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Abstract

In this paper, a two-grid mixed finite element method (MFEM) of implicit Backward
Euler (BE) formula is presented for the fourth order time-dependent singularly perturbed
Bi-wave problem for d-wave superconductors by the nonconforming EQ7°* element. In this
approach, the original nonlinear system is solved on the coarse mesh through the Newton
iteration method, and then the linear system is computed on the fine mesh with Taylor’s ex-
pansion. Based on the high accuracy results of the chosen element, the uniform superclose
and superconvergent estimates in the broken H'- norm are derived, which are independent
of the negative powers of the perturbation parameter appeared in the considered problem.
Numerical results illustrate that the computing cost of the proposed two-grid method is
much less than that of the conventional Galerkin MFEM without loss of accuracy.

Mathematics subject classification: 65M60, 656N12, 65N30.
Key words: Time-dependent Bi-wave problem, Two-grid mixed finite element method,
Uniform superclose and superconvergent estimates.

1. Introduction

Superconductors are materials that have no resistance to the electric current at a T, (critical
temperature) [1]. In the state of low-T, superconductivity, electrons are found to pair in a form
and move together in a spherical orbit but in the opposite direction, which is often called s-wave
[2] and Ginzburg-Landau-type models were generally proposed to describe this phenomenon [3].
For high-T,. superconductivity, electrons have been strongly proved to travel together in orbits
as a four-leaf clover for d-wave pairing symmetry [4,5] and researchers have studied various
generalizations of Ginzburg-Landau-type models to explain high-T, superconductors [6].

In the time-dependent versions of Ginzburg-Landau-type for d-wave superconductor [7-9],
there exist two scalar order parameters 1, and 14 whose magnitudes represent the density of
superconducting charge carriers and the parameter § = f%, where (3 is related to the ratio
% with Ts9 and Ty being the critical temperatures of s-wave and d-wave components.
Some studies have shown that when f — —oo, s-wave component diminished and d-wave
component became the leading term [8], and superconductor will be completely d-wave as
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2 Y.M. WU AND D.Y. SHI

T — Tao(Tso < Tao) [9]. Therefore, the following fourth order time-dependent singularly
perturbed Bi-wave problem emerged from the time-dependent Ginzburg-Landau-type model in
the case § — —o0 :

Yy + 602 — Ay + f(y) =0, (X,t) e QxJ,

=29 =0, (X,t) € 90 x J, (1.1)
(X, 0) = ¥o(X), X eq,

where X = (x,y), J = (0,T], ¥ = %—f, 0 is the bi-wave operator,

84w a4,¢ a4w - 8¢ )
T or2 02 ’ = 5.4 a4 = - _— = .
O = ) Eae 28m2y2 + g " (n1, —n2), o Vi - .

Q) C R? is a bounded domain with the boundary 952, and n = (n1,n2) denotes the unit outward
normal to 9. f(v) = 3 — 1 and 1)o(X) is a known smooth function. Hence, 0 < § < 1
is expected to be small for d-wave superconductors and problem (1.1) degenerates into the
semilinear parabolic equation when § — 0.

In recent years, there are some theoretical analysis and numerical simulations about FEMs,
such as optimal order error estimates of conforming Galerkin FEMs and the modified Morley-
type discontinuous Galerkin FEMs in [10, 11], uniform superconvergence error estimates of
Ciarlet-Raviart schemes with the conforming and nonconforming elements in [12-14]. But
these work mainly focused on the stationary singularly perturbed Bi-wave problems. Thus, to
develop an effective computational method for investigating problem (1.1) is of more practical
significance. As a highly efficient and accurate method, the two-grid method was proposed
by [15,16] for the nonsymmetric and nonlinear problems and has been well applied to deal
with many types of problems for optimal or superconvergent error estimates, such as parabolic
equation [17, 18], hyperbolic problem [19], Ginzburg-Landau equation [20], Benjamin-Bona-
Mahony equation [21], and so on. Nevertheless, no studies on uniform superconvergence analysis
of two-gird MFEM for problem (1.1) exists in the literature and whether the error estimate result
will be relevant to the negative powers of the perturbation parameter ¢ or not still remains open.

