity neighborhood are very small. If, however, one is interested in identifying

contact discontinuities as well, one can use the density-based LSI (D
ρ

j defined in (3.7) with

ψ= ρ).

In order to investigate the plausibility of the LSI-based adaptive strategies, we compute

the numerical solutions on a sequence of uniform meshes with∆x = 1/200, 1/400, 1/800,

1/1600, 1/3200, 1/6400, and measure the asymptotic behavior of the LSI in different parts

of the computational domain. The obtained results are reported in Table 1, where one can

observe quite significant differences in the order of magnitude of the LSI. For example, on

the mesh with ∆x = 1/200, the local maxima of the D
p

are ∼ 10−6 near the rarefaction

corner and in a smooth region within the rarefaction wave, ∼ 10−7 near the contact discon-

tinuity, and ∼ 10−3 at the shock (the last local maximum is, in fact, the global maximum

of D
p
). One can also see that away from the shock, the LSI decays when the mesh is re-

fined. The rate of decay is second-order in the smooth region and about the first-order

near the rarefaction corner. In the contact wave area, the LSI is very small, and when the

coarse mesh is refined, the LSI decays very rapidly there. At the same time, near the shock,

the size of D
p

is practically independent of the mesh size, as expected. This suggests that

the proposed LSI can be used as an efficient and accurate tool to detect shocks and other

rough parts of the computed solution except for the isolated contact waves, which can be

treated in the same way as smooth parts of the computed solution; see the description of

the adaption strategy we propose in the next section.

4. Scheme Adaption

In this section, we develop a scheme adaption strategy based on the LSIs from Section 3

and the A-WENO schemes described in Section 2. This will lead to new adaptive A-WENO
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Table 1: Local and global maxima of D
p and the corresponding rates of change.

∆x max
a≤x j≤b

D
p

j
Rate max

a≤x j≤b
D

p

j
Rate

Rarefaction corner, a = 0.25, b = 0.35 Smooth subregion, a = 0.35, b = 0.45

1/100 7.94e-06 – 3.87e-06 –

1/200 2.86e-06 1.47 1.09e-06 1.83

1/400 1.28e-06 1.17 2.72e-07 2.01

1/800 4.81e-07 1.41 6.75e-08 2.01

1/1600 2.27e-07 1.08 1.66e-08 2.02

1/3200 9.76e-08 1.22 4.14e-09 2.01

1/6400 4.43e-08 1.14 1.03e-09 2.00

Contact wave, a = 0.6, b = 0.7 Everywhere (Shock), a = 0, b = 1

1/100 6.59e-07 – 2.58e-03 –

1/200 1.33e-07 2.31 2.36e-03 0.13

1/400 1.54e-09 6.43 1.82e-03 0.38

1/800 6.55e-10 1.23 2.37e-03 -0.38

1/1600 3.50e-10 0.90 5.76e-04 2.04

1/3200 2.00e-10 0.80 2.00e-03 -1.79

1/6400 8.28e-11 1.27 2.39e-03 -0.26

schemes, in which the WENO-Z interpolation will only be used in the rough areas indicated

by the LSI.

One-Dimensional Algorithm. Assume that U j(t
n) = U

(3)

j
(tn−1), U j(t

n−1) = U
(0)

j
(tn−1),

and U
(2)

j
(tn−1) are available for all j. We then compute the LSI values given by (3.7) and

identify the rough areas as follows. We first find all of the points x = x j at which

D
ψ

j
(tn−1)> C(∆tn−1)

3
2 , (4.1)

where C is a positive tunable constant to be selected for each problem at hand, and pre-

sume that the solution at time t = tn−1/2 is rough there. Due to the finite speed of propa-

gation and the CFL condition (3.4), one may presume that the solution at the time interval

[tn, tn+1] (that is, at all of the three Runge-Kutta stages (3.3)) is rough at the nearby points

x j±1/2 and x j±3/2.

After identifying each of the points x j+1/2 as either rough or smooth, we compute either

nonlimited Ŭ
±
j+1/2

or limited eU±
j+1/2

point values there, and then evaluate the finite-volume

numerical fluxes needed in (2.1)-(2.2) (and hence in (3.3)) by

F
FV
j+1/2

=

¨
F

FV
j+1/2

�
Ŭ
−
j+1/2

, Ŭ+
j+1/2

�
, if x j+1/2 is rough,

F
FV
j+1/2

� eU−
j+1/2

, eU+
j+1/2

�
, if x j+1/2 is smooth.
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Two-Dimensional Algorithm. An extension of the 1-D scheme adaption algorithm to the

2-D case is relatively straightforward.

