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Abstract. In the hybrid RANS-LES simulations, proper turbulent fluctuations should
be added at the RANS-to-LES interface to drive the numerical solution restoring to
a physically resolved turbulence as rapidly as possible. Such turbulence generation
methods mostly need to know the distribution of the characteristic length scale of the
background RANS model, which is important for the recovery process. The approx-
imation of the length scale for the Spalart-Allmaras (S-A) model is not a trivial issue
since the model’s one-equation nature. As a direct analogy, the approximations could
be obtained from the definition of the Prandtl’s mixing length. Moreover, this paper
proposes a new algebraic expression to approximate the intrinsic length scale of the
S-A model. The underlying transportation mechanism of S-A model are largely ex-
ploited in the derivation of this new expression. The new proposed expression is em-
ployed in the generation of synthetic turbulence to perform the hybrid RANS-LES sim-
ulation of canonical wall-bounded turbulent flows. The comparisons demonstrated
the feasibility and improved performance of the new length scale on generating syn-
thetic turbulence at the LES inlet.
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1 Introduction

Hybrid Reynolds Averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) meth-
ods have been kept improving during the last decades. They have combined the high-
efficiency of RANS method and the capability of LES method to resolve large scale tur-
bulent structures. In the hybrid methods, LES is only employed in the region where the
large scales need to be resolved, and RANS method is used to model the mean flow in
the rest regions. There are many strategies to operate the hybridization in the literature.
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Frohlich and von Terzi [1] summarized the basic concepts, the classification and the lim-
itations of the hybrid RANS-LES methods. When the hybrid methods are applied in a
zonal/embedded way, there always exist some artificial interfaces between the regions
of both methods. The coupling boundary conditions on such interfaces are important
since the performance of the LES on the downstream of the interface would greatly de-
pend on the features of upstream unsteady flows. Proper turbulent fluctuations should
be added at the interface, otherwise there would exist a large adaptation region contained
in the LES region for building a physically resolved turbulence. An oversized adaptation
region can degrade the accuracy of the solution in the whole downstream LES region.

The RANS methods based on the statistical averaging of the Navier-Stokes (N-S)
equations only solve the mean flow and compute the influence of the turbulence statistics
by semi-empirical models. The approximated mean flow and low-order statistics can be
used to synthesize the turbulent fluctuations for the LES inlet. A common fundamental
principle for synthesizing the fluctuations is that the statistical information based on the
RANS results must approximate the real physical turbulence as close as possible. The
statistical information given by RANS can be employed through various methods such
as the synthetic turbulence generator (STG) [2,3], the synthetic eddy method (SEM) [4,5],
the synthetic Fourier modes methods [6,7] and the dynamic forcing method [8]. Compre-
hensive reviews have been given by Tabor and Baba-Ahmadi [9], Dhamankar et al. [10],
and Wu [11].

Recently, Probst et al. [12] evaluated the performances of SEM and STG as the grey
area mitigation tools in the wall-bounded turbulent flow with mild separation. It is
shown that such synthetic fluctuations are indeed helpful for improving the accuracy
of the hybrid RANS-LES computation. Patterson et al. [13] studied the bias and tem-
poral convergence errors of STG when used to generate the inflow of direct numerical
simulation (DNS). An explicit method to measure these errors introduced by the random
number arrays is developed, which can be employed to obtain an optimized selection
of the random numbers with minimized errors. Generally, the basic input for this kind
of methods are the limited statistical information obtained from the RANS computation.
To this end, the two-equation RANS models are naturally superior to the one-equation
RANS models since they contain the modeling for the independent transportations of
two characteristic scales, which allows approximating the second-order statistics with-
out any ambiguity. But for the one-equation RANS models, only one single transport
equation is directly solved for representing one characteristic scale. Thus, the proper ap-
proximation of the second-order statistics relies on supplementing proper algebraic ex-
pression for the other characteristic scale (usually the characteristic length scale). Hence,
it is not straightforward to use the one-equation models in cooperation with the SEM or
the STG. Indeed, we can find that the background RANS models in the literatures are
mostly the two-equation models [2–5].

In the community of aerospace engineering, the one-equation model proposed by
Spalart and Allmaras [14], referred as S-A model hereafter, has been one of the most
successful turbulence models in the last decades. Therefore, there exists a strong potential
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of the S-A model for playing the role of the RANS part in the hybrid simulations. This
motivates the present work on surveying the approximation of the length scale for the
S-A model, which is indispensable for the employment of the LES inlet treatment like the
aforementioned SEM or STG.

In this paper, we choose the STG in [2, 3] to generate the artificial turbulent fluctu-
ations imposed on the LES inlet. The STG is based on a superposition of a series of
randomly generated Fourier modes with all the random quantities defined only once at
the beginning of the simulation, which makes the method simple and efficient to im-
plement. The second-order statistics needed by the STG is a prescribed model energy
spectrum, which is crucial for constructing the Fourier modes. The model energy spec-
trum is characterized by a single length scale representing the wave length of the most
energy-containing mode. As mentioned above, this length scale can be easily obtained
for the two-equation model such as the k−ω Shear Stress Transport model [15], referred
as SST model hereafter. When the background RANS is changed to S-A model, an al-
gebraic expression should be found to approximate this length scale. Even if a feasible
algebraic expression is provided, it cannot provide sufficient consideration about the in-
fluences from the historical and boundary information without an explicit modeling for
the transportation equation related to this length scale. This flaw brought by the algebraic
expression might affect the recovery process of the synthetic turbulence to the realistic
one.