In this paper, as a first attempt, we will formulate a two-grid efficient algorithm of MFEM
for problem (1.1) by the nonconforming FQ7°¢ element and analyze the corresponding uniform
superclose and superconvergence behavior, which is independent of the negative powers of the
parameter. The main reasons for the uniform error estimates are as follows: the first is that
the suited approximation scheme is developed, the second is that the special characters of the
chosen element are employed (see the formulas (2.1)-(2.3) below), the third is that the equation
includes the positive term —A. The reminder of the paper is organized as follows. In Section
2, the stability of the numerical solution is proved and uniform superconvergence result of the
semi-discrete scheme for problem (1.1) is derived. In Section 3, the superclose estimates of order
O(H? + 1) and order O(H* + h? + 1) for the two-grid method are demonstrated, respectively,
where H and h are the subdivision parameters on the coarse and fine meshes, and 7 , the time
step. Moreover, the corresponding global superconvergence result of order O(H* + h? + 7)
is obtained through the interpolated postprocessing approach. It should be mentioned that
the error estimates obtained herein is independent of the negative powers of the perturbation
parameter 0 by use of the high accuracy characters of the selected element. In the last section,
some numerical results are conducted to confirm the theoretical analysis and indicate that the
computing cost of the proposed two-grid method is less than a half of the traditional Galerkin
MFEM.
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Throughout this paper, we denote the L?(Q2) inner product (-,-) with the norm || - ||o,
and let H}(Q) = {v € HY(Q) : v|]gg = 0}. Further, we quote the classical Sobolev spaces
wmP(Q), 1 < p < oo, with norm || - ||,p. When p = 2, we simply rewrite || - ||,n,p as I -
Besides, we define the space L?(J;Y) with the norm || f||zs(.y) = fo NGO dt) , and if
p = 0o, the integral is replaced by the essential supremum.

2. Uniform Superconvergence Analysis for Semi-discrete Scheme

To begin with, we introduce the following space:
1 9 v
V=3veH;Q), bvelL(Q), %bg =0;.

Let T be a regular rectangular partition of Q@ with mesh size h € (0,1). For T € Tj, let
its four vertices and edges be a; and I; = @;a;71 (i = 1,2, 3,4.mod(4)), respectively. Then the
nonconforming EQ7°" element space Vj is defined as [22]:

VhO - {Uh : vh|T S span{17x7y7x27y2}v /[Uh]ds = Ovl - 3T,V T e 77L} 9
l

where [vp,] refers to the jump of v, across the internal edge I, and it is v, equals to itself if [ is
0. The associated interpolation operator I|r = Ir on Vjg is defined by

/(Ihvfu)ds:(), i=1~4, /(Ihyfy)dxdy:O.

i T

Then, for wy, € Vi, v € H*(), the following conclusions, which are useful to our uniform
superconvergent analysis, have been proven in [23-26], respectively.

IhV Bwh / IhV 8wh
—d dy = ——dzxdy =0, 2.1
DY - gy ety @)
O(R>)[[¥[[]|wnl[n,

(i) nmw ds = n wpds =
Z " Z aTa v {0<h2>||u||4||wh||07
(iid) | < Cllwp ]|, =1,2,.... (2.3)

Here and later, |- |[|[n = O 1 |- \%j)% is a norm on Vj0, C denotes a positive constant irrelevant
to H, h, 7 and 6.

The following theorem concerns the well-posedness of problem (1.1), and its proof can be
found in [27].

. a (2.2)

Theorem 2.1. Let 1o(X) € V, for T > 0, problem (1.1) has a unique weak solution ¢ on J,
such that v satisfies
Ve L>®(J;V), oy € L2(J; L*(Q)).
Now, we set ¢ = /601 and consider the weak formulation of (1.1): find {1, ¢} € H}(Q) x
HY(Q), such that

(why) - \/g(vgba VV) + (V?/%VV) + (f(ﬂ}),l/) = Oa Yv S H(}(Q)v te Ja
(¢,w) +V6(Vh, V) =0, Vwe HY(Q), teJ, (2.4)
w(Xvo):ﬁ}O(X)a X e,
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where Vv = (%, —g—Z).