The main component of the 2-D algorithm is identifying the rough parts of the solution,

in which the one-sided interpolated values are to be computed using the WENO-Z inter-

polant. As in the 1-D case, this is done using the LSI. Namely, we presume that the solution

at time t = tn−1/2 is rough in all of the cells C j,k, in which

D
ψ

j,k
(tn−1)> C(∆tn−1)

3
2 . (4.2)

Then, due to the finite speed of propagation and the appropriate CFL condition with the

CFL number 1/2, one may presume that the solution at the time interval [tn, tn+1] is rough

at the nearby points (x j±1/2, yk±1), (x j±1/2, yk), (x j±3/2, yk) and (x j±1, yk±1/2), (x j, yk±1/2),

(x j, yk±3/2).

Equipped with the information about the rough and smooth parts of the computed so-

lutions, we proceed with the proposed adaption strategy and compute either nonlimited

Ŭ
E(W,N,S)

j,k
or limited eUE(W,N,S)

j,k
point values there, and then evaluate the finite-volume nu-

merical fluxes needed in (2.6)-(2.7) by

F
FV
j+1/2,k

=

(
F

FV
j+1/2,k

�
Ŭ

E
j,k

, Ŭ W
j+1,k

�
, if (x j+1/2, yk) is rough,

F
FV
j+1/2,k

� eU E
j,k

, eU W
j+1,k

�
, if (x j+1/2, yk) is smooth,

G
FV
j,k+1/2

=

(
G

FV
j,k+1/2

�
Ŭ

N
j,k

, Ŭ S
j,k+1

�
, if (x j, yk+1/2) is rough,

G
FV
j,k+1/2

� eU N
j,k

, eU S
j,k+1

�
, if (x j, yk+1/2) is smooth.

Remark 4.1. The fact that the constants C in (4.1) and (4.2) must be tuned is a weak point

of our adaption strategy. One may, however, tune C on a coarse mesh and then use the

same value of C on finer meshes to minimize an extra computational cost as it was done,

e.g., in [36] in the context of an adaptive artificial viscosity method. The plausibility of this

strategy in the current scheme adaption algorithm is supported by a numerical experiment;

see Example 5.1 in Section 5.1 below.

Remark 4.2. As no past time solution is available at the first time step, at t0 = 0, we

complete the first evolution step using a fully limited A-WENO scheme that employs the

WENO-Z interpolation throughout the entire computational domain.

5. Numerical Examples

In this section, we test the developed adaption strategy on several numerical examples.

To this end, we apply the adaptive A-WENO schemes to several initial-boundary value prob-

lems for the 1-D and 2-D Euler equations of gas dynamics and compare their performance

with the fully limited A-WENO schemes. In the rest of this section, we will refer to the

proposed adaptive A-WENO schemes as to adaptive schemes and the fully limited A-WENO

schemes as to limited schemes.

In all of the examples below, the specific heat ratio is γ= 1.4 (except for Example 5.11,

where γ= 5/3), and the CFL number is 0.45.
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5.1. One-dimensional examples

Example 5.1 (1-D Accuracy Test). In the first example taken from [13, 37], we consider

the (3.8)-(3.10) subject to the following smooth initial data:

u(x , 0) = sin

�
πx

5
+
π

4

�
, ρ(x , 0) =

�
γ− 1

2
p
γ
(u(x , 0) + 10)

� 2
γ−1

, p(x , 0) = ργ(x , 0).

We impose periodic boundary conditions and compute the numerical solution on the com-

putational domain [0,10] on a sequence of uniform meshes with ∆x = 1/10, 1/20, 1/40,

1/80, 1/160, 1/320, 1/640 until the final time t = 0.1 using the adaptive scheme with

C = 0.1. Since we use a fifth-order spatial discretization and only third-order time inte-

grator, we select ∆t ∼ (∆x)5/3 in order to be able to achieve the overall fifth order of

accuracy.

We then compute L1-errors and estimate the experimental convergence rates using the

following Runge formulae, which are based on the solutions computed on the three consec-

utive uniform grids with the mesh sizes ∆x , 2∆x , and 4∆x and denoted by (·)∆x , (·)2∆x ,

and (·)4∆x , respectively:

Error(∆x)≈
δ2

12

|δ12 −δ24|
, Rate(∆x)≈ log2

�
δ24

δ12

�
.

Here, δ12 := ‖(·)∆x−(·)2∆x‖L1 and δ24 := ‖(·)2∆x−(·)4∆x‖L1 . The computed L1-errors and

corresponding convergence rates for the density, momentum, and total energy are reported

in Table 2, where one can clearly see that the fifth order of accuracy is achieved.

Table 2: Example 5.1: The L1-errors and experimental convergence rates for the density (ρ), momentum
(ρu), and total energy (E).