Concerning the above issues, the objective of this paper is to provide reasonable ap-
proximations of the length scale as the input of the STG for the S-A model, and to in-
vestigate the connections between the length scale and the recovery process. It will be
shown that feasible approximations can be obtained from the definition of the Prandtl’s
mixing length. As an alternative way, it is argued that an intrinsic equation for the length
scale of S-A model can be derived from the transportation equation. The numerical tests
on the canonical wall-bounded turbulent flows suggest that the recovery process can be
improved through employing the new proposed expression.

The paper is organized as follows. The main procedures of the STG and the role
played by the length scales are introduced in Section 2. In Section 3, we present some
feasible approximations of the length scale for S-A model as well as the derivations of
the novel algebraic expression of the turbulent length scale. Moreover, a posteriori test is
performed based on the highly-resolved simulation data of a turbulent boundary layer.
In Section 4, the expressions of the length scale are adopted in the STG [2,3] based on the
S-A model to construct the inflow turbulent fluctuations for the hybrid RANS-LES sim-
ulation. Two canonical wall-bounded turbulent flow cases, i.e., the flat-plate boundary
layers and fully-developed channel flows, are employed to make comparisons on the skin
frictions, the second-order statistics and the spanwise integral length scale downstream
of the interface. The conclusions are given in Section 5.
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2 Synthetic turbulence generation method

2.1 Basic formula

The STG method in [2, 3] has been successfully applied in the simulation of several tur-
bulence problems with the SST model. The main procedure is to construct the turbulent
velocity fluctuations from the Reynolds stress tensor computed by the RANS model at
the inlet as

u′i(~r,t)= aijv′j(~r,t), (2.1)

where u′i for i= 1,2,3 are corresponding to the component of the velocity fluctuation on
xi-directions. aij is defined by the Cholesky decomposition of the Reynolds stress tensor
Rij, which is given as

aij =


√

R11 0 0

R21/a11

√
R22−a2

21 0

R31/a11 (R32−a21a31)/a22

√
R33−a2

31−a2
32

. (2.2)

The deviatoric stresses are computed by the Bousinessq approximation, while the normal
stresses equal to 2/3 of the turbulent kinetic energy k. The vector v′j is constructed by
superposing the spatiotemporal Fourier modes weighted by the normalized amplitudes
on a von Karman spectrum model E(ξ), which are given as

v′(~r,t)=
√

6
N

∑
n=1

√
qn
[
σn cos

(
ξndn ·r′(t)+ϕn)], (2.3a)

qn =
E(ξn)∆ξn

∑N
n=1 E(ξn)∆ξn

, (2.3b)

where the superscript n stands for the n-th Fourier modes, q is the local amplitude, and
ξ=ξ·d is the wavenumber vector with the magnitude being ξ. d is a random unit vector of
direction uniformly distributed over a sphere. σ is another random vector perpendicular
to d. ϕ is the random phase uniformly distributed in [0,2π]. The time-dependent vector
r′ (t) and the model spectrum E(ξ) are given by

r′=
{

x′1,x′2,x′3
}

, x′1=
2π

ξn ·max{Le(r)}
(x1−U0t), x′2= x2, x′3= x3, (2.4a)

E(ξ)=
(ξe)

4

[1+2.4(ξe)
2]17/6

· fη · fcut with ξ̃e≡ ξ ·Le/2π, (2.4b)

where U0 is the macro-scale velocity at the interface, fη and fcut are empirical functions
and Le is the length scale of the most energy-containing mode. Other detail expressions
for the above quantities and functions can be referred to the reference [3].
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In the above equations, the quantities provided by the background RANS model are
the turbulent kinetic energy k, the turbulent eddy viscosity νt and the characteristic length
scale Le. The former two quantities (k and νt) are used for forming the matrix aij (or Rij),
while the characteristic length scale Le is used for the description of the normalized model
energy spectrum in Eq. (2.4b), which is discussed in the next subsection.

2.2 The model energy spectrum

The determination of the model energy spectrum requires that at least two characteristic
scales, i.e., one characterizing the kinetic energy and the other one providing length scale,
must be known from the RANS computation.