The semi-discrete approximation scheme to (2.4) is to seek {Wp, dn} € Vio X Vi, such that

(Yne, vh) = VE(Vudn, Vivn) + (Vatn, Vavn) + (f(¥n),vn) =0, Yy € Vio, t€J,
(dn,wn) + ﬁ(?thh, Viwn) =0, Ywn € Vh, teJ, (2.5)
¥ (0) = Intpo(X),
where V, or V), denotes the gradient operators piecewisely, (@h*,@h*)h = ZT(@*,@*)T,
(V=VorV).

Since V},0 is a finite dimensional space, problem (2.5) may be written as a system of ordinary
differential algebraic equations. Applying Picard’s theorem, it follows easily that the system
has a unique solution locally for [0,¢). In order to prove the global existence in [0, 7], we need
a priori bound. Now we will turn to analyze the stability of the discrete solution of (2.5).

Lemma 2.1. With {¢n, ¢n} defined in (2.5), we have

[¥n@ln + llon#)llo < [1¥n(0)][n + |¢n(0)lo- (2.6)

Proof.
Differentiating the second equation of (2.5) with respect to t gives

(Snt>wn) + VO(Vitbne, Vawn) = 0. (2.7)

With v, = v in the first equation of (2.5) and wp = ¢y in (2.7), then adding together, we

have 1 d
el + 5@(“%”% + 16nl) = —(f (¥n), Yne)- (2.8)

Since F(¢p) = $(1—93)? > 0and —(f(¥n), Ynt) = —%(F(¢n), 1), we derive —(f (1), ¥ne) < 0.
Noting that ||t4:]|3 > 0, we have

1d
5 7 (enll + llgnl3) < 0.
2 dt

After integration with respect to ¢, this shows

[¥n@ln + [1on®)llo < (14 (0)[n + [I¢n(0)llo,

which completes the proof. O

We are now ready for the error estimate of the semi-discrete scheme.

Theorem 2.2. Let {¢, ¢} and {tn, dn} be the solutions of (2.4) and (2.5), respectively. As-
sume that ¥, € H*(Q), ¢, ¢, € H3(Q), v € H*(Q), we have

110 = ¥nlln + 1 1n¢ — ¢nllo
< CR*(|[Well2 + Vollglls + Vollells + Vollella),  fort e J. (2.9)
Proof. Let ¢ —4n = (= In) + (Int —n) £ 0+, ¢ — b = (6= In¢) +(Ind—n) = p+0.
Then from (2.4) and (2.5), there hold the following error equations:
(&, vn) — VO(VrY, Vivy) + (V1€ Vivn) = —(e,vn) + V6 (Vip, Vivy) — \/3%; Jor V& - fivpds
—(Vam, Vi) +3 Jor Vb - fivnds + (f() = f(¥n),vn), (2.10)
(9,wn) + V3(VrE Vawn) = —(p,wn) = VE(Vrn, Vawn) + \/S;fajr Vi - Awpds.
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Differentiating the second equation of (2.10) with respect to ¢ shows
(91, wn) + VO(Vi&r, Vawn) = —(pt, wn) = V(Vi1e, Vawn). (2.11)

Setting v, = & in (2.10) and wp, =9 in (2.11), we find that

166115 + 5 (I€ N7 + 1915) = = (e, &) + V3(Vip, Vae) — §: V- iigds

2dt(

(V. Vi) + 3 [ T itds + (1) = [0 ) = (01:9) = V(T T9)
T

9
+VoY [ Vyiidds =) A;
T JOT i=1
Here, we find at once

1
Ay + As < CR?|[9ull2lléello + CR219[lalléllo < CRA (1l + [19113) + 5\\&”(2),
Ay + Ay + Ag =0,
Az + Ag < CB2||¢¢l2[|9]l0 + CVOR2[]lall0]l0 < CRA(llde5 + 81113) + ClI9I3.