∆x
ρ ρu E

Error Rate Error Rate Error Rate

1/40 3.87e-05 4.75 1.27e-04 4.76 5.61e-04 4.76

1/80 1.03e-06 5.23 3.37e-06 5.23 1.49e-05 5.23

1/160 3.83e-08 4.75 1.25e-07 4.75 5.54e-07 4.75

1/320 1.20e-09 4.99 3.93e-09 4.99 1.74e-08 4.99

1/640 3.82e-11 4.98 1.25e-10 4.98 5.53e-10 4.98

Example 5.2 (Sod Shock-Tube Problem). In the second example, we once again consider

(3.8)-(3.10) subject to the free boundary conditions and compute the numerical solution

until the final time t = 0.16 using both the limited and adaptive schemes. In this exam-

ple, we take C = 0.05 while implementing the scheme adaption strategy. The obtained

solutions, computed on a uniform mesh with ∆x = 1/200 and the corresponding refer-

ence solution computed by the limited scheme on a much finer mesh with ∆x = 1/4000

are presented in Fig. 2. We also plot the LSI D
p

and 0.05(∆t)3/2 along with log10 D
p

and
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log10(0.05(∆t)3/2), computed during the adaptive scheme evolution at the final time mo-

ment in Fig. 3. One can observe that the computed LSI can capture the shock wave position

accurately, and the results obtained by the adaptive scheme are sharper than those obtained

by the limited scheme, even though there are small oscillations near the contact wave cap-

tured by the adaptive scheme. It is also instructive to point out that choosing the adaption

constant C on a coarse mesh is a robust strategy. This is evident from the graphs of log10 D
p

and log10(0.05(∆t)3/2) depicted in Figs. 3 (right) and 4. The presented results illustrate

that the rough parts of the computed solutions can be accurately identified using (4.1),

while the same constant C = 0.05 is used on three different meshes.

Example 5.3 (Shock-Bubble Iteration Problem). In the third example taken from [39], we

consider the shock-bubble interaction problem. The initial data for the 1-D Euler equations

(3.8)-(3.9),

(ρ,u, p)(x , 0) =





(13.1538,0,1), |x |< 0.25,

(1.3333,−0.3535,1.5), x > 0.75,

(1,0,1), otherwise

correspond to a left-moving shock, initially located at x = 0.75, and a bubble with a radius

of 0.25, initially located at the origin.

We compute the numerical solution in the computational domain [−1,1] on the uniform

mesh with ∆x = 1/100 and impose the solid wall boundary conditions at x = −1 and

free boundary conditions at x = 1. In Figs. 5 and 6, we plot the numerical solutions at

the final time t = 3 obtained by the limited and adaptive (with C = 0.0015) schemes.

These solutions are compared with the corresponding reference solutions computed by the

limited scheme on a much finer mesh with ∆x = 1/2000. In Fig. 7, the graphs of LSI

D
p

and 0.0015(∆t)3/2 are depicted along with their logarithm forms. As one can observe,

the LSI accurately captures the position of the shock waves, and the results obtained by the

adaptive scheme are a little sharper compared to those obtained by the limited counterpart.

Example 5.4 (Shock-Entropy Wave Interaction Problem). In the fourth example taken from

[57], we consider the shock-entropy wave interaction problem. The system (3.8)-(3.9) is

numerically solved subject to the following initial condition:

(ρ,u, p)(x , 0) =

¨
(1.51695,0.523346,1.805), x < −4.5,

(1+ 0.1 sin(20x), 0,1), x > −4.5,

which corresponds to a forward-facing shock wave of Mach number 1.1 interacting with

high-frequency density perturbations, that is, as the shock wave moves, the perturbations

spread ahead.

We compute the numerical solution using both the limited and adaptive schemes with

C = 0.006 in the computational domain [−5,5] covered by a uniform mesh with∆x = 1/40

and implement free boundary conditions. The numerical results at time t = 5 are presented

in Fig. 8 along with the corresponding reference solution computed by the limited scheme

on a much finer mesh with∆x = 1/800. As in the previous example, we also plot (in Fig. 9)
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Figure 2: Example 5.2: Density ρ computed by the limited and adaptive schemes (left) and zoom at
x ∈ [0.61, 0.68] (right).

Figure 3: Example 5.2: D
p and 0.05(∆t)3/2 (left) and log10 D

p and log10(0.05(∆t)3/2) (right) for ∆x =
1/200.

Figure 4: Example 5.2: log10 D
p and log10(0.05(∆t)3/2) for ∆x = 1/400 (left) and 1/800 (right).
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Figure 5: Example 5.3: Density ρ (left) and pressure p (right) computed by the limited and adaptive
schemes.

Figure 6: Example 5.3: Velocity u computed by the limited and adaptive schemes (left) and zoom at
x ∈ [−0.95,−0.8] (right).

Figure 7: Example 5.3: D
p and 0.0015(∆t)3/2 (left) and the corresponding logarithmic quantities (right).
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Figure 8: Example 5.4: Density ρ computed by the limited and adaptive schemes (left) and zoom at
x ∈ [−2.1,−1] (right).

Figure 9: Example 5.4: D
p and 0.006(∆t)3/2 (left) and the corresponding logarithmic quantities (right).

the graphs of the LSI D
p

and 0.006(∆t)3/2 together with log10 D
p

and log10(0.006(∆t)3/2).