The scale related to the turbulent kinetic energy is definite and straightforward for the
RANS models based on the eddy-viscosity hypothesis since the transportation equation
of the turbulent kinetic energy can be derived from the N-S equation with relatively less
empiricism. In fact, the transportation of the kinetic energy is directly modeled in some
RANS methods, such as k−ε model, k−ω model, etc. For the models which do not
directly involve the turbulent kinetic energy, it can be obtained from the assumption that
the ratio of the Reynolds shear stress to the turbulent kinetic energy is a constant [16],
i.e., R12≈ βrk, where βr = 0.3 is the Bradshaw’s constant. Considering the Boussinesq’s
hypothesis, the turbulent kinetic energy can be approximated as

k≈ 2vtS12

βr
≈ vtS

βr
, (2.5)

where S=
√

2SijSij, Sij=0.5(∂ui/∂xj+∂uj/∂xi). The profiles of k for a turbulent boundary
layer with Reθ =900 are examined in Fig. 1. The results obtained from the S-A model are
compared to the k-profile from the SST model. The profile of R12

βr
from the direct numerical

simulation (DNS) data of Wu and Moin [17] is also shown for comparison. It can be seen
that the approximation for the turbulent kinetic energy of the S-A model is acceptable.

The other characteristic scale represents the wavelength of the most energy-containing
mode, i.e., the Le in Eq. (2.4b). If adequate information, either by scale resolving simu-
lation or by experiment measurements, about the turbulent statistics are provided, mul-
tiple integral quantities characterizing the length scales in turbulence can be defined.
Following [18,19], the integral length scale obtained from a real von Karman model spec-
trum is almost equivalent to the one corresponding to the most energy-containing mode
in the most idealized situation, i.e., the homogeneous isotropic turbulence. When the
wall-bounded turbulence is concerned, these length scales are functions of the spatial
coordinates. For the SST model, it is suggested in [2] that Le can be approximated as

Le =min(2dw,Cl ·Lt), (2.6)

where dw is the minimum distance to the wall, Lt is some well-defined functional length
scale (also called as the turbulent length scale) based on the known variables from the
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Figure 1: The distributions of the turbulent kinetic energy for S-A and SST models in a turbulent boundary
layer.

RANS computation, and Cl=3.0. The term 2dw agrees with Townsend’s model [20], which
states that the length scale of the large eddy in a turbulent boundary layer is proportional
to the wall-normal distance. When the background RANS for the STG is the SST model,
the turbulent length scale can be easily obtained from the known quantities (k and ω),

Lt = k1/2/
(
Cµω

)
, (2.7)

with Cµ = 0.09. However, when the one-equation S-A model is employed as the back-
ground RANS model, the issue about approximating the turbulent length scale is not as
straightforward as for the two-equation models as discussed in Section 1. If we want
to successfully apply the STG method in conjunction with the S-A model, the turbulent
length scale must be properly approximated as an algebraic expression of the known
quantities.

3 Length scales for the S-A model

In this section, we discuss some available choice for approximating the length scale in or-
der to realize the coupling between the S-A model and the STG. The discussion is limited
in the category of the wall-bounded turbulent flows since their intensive engineering in-
terests. Besides the above closure issue, it is also natural to ask what behavior should the
input Le has along the boundary layer to achieve the best recovery process for the STG.
Moreover, we also propose a new algebraic expression for the turbulent length scale from
the transport equation of S-A model.
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3.1 Algebraic expression for the length scale

(i) analogy to the Prandtl’s mixing length. In a turbulent boundary layer, the Prandtl’s
mixing length lm is defined as

νt = l2
m ·S. (3.1)

As a general available approximation for the characteristic length scale for the RANS
model, an analogy between the turbulent length scale and lm can be reasonably assumed,
which gives

Lt ∝ lm =

√
vt

s
. (3.2)

The effectiveness of the Prandtl’s mixing length is partly confirmed by the success of
some zero-equation models. For a turbulent boundary layer, experimental measurements
have shown that lm=κdw holds in the log-layer, and κ=0.41 is the von Karman constant.
Therefore, we can rewrite it as

Lt =
2
κ

lm =
2
κ

√
vt

s
, (3.3)

in order to fitting Townsend’s attached eddy model (Lt≈2dw) in the near-wall region.

(ii) modified Prandtl’s mixing length. According to a posteriori test about the length scale
in the next subsection, a constant coefficient is employed to make a correction on Eq. (3.3),
which becomes

Lt =
2.7
κ

√
vt

S
. (3.4)

(iii) Townsend’s attached eddy model. Following the original recommendation in [2, 3]
(also see Eq. (2.6)), the length scale is further limited as not larger than the Townsend’s
attached eddy model, i.e., L≈2dw. Thus, we have the following equation:

Le =min
(

2dw,Cl ·
2
κ

√
vt

s

)
, (3.5)

with Cl =3.0.

(iv) new expression. Since the primary mechanism of the transportation of the turbulent
viscosity has been well modeled and carefully calibrated by the model equation, it is
reasonable to relate the length scale to the transport equation. Based on this idea, we
proposed a new algebraic expression for the turbulent length scale. The derivation is
given in the following.