Using the formula (a,b;) = <% (a,b) — (as,b), we conclude that

Agzjt(\/SZ/ w)-ﬁgds) —\/SZ/ Vo - iicds
<1 (VB [, vo-icts )1+ Cottonti + Cleli

By the estimate of ||1)p]|s, shown in Lemma 2.1 and formula 2.3, there holds

Ag < Cljp — 1/%“076(“1#”3,6
< ClY = Ynlloslléello + Cllv — ¥nllolléello
< C(RP(|[¥ll2,6 + [1¥]l2) + €R)11E o,

0.6)l1€llo + Cllv — wnlloligllo

and hence, using Young’s inequality, we arrive at

Ag < Ch*

26+ ClENZ + 21I&1I2-

It follows as above that

1d

5 37 UEIR +19118) < CRA(llell3 + lléell3 + 1 115) + CCliEllz + 19115)

+Idt WZ/ V¢ - iitds)| + ( / Vi) - nfds)‘.

We now integrate with respect to ¢ to obtain

t
117 + 19113 SCh“(\lwtlli+5ll¢t||§+5|\wlli)+C/O (€17 + 19115)ds

+CR*(V3l|8lls + 1 ]13) €],
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and hence from Gronwall’s lemma, this shows
1€l + 119l < CRA(Itll2 + V6l 8lls + V6l gells + Vo[ ¢blla)-

The proof is now complete. O

We now turn our attention to the global superconvergence and apply the post-processing
operator Iz, constructed in [23] to have the following theorem.

Theorem 2.3. Under the conditions of Theorem 2.3, we have
1 = Lontbnlln < CR2([Gella + Vol dlls + Vol dlls + Volllla),  forte . (2.12)

Remark 2.1. Obviously, if we don’t utilize the formula (a,b;) = 4 (a,b) — (as,b), the require-
ment of ¢ in the estimates of A3 will belong to H*(€2) instead of H3(£2) in Theorem 2.3. This
is the main reason why we use the derivative transfer technique in our analysis.

3. Uniform Superconvergence Analysis for Two-grid Method

Let {t, : t, =n7;0 < n < N} be a uniform partition in time with the time step 7 = T/N,
Y™ = (X, t,) and ¥} be the approximation of 1™ in Vj,q. For a sequence of functions {¢"}Y,
we define 0;p" = el

=
We now turn to the full-discrete approximation scheme of (2.4), in which the two-grid

MFEM is used in the space discretization and the backward Euler scheme is applied in the time
discretization. It can be divided into the following two steps.

Step one: On the coarse grid Tz, we solve {¢%,¢%} : J — Vgo x Vi for the following
nonlinear system, for {vy,wp} € Vo X Vi, such that

@i vi) = V(N udi, Vavi) + (Vudy, Vave) + (W), vi) = 0,
(¢4, wn) +Vo(Vuyy, Vawn) = 0, (3.1)
w%[ = Igy.

Step two: On the fine grid 75, we compute {¥}, ®}'} € Vio x V3 for the following linear
system, for {vp,,wp} € Vi X V3, such that

(0eh,vn) = VO(Vr®}, Vivn) + (Va3 Vivn) + (f(05) + f'(5) (¥) — ¥i), vn) = 0,
(@5, wn) + VO(Va¥y, Viws) =0, (3.2)
V) = I,T,.

In what follows, we begin with the stability of the approximation solution {¢%, ¢%} to (3.1).

Lemma 3.1. The solution {7}, ¢} to (3.1) satisfies

195 n + 165 o < CUvRlIn + llonllo),  1<n<N. (3.3)
Proof. Differentiating the second equation of (3.1) with respect to ¢ yields
(Dedty wr) + Vo (Vadnyy, Viawr) = 0. (3.4)
Taking v = 0,1 in the first equation of (3.1) and wy = ¢% in (3.4), adding together gives

10:0% 115 + 50:(IVH v 18 + 165 15) + (f (W), 0by) < 0.
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By Taylor expansion, we have