One can observe that the LSI can capture the position of the shock waves accurately, and

the results obtained by the adaptive scheme are non-oscillatory and slightly sharper than

those obtained by the limited scheme.

Example 5.5 (Shock-Density Wave Interaction Problem). In the last 1-D example taken

from [58], we consider the shock-density wave interaction problem. The initial data,

(ρ,u, p)(x , 0) =






�
27

7
,
4
p

35

9
,
31

3

�
, x < −4,

(1+ 0.2 sin(5x), 0,1), x > −4

are prescribed in the computational domain [−5,15] subject to the free boundary condi-

tions.

We compute the numerical solution by the limited and adaptive (with C = 0.04) schemes

on the uniform mesh with ∆x = 1/20 until the final time t = 5 and present the obtained
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Figure 10: Example 5.5: Density ρ computed by the limited and adaptive schemes (left) and zoom at
x ∈ [8, 10] (right).

Figure 11: Example 5.5: D
p and 0.04(∆t)3/2 (left) and the corresponding logarithmic quantities (right).

numerical results in Fig. 10 together with the corresponding reference computed by the

limited scheme on a much finer mesh with ∆x = 1/400. We also plot D
p

and 0.04(∆t)3/2

together with log10 D
p

and log10(0.04(∆t)3/2) in Fig. 11. It can be seen clearly that the LSI

can accurately capture the position of the shock waves, and the adaptive scheme produces

slightly sharper results compared to those obtained by the limited scheme.

Remark 5.1. It is instructive to compare the computational costs of the studied limited

and adaptive A-WENO schemes. To this end, we have measured the CPU times consumed

by both schemes. The results obtained for the four studied 1-D examples are reported

in Table 3, where we show the relative CPU time consumption of the adaptive A-WENO

scheme relative to the fully limited one. As one can see, the proposed adaptive the scheme

is more efficient than the fully limited one. Notice that the numbers in Table 3 are different

as the part of the computational domain indicated as rough varies. The CPU times for the

adaptive scheme also depend on the values of C: the use of larger C leads to a more efficient

but potentially more oscillatory adaptive A-WENO scheme.
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Table 3: Examples 5.2-5.5: CPU times consumed by the adaptive A-WENO scheme relative to the fully
limited A-WENO scheme.

Example 5.2 Example 5.3 Example 5.4 Example 5.5

66% 76% 66% 67%

5.2. Two-dimensional examples

In this section, we demonstrate the performance of the proposed adaptive A-WENO

scheme on several examples for the 2-D Euler equations of gas dynamics, which read as

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

Et + [u(E + p)]x + [v(E + p)]y = 0,

(5.1)

where v is the y-component of the velocity, and the rest of the notations are the same as in

the 1-D case. The system is completed through the following equations of state:

p = (γ− 1)

h
E − ρ

2
(u2 + v2)

i
. (5.2)

Example 5.6 (2-D Accuracy Test). In the first 2-D example taken from [13,37], we consider

the 2-D Euler equations of gas dynamics subject to the following periodic initial conditions:

ρ(x , y, 0) = 1+
1

2
sin
�
π(x + y)
�
, u(x , y, 0) ≡ 1, v(x , y, 0)≡ −0.7, p(x , y, 0) ≡ 1.

The exact solution of this initial value problem is given by

ρ(x , y, t) = 1+
1

2
sin
�
π(x+y−0.3t)
�
, u(x , y, t) ≡ 1, v(x , y, t) ≡ −0.7, p(x , y, 0) ≡ 1.

We first compute the numerical solution on the computational domain [−1,1]×[−1,1]

until the final time t = 0.1 using the adaptive scheme with C = 0.1 on a sequence of uni-

form meshes with ∆x = ∆y = 1/50, 1/100, 1/200, 1/400, and the time step chosen to

be proportional to (∆x)5/3. We then measure the L1-errors and compute the correspond-

ing experimental convergence rates for the density. The obtained results are presented in

Table 4, where one can see that the fifth order of accuracy is achieved by the proposed

adaptive scheme.

Table 4: Example 5.6: The L1-errors and experimental convergence rates for the density ρ.

∆x =∆y Error Rate

1/50 2.49e-07 —

1/100 7.80e-09 4.99

1/200 2.44e-10 5.00

1/400 7.62e-12 5.00
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Example 5.7 (2-D Riemann Problem). In the second 2-D example, we consider Configu-

ration 3 of the 2-D Riemann problems from [38] (see also [52,53,65]) with the following

initial conditions:

(ρ,u, v, p)(x , y, 0) =





(1.5,0,0,1.5), x > 1, y > 1,

(0.5323,1.206,0,0.3), x < 1, y > 1,

(0.138,1.206,1.206,0.029), x < 1, y < 1,

(0.5323,0,1.206,0.3), x > 1, y < 1.