First, the dynamical behavior of the turbulent kinetic energy is examined by written
its transport equation as

Dk
Dt

=τij
∂ui

∂xj
−ε+

∂

∂xj

[
v

∂k
∂xj
− 1

2
u′iu
′
iu
′
j−

1
ρ

p′u′j

]
, (3.6)
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where D(−)
Dt ≡

∂(·)
∂t +uj

∂(−)
∂xj

and ε is the turbulence dissipation rate. It should be noticed
that Eq. (3.6) is derived from the transport equation of Reynolds-stress tensor without
introducing any approximation. It can be also regarded as the theoretical basis for many
eddy-viscosity models. With the Reynolds’ average operation, the dissipation of the ki-
netic energy in the turbulence cascading is modeled by the single term ε. Therefore, the
description for the dissipation of k can be assumed Dk/Dt =−ε, which indicates that
the time scale for the vanishing of the turbulent kinetic energy can be characterized by
t̃ = k/ε. Thus, the averaged spatially travelling length for an energy-containing eddy
before dissipated out is

L= ũ· t̃= k3/2/ε, (3.7)

where ũ=
√

k is the characteristic velocity. It has been shown in [7] that the length scale
(in definition of k3/2/ε) can be approximated by 2dw in the near wall region. Indeed,
Eq. (3.7) gives the proper estimation of the turbulent length scale for the standard k−ε
model [21].

Based on the above understanding, we reinterpret the turbulent length scale of S-A
model as the same expression of the modeled kinetic energy and the turbulence dissipa-
tion rate, i.e., Eq. (3.7). If the turbulence dissipation rate ε is appropriately provided, the
turbulent length scale is determined with the turbulent kinetic energy given by Eq. (2.5).
For example, if we define ε0 as

ε0=CεvtS2 (3.8)

with Cε = β−3/2
r ·κ/2≈1.248, it is easy to find that Eq. (3.3) can be immediately obtained

through substituting Eq. (3.8) into Eq. (3.7).
In order to seek proper expression for the dissipation rate for the S-A model, the

model transport equation is also examined, which is given as

∂ṽ
∂t

+uj
∂ṽ
∂xj

= Cb1S̃ṽ︸ ︷︷ ︸
production

−Cw1 fw (ṽ/dw)
2︸ ︷︷ ︸

destruction

+
1
σ

[
∂

∂xj

(
(v+ ṽ)

∂ṽ
∂xj

)
+Cb2

∂2ṽ
∂x2

j

]
, (3.9)

where ν̃ is the modeled transported variable, ν is the molecular viscosity, and S̃ is the
modified strain rate defined by

S̃=S+
ṽ fv2

κ2d2
w

. (3.10)

The turbulent eddy viscosity νt is given by

vt = ṽ fv1 . (3.11)

Functions fv1, fv2 and fw are empirical correlations and Cb1, Cb2, Cw1 and σ are empirical
parameters. The specific expressions and values of these quantities can be referred to [14].

By combining Eq. (2.5) and Eq. (3.11), we can obtain

Dk
Dt
∼=

D
Dt

(
S fv1

βr
ṽ
)

. (3.12)
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The empirical correlation fν1 is the ratio of ν̃ to νt and just equals 1.0 in the most part
of the boundary layer(except in the viscous sub-layer and near the outer edge). Thus,
Eq. (3.12) can be further reduced to

Dk
Dt
∼=

1
βr

(
S

Dṽ
Dt

+vt
DS
Dt

)
. (3.13)

The terms Dk
Dt and Dν̃

Dt represent the convection effects of Eq. (3.6) and Eq. (3.9), respec-
tively. The second term on the right hand vt

DS
Dt corresponds to the diffusion brought by

the turbulent eddy viscosity. To build the connection between Eq. (3.6) and Eq. (3.9), it is
argued that the production and destruction terms contained in the left and right hand in
Eq. (3.13) should obey the same behavior, which gives

vtS2−ε∼=
s
βr

[
Cb1S̃ṽ−Cw1 fw (ṽ/dw)

2
]
∼=

S
βr

[
Cb1Svt−Cw1 fw (vt/dw)

2
]

, (3.14)

where the simplification τij
∂ui
∂xj

=vtS2 is employed. Then the approximation for the dissi-
pation rate can be obtained as:

ε1=

(
1− cb1

βr

)
vtS2+

cw1

βr
fwS(vt/dw)

2 . (3.15)

It should be emphasized that Eq. (3.15) is only reasonable in the regions where the ap-
proximation fv1

∼= 1.0 (ṽ= vt) holds. The empirical function fw can be further replaced
by a constant 0.5 to simplify the calculation, which gives a rough approximation for this
region. In the near-wall region, a hybrid operation with ε0 is employed, namely

εh =(ε0)
pw ·(ε1)

1−pw , (3.16a)

pw =1.0−tanh
[
0.04·

(
1+A·χ2

t
)]

, (3.16b)

where χt = vt/v and A= 1.3+3.8 v
s·d2

w
. The power function pw is close to 1.0 in the near-

wall region. Thus the hybrid dissipation εh would return to ε0 (Eq. (3.8)). In the outer
layer of a turbulent boundary layer, εh is equivalent to ε1 (Eq. (3.15)). Fig. 2 presents the
distribution of ε0, ε1 and εh along a turbulent boundary layer profile with Reθ =900. The
power function pw is also presented.