W% - 2—1)2’ 1)7

(F) — P 1) = (), o — o) — (£

where ¢ = ¥ + (1 — )Y 10 < e < 1).
Here

~ (5 — w2, 1) < Ll —vi R = S 18w 3,

so that
103 115 + 301V 115 + 0% N15) + +(F () — F(3).1) < 510w 5.
Multiplying it by 27 and summing it from 1 to m, we find that
(1= C)0edg 1§ + VYR8 + 16515 + 2(F (), 1) < [IVUg 5 + okl + 2(F (%), 1),
for a small 7, and hence
IR + o515 < CUwa R + I6%w17)-

The proof is now complete. O

Next, we show the stability of the solution {¥}, ®}'} to (3.2).

Lemma 3.2. The solution {U}, ®7'} to (3.2) satisfies
1951k + 125 llo < CUWRIL + 1@5]0),  1<n<N. (3.5)
Proof. In analogy with (3.4), we write
109513 + 50:(IVERIE + I RRIIG) + (f (i) + F' (W5 (W — vf), 0:¥) <0,
and by (3.3) this yields
10: 715 + 30:(IVERIE + [197113) < CllvEllo,6ll O llo + CIER[l0]|0: %7 o,
whence,

301317 + 12711 < CUH IR + 6% 118 + ClIRE-

Here, as before, we obtain

IR I7 + l2p§ < C7 Z(||¢H||h + 6% 13) + C7 Z 13117 + CUlRIIE + 10513)-
for a small 7, it follows from discrete Gronwall’s inequality that
1717 + 1@ lE < CUlnllz + leallp),

which completes the proof. O

Now we derive the superclose result on the coarse mesh.
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Theorem 3.1. Let {¢", ¢"} and {Y%,d%} be the solutions of (2.4) and (3.1), respective-
ly. Assume that vy € L>®(J;L3(Q)), ¢ € L¥(J; H3(Q)), ¢,¢r € L¥(J; H*(Q)), ¢y €
L>(J; H4(R)), we have

Imy"™ = Vil + g™ — dllo = O(H? + 7). (3.6)

Proof. Let ¢ — ¢p = (" — L") + (Ing™ — ¥) 2 0f + &7, 0" — ¢ = (¢" — Ind™) +
(Ind" — &%) = pi + 97
By (2.4) and (3.1), we have the following error equations:

(5t€?LVH) - \/5(?11?9_?7 Vuvy)+ (Vu&l, Voy) )
— O, ver) + VS (Vup?, Vave) — \/S;faT Vo™ - fvgds — (Vanl,Vave)
"’Z faT VY - ivgds — (f(Y") — f(¥F),ve) + (RY, ve), (3.7)

(0097, wir) + V(VuO&}, Viwn)
= (@Pl,WH) \[(VHatanHWH)*-\[ZfaTVW fiwpds,

where R} = 0;p™ — 2 and ||R}||o < CT|¥%]|o-
Setting {vg,wry} = {0:£2,97} in (3.1) and adding, we have

19:€3115 + 15t(||€?H%r +[197115)
— (0}, 0EY) + V(Vupt, Vi 0,Ey) — 52/ Vo - 0,1 ds
(Vi Vadigf) + 3 v s = (165" = [0 = @ 07)
~Vo(Vu0my, Vudy) = VoY [ VY- iidtds + (R, 0,L7) ZB (3.8)
Using (2.1)-(2.2) and Young’s inequality, we find that

_ _ _ 1 -
By + Bs < CH?|0u" 2|0} o + OVIH? ™ |4]|0:E0 o < CHA (|12 + o[y [2) + g\latf?llg,
By + By < CH?|0,:¢™ 2|97l + CVEH? [ 4]|97[lo < CH*(|6}13 + S|¢™[5) + Cll97 3,

n q ¢n n L5 n
Bio < O7[[¢iilloll:€r llo < CT2|[Wg )13 + sl 15
By + By + Bg = 0.