We compute the numerical solution until the final time t = 1 by the limited and adaptive

(with C = 3) schemes on the uniform mesh with ∆x =∆y = 3/2500 in the computational

domain [0,1.2]× [0,1.2] subject to the free boundary conditions. The obtained results are

presented in Fig. 12, where one can see that the adaptive scheme outperforms the limited

one as it better captures the sideband instability of the jet in the zones of strong along-jet

velocity shear and the instability along the jet’s neck.

Figure 12: Example 5.7: Density ρ computed by the limited (left) and adaptive (right) schemes.

Figure 13: Example 5.7: The limited WENO-Z interpolation is used only in the part of the computational
domain indicated by the black color.
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In Fig. 13, we show the regions which the LSI detected as rough at the final time. As one

can see, the limited WENO-Z interpolation is used only in a small part of the computational

domain, mostly around the shocks.

Example 5.8 (Explosion Problem). In this example, we consider the explosion problem

taken from [42,60]. This is a circularly symmetric problem with the following initial con-

ditions:

(ρ,u, v, p)(x , y, 0) =

¨
(1,0,0,1), x2 + y2 < 0.16,

(0.125,0,0,0.1), otherwise.
(5.3)

We numerically solve the initial value problem (5.1)-(5.3) in the first quadrant, more pre-

cisely in the computational domain [0,1.5]× [0,1.5] with the solid wall boundary condi-

tions imposed at x = 0 and y = 0 and the free boundary conditions set at x = 1.5 and

y = 1.5.

In Fig. 14, the numerical solutions computed by the limited and adaptive (with C = 1)

schemes on the uniform mesh with∆x =∆y = 3/800 are plotted at the final time t = 3.2.

Figure 14: Example 5.8: Density ρ computed by the limited (left) and adaptive (right) schemes.

Figure 15: Example 5.8: The limited WENO-Z interpolation is used only in the part of the computational
domain indicated by the black color.
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The presented results clearly illustrate the advantage of the adaptive approach over the

fully limited one, as the contact curve captured by the adaptive scheme is much curlier and

the mixing layer is much wider.

In Fig. 15, we show the regions detected at the final time by the LSI as rough and

demonstrate that in this example, the limiting is only used along the circular shock.

Example 5.9 (Implosion Problem). In this example taken from [42], we consider the im-

plosion problem with the following initial conditions:

(ρ,u, v, p)(x , y, 0) =

¨
(0.125,0,0,0.14), |x |+ |y| < 0.15,

(1,0,0,1), otherwise,
(5.4)

prescribed in [−0.3,0.3]× [−0.3,0.3] subject to the solid wall boundary conditions. Due

to the symmetry, we numerically solve the initial-boundary value problem (5.1), (5.2),

and (5.4) in the first quadrant only, more precisely in the computational domain [0,0.3]×
[0,0.3] and impose the solid wall boundary conditions at x = 0 and y = 0.

In Fig. 16, the numerical solutions computed by the limited and adaptive (with C = 3)

schemes on the uniform mesh with∆x =∆y = 3/4000 are plotted at the final time t = 2.5.

As one can observe, the jet generated by the adaptive scheme propagates further in the

direction of y = x than the jet produced by the limited scheme, clearly indicating that the

adaptive scheme is substantially less dissipative than the limited scheme.

The domain where the limiters have been used at the final time is presented in Fig. 17,

where one can see how the proposed LSI identifies rough areas.

Remark 5.2. It is easy to show that the solution of the studied initial-boundary value prob-

lem is symmetric with respect to the axis y = x . It is well-known, however, that this sym-

metry may be destroyed by the roundoff errors when the solution is computed by a low-

dissipative high-order scheme. In order to prevent the loss of symmetry, we have used

a very simple strategy introduced in [62]: upon completion of each time evolution step, we

Figure 16: Example 5.9: Density ρ computed by the limited (left) and adaptive (right) schemes.



Adaptive A-WENO Schemes 23

Figure 17: Example 5.9: The limited WENO-Z interpolation is used only in the part of the computational
domain indicated by the black color.

replace the computed point values U j,k with bU j,k, where

bρ j,k :=
ρ j,k +ρk, j

2
, (Óρu) j,k :=

(ρu) j,k + (ρv)k, j

2
,

bE j,k :=
E j,k + Ek, j

2
, (Óρv) j,k :=

(ρv) j,k + (ρu)k, j

2

for all j, k. For more sophisticated symmetry enforcement techniques, we refer the reader

to, e.g., [16,17,20,61].