By substituting εh into Eq. (3.7), a new algebraic expression for the length scale can be
obtained. In order to avoid division by zero in Eq. (3.7), the minimum value of εh should
be constrained. Therefore, we can obtain the following expressions:

εh =max
{
(ε0)

pw ·(ε1)
1−pw ,1.0×10−10

}
, (3.17a)

L= k3/2/εh. (3.17b)

To make a summary, ε0 in Eq. (3.8) comes from the length scale Eq. (3.3), which adopts
the analogy expression of the Prandtl’s mixing length as well as the Townsend’s model.
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Figure 2: Distributions of the approximated dissipation rates and the power function in a turbulent boundary
layer.

ε1 in Eq. (3.15) is derived from the dissipative behavior contained in the transportation
equation of the S-A model. And εh in Eq. (3.17b) represents a zonal hybrid between the
two former expressions. It is worth noting that there are no non-local variables involved
in the calculation of the above expressions (Eqs. (3.3)-(3.5) and Eq. (3.17b)).

3.2 A posteriori test

A zero pressure gradient turbulent boundary layer (abbreviated as TBL) over a flat plate
is utilized here to perform a posteriori test about the distributions of the length scale
from different algebraic expressions. The streamwise location of Reθ =1000 in the TBL is
selected to perform the test.

Using the expressions (Eqs. (3.3)-(3.5) and Eq. (3.17b)) introduced in Section 3.1, the
distributions of the length scale can be extracted without any ambiguity. The background
RANS data is obtained by the one-equation S-A model. In Fig. 3, the grey-colored scatters
are the data from several streamwise locations in a highly-resolved LES, which utilized
very fine mesh approaching to the level of DNS (also called as quasi-DNS [22]). The
results of the length scales are computed as [7]

L=
2
√〈

u′1u′2
〉

κ ·|du1/dx2|
(3.18)

The angular bracket stands for a spanwise and temporal average. The selected locations
can be viewed as ”recovered states” compared to the STG inlet through justifying the
skin friction and the profiles of second-order statistics. The details of the simulation will
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Figure 3: Distributions of the length-scale expressions inside a turbulent boundary layer (Grey-colored scatters:
current computation; symbols +: data in [7].)

be elucidated in Section 4. The plus symbols + in Fig. 3 are the results summarized by
Glegg et al. (see Fig. 2 in [7]), which appear good agreement with the highly-resolved
LES data. Hence, we refer to the data in [7] and in present computation as ”reference
data” hereafter. For each data set, the length scale (L) and the distance to the wall (x2)
are both scaled by the local boundary layer thickness δ.

In Fig. 3, it is shown that significant discrepancies exist among the distributions of the
approximated expressions. The first one, i.e., the analogy to the Prandtl’s mixing length
(Eq. (3.3)), is lower than the reference data in the most part of the boundary layer thick-
ness. Besides, we could easily obtain Eq. (3.4) by adjusting the value of the coefficient
to have the better fit to the reference data. The largest distribution in Fig. 3 is given by
Eq. (3.5), which is directly inherited from the recommendation in [2, 3]. The curve coin-
cide with the straight line of L= 2dw over a wide range of the boundary layer. It is also
noted that reducing the value of Cl to 1.35 would result in the same curve as Eq. (3.4). As
a new proposal, Eq. (3.17b) tries to build a reasonable relation between the length scale
and the transportation behavior underlying the model equation. It agrees well with the
reference data in the region of x2/δ≤ 0.35 but appears larger than the reference data in
the outer part of the BL. Given the distribution of the turbulent kinetic energy, the wave-
lengths of the synthesized Fourier Modes are closely related to the adopted length scale
expressions. In the next section, the four algebraic expressions for the length scale will
be compared in the practical numerical experiments, which is aiming at shedding some
lights on the question about which distribution is the most suitable one for the recovery



12 Q. Guo, P. Liu, C. Li, D. Sun and X. Yuan / Adv. Appl. Math. Mech., xx (2023), pp. 1-24

of the inlet ST.

4 Numerical tests

In this section, two canonical wall-bounded turbulent flow cases are employed to per-
form the numerical tests. The first case is the TBL utilized in Section 3.2, and the sec-
ond one is a fully developed turbulent channel flow (abbreviated as TC). In the sim-
ulations, the (filtered) compressible N-S equations are solved using our in-house CFD
solver, which has been validated in many complex flow cases [23–27]. The numerical
methods employed in this paper are as following: the convection term is discretized by
an optimized fourth-order finite-difference scheme which is duplicated from the linear
form of WENO-SYMBO scheme [28]. The viscous term is discretized by the fourth-order
central difference scheme. The dual time stepping is employed for time marching. The
Mach number is set as 0.2 to approximate the incompressible regime. The Improved De-
layed Detached Eddy Simulation (IDDES) [29] based on the S-A model is employed as
the sub-grid scale model. Both of the cases are treated as spatial-developing. The pre-
scribed velocity fluctuations (generated by the STG method) are superimposed on the
corresponding RANS solutions at the inlet. The walls in the two cases are set as no-slip
and isothermal. The wall temperatures are 300K. Sponge layers are utilized in both cases
at the downstream of the effective computational domain to damp the spurious reflec-
tions. The spanwise boundaries are treated as periodic boundaries. The comparisons
are carried out between the inlet turbulent fluctuations installed with the four algebraic
expressions, which are termed with L1-L4 (see Table 1).