By the following formula
(", 0w™) = O (V™ W) — (Op™, W), (3.9)
this shows

B\/55,< V”ﬂ"d)\/é V" -7 d
3 A T/ " - nids zT:/aT Q" - ni) T ds

< V(Y [ Vorigtas) + Comtlor i+l
T
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The analogue of As, together with Lemma 3.1, then shows
By < CH*(|9" 36 + [¥"13) + CllEN 17 + 5110:€7113-
Adding as above, we conclude that
X117 + 193115 < CHA (10713 + 8167 5 + 01w [3) + O | wiills
n—1 n
+Or S 1P+ 0r S ol +2veo (X [ vorigtas)

m=1 m=1 T JOT

whence, for a small 7, by discrete Gronwall’s lemma, this shows

IEX 13 + 19715 < CHY (19713 + 616713 + 61v™(3) + CT2 1 vn g
+CH* (V6|65 + [¢"3) €7 ] -

It follows from Young’s inequality that

IE2 1 + 97 ]lo < CH? (| | oo (5,112 (0) + VOI8™ | Low (15183 (52)) + VOI O} | L0 (1311302
+\/5|1/’"\L°°(J;H4(Q))> + C7l|il o (122 () -

The proof is now complete. O

Next we analyze the corresponding superclose estimate on the fine mesh.
Theorem 3.2. Let {¢",¢"} and {¥}, 7} be the solutions of (2.4) and (3.2), respective-
ly. Assume that 1y € L>(J;L2(Q)), ¥ € L>(J;H*(Q)), ¢,¢r € L=(J;H*(Q)), ¢ €
L>(J; H4()), we have
110" = Wil + g™ — @} o = O(h®* + H* + 7). (3.10)

Proof. We set ™ — U} = (" — Ip™) + (Ipy" — TF) = ny + &5, 9" — @ = (o™ — Ino") +
(Ing™ — 1) £ pi + 93, In fact, by Taylor’s expansion, we have

F@) = F@E) + W)@ — ) + 5 W + v — vf) (@ — )2, (0 < v < 1).(3.11)
This time we have for £ and 9%,
_ 1 _ _ _ _
105113 + SO (IVEE IS + 19315) < =@z, Bigy) + Vo(Virps, Vi digy)
Y /3 V6 s — (V. VO + 2 /8 Vs
= 1 _
—(F W)™ = 5),0i83) = (GF (W + (¥ = Vi) (¥ —vi)?, 0i83)

(@03, 05) ~ VATl Vo) - VB Y [ Gunitogds + (17,0)
T Jor

=y D, (3.12)
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where R} = 0™ — 7 and || R} o < C7||v%|lo. Referring to the proof of Theorem 3.3, we find
that

D1+ Ds + Ds + Dig + Din < ChY ([P 5 + |93 + 8|4 (3) + CT2 ([t Ig + %llgtfgllg + 9313,
Dy < Vao(Y [ vur-rigyds) + Contlor B+ Cleg IR,
Do+ Dy + ng; =0.
By the splitting technique of [13],

Do = —(f'(Yi) @™ — Iny"™), 0:65) — (f (i) (Ing" — W}), i63)

=~ (Wi W™ = L"), 8i&5) — B> (g™ — 1), &3) + (Iny" — W}y, 0,&3),
where now
BRI — ), BE5) = — - () (" — R, " — W) <.
Hence, arguing as before,
Dy < ChY 9" 3o + CIEEIE + 5106813,

By the interpolation theory and (3.6), we obtain

D7 < O(|[" = Int"l5.6 + 11 v" — ¥k l5.6)10: llo < CH 19" 5,6 + I11m9™ — ¥ [17) 1965 1lo
< C(HY W™ 13,6 + CH (|73 + 819" 5 + 6197 |5 + 09" [1)) + C72||97:15)19:£5 [lo

n n n n n n 1 o N
< CHO ([0 (3.6 + |97 3 + 86" 3 + 8167 [5 + 8|0"[3) + Cr*||viillo + 3l10:E I5-
Altogether, this shows