Example 5.10 (KH Instability). In this example taken from [19, 45], we study the KH

instability with the following initial conditions:

�
ρ(x , y, 0),u(x , y, 0)

�
=





(1,−0.5+ 0.5e(y+0.25)/L), y ∈ [−0.5,−0.25),

(2,0.5− 0.5e(−y−0.25)/L), y ∈ [−0.25,0),

(2,0.5− 0.5e(y−0.25)/L), y ∈ [0,0.25),

(1,−0.5+ 0.5e(−y+0.25)/L), y ∈ [0.25,0.5),

v(x , y, 0) = 0.01 sin(4πx), p(x , y, 0) ≡ 1.5,

where L is a smoothing parameter (here, we take L = 0.00625) corresponding to a thin

shear interface with a perturbed vertical velocity field v in the conducted simulations. We

impose the 1-periodic boundary conditions in both the x - and y-directions, and take the

computational domain to be [−0.5,0.5]× [−0.5,0.5].

We compute the numerical solution until the final time t = 4 by the limited and adaptive

(with C= 1) schemes on the uniform mesh with∆x =∆y = 1/400. The numerical results

at t = 1,2.5,4 are presented in Fig. 18. As one can see, at the early time t = 1, the

vortex sheets in the limited and adaptive results are quite different, and it is hard to draw a

definite conclusion based on these results. However, at later times t = 2.5,4, the adaptive
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Figure 18: Example 5.10: Time snapshots of the density ρ computed by the limited (top row) and
adaptive (bottom row) schemes at t = 1 (left column), 2.5 (middle column), and 4 (right column).

scheme produces more complicated vortices and turbulent mixing, which indicates that the

adaptive scheme contains less numerical dissipation than the limited scheme.

In addition, in Fig. 19, we plot the solution regions to show that the limiters have been

used in a very small part of the computational domain, especially at t = 4.

It should also be noted that, as is known, the numerical solutions of the KH instability

problem do not converge in the strong sense when the mesh is refined. In fact, the limiting

Figure 19: Example 5.10: The limited WENO-Z interpolation is used only in the part of the computa-
tional domain indicated by the black color.
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Figure 20: Example 5.10: Cesàro averages of the density ρC(1/2m) computed by the limited (top row)
and adaptive (bottom row) schemes for m= 8 (left column), 9 (middle column), and 10 (right column).

solution is not a weak solution but a dissipative weak solution; see [18] for more details.

Thus, to approximate the limiting solution, we compute the Cesàro averages of the densities

obtained at the final time t = 4 by the limited and adaptive schemes. To this end, we first

introduce a sequence of meshes with the cells of size 1/2n, n = 5, . . . , 10, and denote by

ρ(1/2n) the density computed on the corresponding mesh. We then project the obtained

coarser mesh solutions with n= 5, . . . , m−1 onto the finer mesh with n= m (the projection

is carried out using the dimension-by-dimension WENO-Z interpolation of the density field)

and denote the obtained densities still by ρ(1/2n), n = 5, . . . , m. After this, the Cesàro

averages are computed by

ρC(1/2m) =
ρ(1/25) + · · ·+ρ(1/2m)

m− 4
, m = 8,9,10. (5.5)

In Fig. 20, we plot the computed averages at time t = 4. One can observe the superiority

of the results obtained by the adaptive scheme when it comes to resolving complicated

structures.

Example 5.11 (RT Instability). In the last example, we investigate the RT instability. It is

a physical phenomenon occurring when a layer of heavier fluid is placed on top of a layer

of lighter fluid. To this end, we first modify the 2-D Euler equations of gas dynamics (5.1)-

(5.2) by adding the gravitational source terms acting in the positive direction of the y-axis



26 A. Chertock, S. Chu and A. Kurganov

into the RHS of the system

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = ρ,

Et + [u(E + p)]x + [v(E + p)]y = ρv,

and then use the setting from [54,62] with the following initial conditions:

(ρ,u, v, p)(x , y, 0) =

¨
(2,0,−0.025c cos(8πx), 2y + 1), y < 0.5,

(1,0,−0.025c cos(8πx), y + 1.5), otherwise,

where c :=
p
γp/ρ is the speed of sound. The solid wall boundary conditions are imposed

at x = 0 and x = 0.25, and the following Dirichlet boundary conditions are specified at the

top and bottom boundaries:

(ρ,u, v, p)(x , 1, t) = (1,0,0,2.5), (ρ,u, v, p)(x , 0, t) = (2,0,0,1).

We compute the numerical solution until the final time t = 2.95 by the limited and adap-

tive (with C = 2) schemes on the computational domain [0,0.25]× [0,1] on the uniform

mesh with ∆x =∆y = 1/800. The numerical results at t = 1.95 and 2.95 are presented in

Fig. 21. As we can see, there are pronounced differences between the limited and adaptive

solutions. Therefore, one can conclude that the adaptive scheme achieves a much better

resolution, which again demonstrates that the adaptive scheme is less dissipative than the

limited scheme.

In Fig. 22, we show the regions which the LSI detected as rough at the final time. As

one can see, the limited WENO-Z interpolation is only used in a relatively small part of the

computational domain.

Figure 21: Example 5.11: Density ρ computed by the limited and adaptive schemes at t = 1.95 and
2.95.
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Figure 22: Example 5.11: The limited WENO-Z interpolation is used only in the part of the computa-
tional domain indicated by the black color.