Table 1: Approximations for the length scale.

Case name Length scale
L1 Eq. (3.3)
L2 Eq. (3.4)
L3 Eq. (3.5)
L4 Eq. (3.17b)

4.1 Turbulent boundary layer

In the TBL case, the computational domain is illustrated in Fig. 4, δ0is denoted as the
nominal thickness. The Reynolds number based on the momentum thickness Reθ is about
1000 at the inlet. The size of the effective computational domain in the streamwise (x1),
wall-normal (x2) and spanwise (x3) directions are 26δ0, 5.4δ0 and 4.5δ0, respectively.

In the current simulation, the grid spacings on the wall-parallel directions are ap-
proximately ∆x+1 = 20.0 and ∆x+3 = 10.0 in wall units, which is approaching DNS. The
grid-point distributions on the wall-normal direction are kept same with the first spacing
as ∆x+2,min = 0.48. The number of grid points are N1×N2×N3 = 521×121×181. In order
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Figure 5: Instantaneous fields of vorticity magnitude at x2 =0 (left panel) and x+2 =15 (right panel).

to let the flow fields have sufficient time to evolve, all cases were run over approximately
150·δ0/U∞ before the samples were collected, and the time-history of skin frictions was
also examined to ensure the statistically stationary states had been reached.

The instantaneous fields of vorticity magnitude at the wall and x+2 = 15 are given in
Fig. 5. The streamwise streaks attached to the wall can be clearly seen in the figure. No
obvious qualitative difference is observed between the cases.

In Fig. 6, the mean skin friction coefficients C f (versus both Rθ and x/δ0) are compared
with the empirical equation for the incompressible turbulent boundary layer, which is
given as [30]

C f =0.024·Re−1/4
θ . (4.1)

The symbols in the figure are the DNS data from [30, 31]. It can be seen that the shapes
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Figure 6: Distributions of skin friction coefficients in TBL cases.

of C f -curves displayed in both figures are similar. The skin friction coefficients in all the
cases revert to their fully-developed level after a streamwise adaptation region of about
∆Reθ≈120∼140 (or ∆x1≈8.4∼9.6δ0) distance from the inlet. In the adaptation region, the
value of C f is apparently lower than the reference value. Among the considered cases,
the curves obtained from L3 and L4 show the best agreement with the reference value
in the fully-recovered regions. The employment of L1 and L2 appear to decrease the C f ,
whereas L2 is relatively closer to the reference value.

In order to examine the development of the quantitative characteristics of the TBL,
we make a comparison on the mean velocity profiles and the second order statistics R+

11,
R+

22 and R+
12 (R+

ij = 〈uiu′j〉/u2
τ) at four streamwise locations, i.e., x1/δ0 = 2.1, 4.2, 6.3 and

8.4. The corresponding Reθ are about 1032, 1064, 1096 and 1128 respectively. The DNS
data of Wu and Moin [17] are taken as the reference data. In Fig. 7, the mean velocity
profiles at different streamwise locations in the TBL are presented. It can be seen that the
discrepancies in the mean velocity profiles between L2, L3 and L4 are insignificant, while
the profiles obtained from L1 are slightly higher than the other cases. This is caused by
the underestimation of the C f in case L1 compared to L2, L3 and L4 (see Fig. 6). With
the location moving downstream, apparent recovery processes can be observed. At the
last location (x1/δ0 = 8.4), the mean velocity profiles of L2, L3 and L4 are in very good
agreements with the DNS data. It should also be mentioned that the differences of the
values in the outer regions of the TBL compared to the DNS data are originated from the
different Reθ (or different uτ).

The Reynolds’ stress components at the first position x1/δ0 = 2.1 exhibit acceptable
agreement with the reference data. By comparing different cases, it is found that the
normal stress R+

11 show substantial discrepancies, while the results of R+
22 and −R+

12 are
slightly lower than the reference in all the cases. All the considered quantities grow larger
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(a) x1/δ0=2.1 (Reθ≈1032) (b) x1/δ0=4.2 (Reθ≈1064)

(c) x1/δ0=6.3 (Reθ≈1096) (d) x1/δ0=8.4 (Reθ≈1128)

Figure 7: Wall normal distributions of the mean velocity profiles at different steamwise locations in the TBL
cases.

when it moves to x1/δ0 =4.2. The results at x1/δ0 =6.3 and x1/δ0 =8.4 are very close to
each other, indicating that the second-order statistics have already been fully-reverted.
The most obvious differences between the cases are exhibited within wall-normal coor-
dinate range 0.18< x2/δ0 <0.8 on the curves of R+

11. The quantitate comparison suggest
that the larger length scale will gives higher R+

11. Recalling Fig. 3, this region is in accor-
dance with the discrepant region of the provided length scales, indicating that the length
scale for the inlet ST has an impact on the production of the turbulent kinetic energy.