€515 + 19515 < C(h" + HEY 5 + 61673 + 8107 1§ + dlu[3) + Cr2[[w 13
n—1 n
+O SO NER R+ Cr Y 053 +2vE0, Y /8 Ton . en—lds,
m=1 m=1 T T

whence, for small 7, by repeated application,

€212 + |95 113 < C(h* + HE) (973 + 6]6™|3 + 5|7 |3 + 8]w"[3)
+CT2 YRI5 + Ch2V616™ 51165 In,

and hence from Young’s inequality
€811 + 19510 < C (B + H*) (14} | Lo (13m2(0)) + VIO Lo (502 (2))
V8|67 Lo (g:13(@)) + VOIU" Lo (ima@))) + O[5l Lo (220
The proof is now complete. O

The following global uniform superconvergence result similar to that in Theorem (2.3) also
holds for fully-discrete scheme by using the interpolated postprocessing operator in above sec-
tion. Firstly, we combine the adjacent four elements T;(i = 1,2, 3,4) into one big element T.
Then we define the interpolated postprocessing operator Iy;, on T as [23):

{ Lty € Qa(T),
I2h¢(ai) :d}(ai)a 1= 17 39,



Uniform Superconvergence Analysis of A Two-Grid Mixed Finite Element Method 11

which satisfies
I2hlhw = 12h¢a

[ Lo — oy < CR2||¢l|s, o € H3(S), (3.13)
[12n9][1 < Cl]|1, vy €SB,

where ()3 is a biquadratic polynomial space, a; are nine vertexes of T, Sh is the biquadratic
finite element space.

Then we show the following global uniform superconvergence result, which is independent
of the negative powers of the parameter.

Theorem 3.3. Under the conditions of Theorem 3.4, we have
[ — LU |y = O(h? + H* + 7).

Remark 3.1. It is not difficult to check that Theorems 2.3 and 3.3 are also valid to quasi-
Wilson element [28] on rectangular mesh and modified quasi-Wilson element [29] on quadrilat-
eral mesh. However, for the conforming triangular linear element [30], the nonconforming Q7°¢
element on square mesh [31] and the rectangular CNQ7°" element [32], whether Theorems 2.3
and 3.3 hold or not is an open issue. Therefore, FQ7°t element used in our present study is an
appropriate choice.

4. Numerical Results

In this section, we carry out the following numerical experiment:

{¢t+592¢—ﬁ¢+¢3—¢_97 (th)€QXJ’

p="9L =0, (X,t) € 00 x J, (41)

with Q = (0,1) x (0,1), T = 1, the source function g is computed from the exact solution
Y(x,y,t) = e tsin?(mx)sin?(ry).

We choose H* = h? and 7 = h? to verify the superclose and superconvergence rates in
Theorems 3.4-3.5 and use Newton iterations with 10~° being the tolerance error of the iter-
ation in our computation on the MATLAB platform. The error estimates with the rates of
convergence are listed in Tables 4.1-4.6 at ¢ = 0.1,1.0 with different § = 107%,§ = 1072,1,

Table 4.1: Numerical results of ¢ and ¢ at t = 1.0 with § = 1.0.

H h | —Wpll1 order | Ipny —Uulli order |IopVp — |1 order || — ®pllo order
1/2 1/4  1.9094e-01 - 3.3646e-02 - 3.4152e-01 - 7.6242e-02 -

1/4 1/16 4.6382e-02 1.0207 4.9936e-04 3.0371 2.7633e-02  1.8138 1.3740e-03 1.9480
1/6 1/36 2.0592e-02 1.0013 5.0824e-05 2.8177 5.5449e-03  1.9806 1.7627e-04 1.9875
1/8 1/64 1.1581e-02 1.0003 1.2209e-05 2.4788 1.7591e-03  1.9954 5.1646e-05 1.9976

Table 4.2: Numerical results of ¢ and ¢ at t = 0.1 with § = 1.0.