As in Example 5.10, we also approximate the dissipative weak solution using the Cesàro

averages computed by (5.5) with the same sequence of meshes. We presentρC(1/210) com-

puted by the limited and adaptive schemes in Fig. 23 at the times t = 1.95 and 2.95. Once

again, one can observe that the adaptive scheme better resolves the limiting dissipative

weak solution.

Remark 5.3. In this example, the solution is symmetric with respect to the vertical axis

x = 0.125. In order to enforce this symmetry, we have applied the strategy from [62]:

Figure 23: Example 5.11: Cesàro averages of the density ρC(1/210) computed by the limited and adaptive
schemes at t = 1.95 and 2.95.
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upon completion of each time evolution step, we replace the computed cell averages U j,k

with bU j,k, where

bρ j,k =
ρ j,k +ρM− j,k

2
, (Óρu) j,k =

(ρu) j,k − (ρu)M− j,k

2
,

bE j,k =
E j,k + EM− j,k

2
, (Óρv) j,k =

(ρv) j,k + (ρv)M− j,k

2

for all j, k under the assumption that j = 1, . . . , M . Alternative symmetry enforcement

techniques can be found in, e.g., [16,17,20,61].

Remark 5.4. As in the 1-D case, we also compare the computational costs of the studied

limited and adaptive A-WENO schemes and present the CPU times consumed by the adap-

tive scheme relative to the fully limited one. The obtained results are presented in Table 5,

where one can see that in the 2-D case, the difference in CPU times is slightly smaller than

in the 1-D examples, but the adaptive scheme is still clearly more efficient.

Table 5: Examples 5.7-5.11: CPU times consumed by the adaptive A-WENO scheme relative to the
fully limited A-WENO scheme.

Example 5.7 Example 5.8 Example 5.9 Example 5.10 Example 5.11

80% 81% 81% 80% 83%

6. Conclusion

In this paper, we have developed new adaptive alternative weighted essentially non-

oscillatory (A-WENO) schemes for one- and two-dimensional hyperbolic systems of con-

servation laws. The proposed schemes employ the scheme adaption strategy, according

to which the limited WENO-Z interpolation is only used to capture rough parts of the

computed solution, while in the smooth areas, nonlimited fifth-order interpolant is imple-

mented. The rough regions are detected using a smoothness indicator. We have proposed

a new, simple and robust local smoothness indicator, which is based on the solutions com-

puted at each of the three stages of the three-stage third-order strong stability preserving

Runge-Kutta time integrator. We have applied the new one- and two-dimensional adaptive

A-WENO schemes to the Euler equations of gas and dynamics using the recently proposed

local characteristic decomposition based central-upwind numerical fluxes. We have con-

ducted several numerical experiments and demonstrated that the new adaptive schemes

are essentially non-oscillatory and robust and, at the same time, more accurate than their

fully limited counterparts.

In order to illustrate the high efficiency of the proposed adaptive A-WENO schemes, we

have compared the CPU times consumed by the studied fully limited and adaptive schemes

in each numerical example. From the reported results, we conclude that the introduced
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scheme adaption strategy leads to more efficient and, at the same time, more accurate A-

WENO schemes. It should also be noted that if the LCD-based CU numerical fluxes imple-

mented in (2.2) and (2.7) are replaced with any other finite-volume (FV) numerical fluxes,

the resulting adaptive A-WENO schemes will still be substantially more efficient than the

corresponding fully limited A-WENO schemes. However, the difference in the CPU times

may vary depending on the computational cost of the particular FV fluxes used.

Appendix A. The 1-D Fifth-Order WENO-Z Interpolant

Here, we briefly describe the fifth-order WENO-Z interpolant.

Assume that the point values Wj of a certain function W (x) at the uniform grid points

x = x j are available. We now show how to obtain an interpolated left-sided value of W at

x = x j+1/2, denoted by W−
j+1/2

. The right-sided value W+
j+1/2

can then be obtained in the

mirror-symmetric way.

The term W−
j+1/2

is computed using a weighted average of the three parabolic inter-

polantsP0(x),P1(x) andP2(x) obtained using the stencils [x j−2, x j−1, x j], [x j−1, x j, x j+1],

and [x j , x j+1, x j+2], respectively

W−
j+1/2

=

2∑

k=0

ωkPk(x j+1/2), (A.1)

where

P0(x j+1/2) =
3

8
Wj−2 −

5

4
Wj−1 +

15

8
Wj,

P1(x j+1/2) = −
1

8
Wj−1 +

3

4
Wj +

3

8
Wj+1,

P2(x j+1/2) =
3

8
Wj +

3

4
Wj+1 −

1

8
Wj+2.

(A.2)