In order to survey the characteristic length scale of the vortices structures, the span-
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wise width length lz can be estimated as the distance between two successive crossing
points on the two-point auto-correlation function with the constant 0.05 [32, 33], where
the two-point auto-correlation functionR is defined as

R(x1,x2)=
〈u1(x1,x2,x3,t)·u1(x1,x2,x3+∆x3,t)〉〈

u1(x1,x2,x3,t)2
〉 . (4.2)

In Fig. 9, it is shown the distribution of lz along the wall normal direction at x1/δ0 = 0.6
and x1/δ0=11.2. The experimental data in [32] are also plotted. The curves from the cases
indicate different characteristic length scales of the vortices structures even in the fully-
recovered stage (symbols in Fig. 9, x1/δ0 = 11.2) of the skin friction and the Reynolds’
stresses. The result from case L4, among others, appears to give the closest distribution
to the experimental data. At the near-inlet streamwise location (lines in Fig. 9, x1/δ0 =
0.6), the estimated spanwise length scales lz are generally lower than the corresponding
downstream results.

4.2 Turbulent channel flow

In the TC case, the Reynolds number based on the half-width (H) and the frictional ve-
locity (µτ) at the inlet is about Reτ = 395∼ 400, and the numerical results of such case
have been widely documented in literatures [34–36] with a periodic streamwise config-
uration. Here, the spatial-developing simulations are initialized using the mean-profile
obtained by the streamwise periodic RANS simulation. A constant body force is added
on the whole domain. The sizes of the computational domain are set as Lx1×Lx2×Lx3 =
28H×2H×3.4H.The adopted grid resolution in the wall-parallel directions are approxi-
mately ∆x+1 =28.0 and ∆x+3 =10.0 in wall units. In the wall-normal direction, the grids are
clustered near the two walls and the minimum spacing in wall units is ∆x+2min =0.8. The
number of points are N1×N2×N3 =401×109×137 in the streamwise, wall-normal, and
spanwise directions respectively. The cases were run approximately 120·H/Ub before the
samples were collected.

There might exist a doubt about the lacking of necessity to perform numerical tests
on the turbulent channel flows since the flow physics appear to be similar to a turbulent
boundary layer. However, it is argued that the confined geometry configuration in the
channel would lead to differences in the reaction to the inlet ST. When the flow is fully
developed, the boundary layers attached on the two opposite walls would interact with
each other and the influence of the inner layer (log-layer) becomes more critical.

The mean skin friction coefficients of the channel flow are compared with the RANS
result (C ft,RNS ≈ 6.24×10−3) in Fig. 10. The adaptation region lasts about 7∼ 10H in
the streamwise direction. It is seen that the shortest recovery region is obtained by L4,
while the case L2 is the latest one to reach the correct mean skin friction. The results
show different trend with those in the turbulent boundary layer cases, indicating the
existence of the discrepant reaction to the inlet ST as mentioned above. Four streamwise
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(a) x1/δ0=2.1 (Reθ≈1032) (b) x1/δ0=4.2 (Reθ≈1064)

(c) x1/δ0=6.3 (Reθ≈1096) (d) x1/δ0=8.4 (Reθ≈1128)

Figure 8: Wall normal distributions of the Reynolds stresses at different streamwise locations in TBL cases
(Different cases: solid lines, L1; dashed lines, L2; dash-dot lines, L3; long dash lines, L4; solid circles, DNS [17].
Different colors: red, R+

11; blue, R+
22; green, R+

12).

locations are chosen to make comparisons on the mean velocity profiles as well as the
second order statistics R+

11, R+
22and R+

12 within x1/H=2.5∼10.9.The DNS data of Modesti
et al. [34] (INC6 case), which has the similar Reτ, are employed as reference. In Fig. 11,
the mean velocity profiles obtained from different cases are compared. It is depicted
that the L4 case achieves the earliest agreement with the DNS data with the location
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Figure 9: Distribution of lz along the wall normal direction in TBL cases.

Figure 10: Streamwise distributions of skin friction coefficients in the channel flow.

moving downstream. For the second order statistics, Fig. 12 clearly shows the streamwise
variations in each component, especially near the peak of R+

11. The best agreement with
the DNS data is obtained by the result of L4. The R+

11 in case L2 is significantly larger
than the DNS data, while the R+

11 in cases L1 and L3 fall in between those of L2 and L4.
The distributions of the spanwise integral length scale lz along the two typical wall-

normal lines (x1/H=2.5 and 10.9) are given in Fig. 13. At the two streamwise locations,
different relative trends between the cases are shown compared to the TBL: the results
of L4 become close to those in L1 along the near-wall range of x1/H=2.5 as well as the
whole range of x1/H=10.9. The experimental measurements from Monty et al. [33] are
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(a) x1/H=2.5 (b) x1/H=5.3

(c) x1/H=8.1 (d) x1/H=10.9

Figure 11: Wall normal distributions of the mean velocity profiles at different steamwise locations in the TC
cases.

plotted in the grey solid line, and good agreements with the profiles from L1 and L4 can
be observed.