Using a straightforward Taylor expansion one can show that (A.1)-(A.2) is fifth-order ac-

curate if one takes the weights ωk in (A.1) to be

ωk = ω̆k :=
dk

d0 + d1 + d2

, d0 =
1

16
, d1 =

5

8
, d2 =

5

16
, (A.3)

resulting in the nonlimited point values, which we denote by

W̆−
j+1/2

:=

2∑

k=0

ω̆kPk(x j+1/2) =
3

128
Wj−2 −

5

32
Wj−1 +

45

64
Wj +

15

32
Wj+1 −

5

128
Wj+2.

The computed interpolation may, however, be oscillatory in rough areas of W (x) and

thus the values W̆−
j+1/2

need to be modified by replacing the weights (A.3) there with

ωk = eωk :=
αk

α0 +α1 +α2

, αk = dk

�
1+

�
τ5

βk + ǫ

�p�
, τ5 = |β2 − β0|, (A.4)
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and thus obtaining the limited WENO-Z point values

fW−
j+1/2

:=

2∑

k=0

eωkPk(x j+1/2). (A.5)

In (A.4), βk are the following smoothness indicators for the corresponding parabolic inter-

polants Pk:

βk =

2∑

ℓ=1

(∆x)2ℓ−1

∫

C j

�
∂ ℓPk

∂ xℓ

�2
dx , k = 0,1,2. (A.6)

Evaluating the integrals in (A.6), we obtain

β0 =
13

12

�
Wj−2 − 2Wj−1 +Wj

�2
+

1

4

�
Wj−2 − 4Wj−1 + 3Wj

�2
,

β1 =
13

12

�
Wj−1 − 2Wj +Wj+1

�2
+

1

4

�
Wj−1 −Wj+1

�2
,

β2 =
13

12

�
Wj − 2Wj+1 +Wj+2

�2
+

1

4

�
3Wj − 4Wj+1 +Wj+2

�2
.

(A.7)

Finally, in all of the numerical examples reported in this paper, we have used p = 2 and

ǫ = 10−12.

Appendix B. 1-D Local Characteristic Decomposition

Even though the WENO-Z interpolant (A.1), (A.4), (A.5), (A.7) is essentially non-

oscillatory, it is well-known that its application to the conservative variables U in a compo-

nentwise manner may lead to spurious oscillations in the computed solution. We, therefore,

implement the reconstruction procedure described in Appendix A in the LCD framework.

Specifically, we first introduce the matrix bA j+1/2 := A(bU j+1/2), where bU j+1/2 is either

a simple average (U j +U j+1)/2 or another type of average of the U j and U j+1 states (in the

numerical examples reported in Sections 3 and 5, we have used the simple average). As

long as the system (1.1) is strictly hyperbolic, we compute the matrices R j+1/2 and R−1
j+1/2

such that R−1
j+1/2
bA j+1/2R j+1/2 is a diagonal matrix and introduce the local characteristic

variables in the neighborhood of x = x j+1/2

Γm = R−1
j+1/2

Um, m = j − 2, . . . , j + 3.

Equipped with the values Γ j−2, Γ j−1, Γ j, Γ j+1, Γ j+2, and Γ j+3, we apply the interpolation

procedure described in Appendix A to each of the components Γ (i), i = 1, . . . , d of Γ and

obtain either the nonlimited Γ̆
−
j+1/2 or limited eΓ−

j+1/2 point values. The values Γ̆
+

j+1/2 and

eΓ+j+1/2 are computed, as mentioned in Appendix A, in the mirror-symmetric way. Finally,

the corresponding nonlimited and limited point values of U are given by

Ŭ
±
j+1/2

= R j+1/2Γ̆
±
j+1/2, eU±

j+1/2
= R j+1/2
eΓ±j+1/2,

respectively.
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Remark B.1. A detailed explanation of how the average matrix bA j+1/2 and the correspond-

ing matrices R j+1/2 and R−1
j+1/2

are computed in the case of the Euler equation of gas dy-

namics can be found in, e.g., [13].
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decomposition based central-upwind scheme, J. Comput. Phys. 473, 111718 (2023).

[14] B. Costa and W.S. Don, High order hybrid central-WENO finite difference scheme for conservation

laws, J. Comput. Appl. Math. 204, 209–218 (2007).

[15] J. Dewar, A. Kurganov and M. Leopold, Pressure-based adaption indicator for compressible Euler

equations, Numer. Meth. Part. D. E. 31, 1844–1874 (2015).

[16] W.S. Don, D.-M. Li, Z. Gao and B.-S. Wang, A characteristic-wise alternative WENO-Z finite



32 A. Chertock, S. Chu and A. Kurganov

difference scheme for solving the compressible multicomponent non-reactive flows in the overes-

timated quasi-conservative form, J. Sci. Comput. 82, 27 (2020).

[17] W.S. Don, P. Li, K.Y. Wong and Z. Gao, Improved symmetry property of high order weighted

essentially non-oscillatory finite difference schemes for hyperbolic conservation laws, Adv. Appl.

Math. Mech. 10, 1418–1439 (2018).
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