4.3 Length scale versus recovery process

From the above analyses, it is demonstrated that the considered length scale expressions
are feasible for providing the input information of the STG based on the one-equation
model. The development of skin friction, second order statistics and the spanwise in-
tegral length scale in both the two wall-bounded flows are examined to investigate the
recovery process.

Eq. (3.3) gives the longest recovery distance in TBL case, but its recovery distance in
TC appears moderate. On the contrary, Eq. (3.4) results in the latest recovery in the TC



20 Q. Guo, P. Liu, C. Li, D. Sun and X. Yuan / Adv. Appl. Math. Mech., xx (2023), pp. 1-24

18 

 

 

  

(a) x1/H=2.5 (b) x1/H=5.3 

  

(c) x1/H=8.1 (d) x1/H=10.9 

Fig. 11  Wall normal distributions of the mean velocity profiles at different steamwise locations in the TC cases 

 

    

(a) x1/H=2.5 (b) x1/H=5.3 (c) x1/H=8.1 (d) x1/H=10.9 

18 

 

 

  

(a) x1/H=2.5 (b) x1/H=5.3 

  

(c) x1/H=8.1 (d) x1/H=10.9 

Fig. 11  Wall normal distributions of the mean velocity profiles at different steamwise locations in the TC cases 

 

    

(a) x1/H=2.5 (b) x1/H=5.3 (c) x1/H=8.1 (d) x1/H=10.9 (a) x1/H=2.5 (b) x1/H=5.3

18 

 

 

  

(a) x1/H=2.5 (b) x1/H=5.3 

  

(c) x1/H=8.1 (d) x1/H=10.9 

Fig. 11  Wall normal distributions of the mean velocity profiles at different steamwise locations in the TC cases 

 

    

(a) x1/H=2.5 (b) x1/H=5.3 (c) x1/H=8.1 (d) x1/H=10.9 

18 

 

 

  

(a) x1/H=2.5 (b) x1/H=5.3 

  

(c) x1/H=8.1 (d) x1/H=10.9 

Fig. 11  Wall normal distributions of the mean velocity profiles at different steamwise locations in the TC cases 

 

    

(a) x1/H=2.5 (b) x1/H=5.3 (c) x1/H=8.1 (d) x1/H=10.9 (c) x1/H=8.1 (d) x1/H=10.9

Figure 12: Wall normal distributions of the Reynolds stresses at different streamwise locations in TC cases
(Different cases: solid lines, L1; dashed lines, L2; dash-dot lines, L3; long dash lines, L4; solid circles, DNS [34].
Different color: red, R+

11; blue, R+
22; green, R+

12).

computations, but its performance in TBL is good. This suggest that the Prandtl’s mixing
length is suitable for the near-wall region (log-layer). But in the outer layer, the Prandtl’s
mixing length may be relatively small in the outer layer. This is why a factor 1.35 can
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lead to the improved performance of Eq. (3.4) compared to Eq. (3.3). As the largest length
scale, Eq. (3.5) gives satisfactory recovery in C f of both cases. Its main problems are the ill
recovery process of R+

11 in the TBL (see Fig. 8), and the larger spanwise length scale than
the experimental measurements. Based on the above understanding, the new expression
of Eq. (3.17b) is equivalent to the Prandtl’s mixing length in the inner layer, and properly
exploits the dissipation mechanism contained in the S-A model. If considering all the
comparisons, Eq. (3.17b) gives the best recovery process among all the expressions.

5 Conclusions

The characteristic length scale plays an important role for generating proper turbulent
fluctuations on the interface of the hybrid RANS-LES simulations. Based on the STG
method [2,3], we discussed the issue about the approximations of turbulent characteristic
length scale for one-equation S-A model, which still remains unclosed. Unlike the two-
equation eddy-viscosity models, the one-equation model cannot simultaneously describe
both the turbulent kinetic energy and the turbulent characteristic length scale, the known
of which are the most fundamental requirement for reproducing the reasonable turbulent
statistics. Several available approximated expressions of the length scale, including a
new expression representing the relation between the length scale and the underlying
transportation mechanism of the model equation, are compared in a posteriori test using
the highly-resolved LES data of a turbulent boundary layer.

A posteriori test shows that the analogy to the Prandtl’s mixing length gives smaller
distribution than the DNS data, while the original recommendation in references [2, 3]
result in the largest distribution. Through adjusting the constant analogy coefficient, the
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agreement can be significantly improved. The new expression agrees well with the refer-
ence data in the region of x2/δ≤ 0.35, but becomes larger than the reference data in the
outer part of the boundary layer. The performances of the inlet fluctuations generated
by different expressions for turbulent length scale have been assessed on the turbulent
boundary layer over a flat-plate and the spatially developed turbulent channel flow. The
recovery processes of the skin friction, the second-order statistics, as well as the span-
wise integral length scale are examined in detail. It is revealed that improved recovering
behaviors have been achieved through adopting the new length scale expression for gen-
erating the inlet turbulent fluctuations compared to the other considered expressions.
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