H h [ — Opll1 order | Ipy —Uhlly order || IopVp — |1 order |¢— P@pllo order
1/2 1/4  4.6964e-01 - 8.2815e-02 - 8.4009e-01 - 1.8703e-01 -

1/4 1/16 1.1408e-01 1.0208 1.2333e-03  3.0347 6.7965e-02  1.8138 3.4137e-03 2.8879
1/6 1/36 5.0649¢-02 1.0013 1.2825e-04 2.7912 1.3638e-02  1.9806 4.5510e-04 2.4848
1/8 1/64 2.8485e-02 1.0003 3.1625e-05 2.4333 4.3268e-03  1.9954 1.3604e-04 2.0988
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Fig. 4.1. Error reductions of ¢ and ¢ at ¢t = 0.1 with different §.

Table 4.3: Numerical results of 1) and ¢ at t = 1.0 with § = 1072,

H h [ — Ohll1  order | Ipw —Wull1 order ||IopVy — |1 order | — ®pllo  order
1/2 1/4  1.9267e-01 — 4.2372e-02 - 3.5039e-01 2.2466e-02 -

1/4 1/16 4.6473e-02 1.0258 2.9435e-03 1.9237 2.7805e-02  1.8278 1.5333e-03 1.9365
1/6 1/36 2.0602e-02 1.0031 6.2267e-04 1.9155 5.5805e-03  1.9804 3.2491e-04 1.9134
1/8 1/64 1.1583e-02 1.0008 2.1216e-04 1.8713 1.7719e-03  1.9939 1.0977e-04 1.8860

Table 4.4: Numerical results of ¢ and ¢ at t = 0.1 with § = 1072,

H h [ — Upll1  order | Ipw —Uull1 order || IopVy — |1 order |¢— ®pllo order
1/2 1/4  4.7307e-01 — 1.0044e-01 — 8.5988e-01 — 5.3996e-02 —

1/4 1/16 1.1430e-01 1.0246 7.2048e-03  1.9006 6.8386e-02  1.8262 3.7656e-03 1.9210
1/6 1/36 5.0675e-02 1.0030 1.6132e-03 1.8454 1.3735e-02  1.9795 8.3727e-04 1.8541
1/8 1/64 2.8491e-02 1.0008 5.5474e-04 1.8553 4.3623e-03  1.9934 2.8541e-04 1.8705

respectively. Those show that when h — 0, || — ¥}, ||1 is convergent at an optimal rate of O(h),
1Oy, — In|l1, [ — T2 Wh|l1 and ||¢ — ®4]|o are convergent at a rate of O(h?), which coincides
with the theoretical analysis. Meanwhile, the error reductions for 1) and ¢ at ¢t = 0.1, 1.0 with

different § = 10™% ~ 1 are also plotted in Figs. 4.1-4.2, respectively.
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Table 4.5: Numerical results of 1) and ¢ at t = 1.0 with § = 1074,

H h [ — Opll1  order | Ipw —Ull1 order || IopVy — |1 order |¢— @pllo order
1/2 1/4  1.9381e-01 - 4.7315e-02 - 3.5083e-01 - 9.4671e-03 -

1/4 1/16 4.6544e-02 1.0290 3.9132e-03 1.7979 2.7936e-02  1.8253 6.4916e-04 1.9331
1/6 1/36 2.0609¢-02 1.0046 8.2500e-04 1.9197 5.6070e-03  1.9803 1.0826e-04 2.2088
1/8 1/64 1.1585e-02 1.0011 2.7900e-04 1.8843 1.7812e-03  1.9931 3.2879e-05 2.0712

Table 4.6: Numerical results of 1) and ¢ at t = 0.1 with § = 1074,

H h [ — Opll1  order | Ipv —Uhlly order || IopVp — |1 order |¢— @pllo order
1/2 1/4  4.7420e-01 - 1.0563e-01 — 8.5809e-01 - 2.2947e-02 -

1/4 1/16 1.1445e-01 1.0254 9.2994e-03 1.7529 6.8663e-02 1.8218 1.6104e-03 1.9164
1/6 1/36 5.0690e-02 1.0043 2.0405e-03 1.8704 1.3793e-02  1.9793 2.6978e-04 2.2032
1/8 1/64 2.8494e-02 1.0012 6.9253e-04 1.8782 4.3821e-03  1.9929 8.1741e-05 2.0753

On the other hand, we also compare the computing cost of the conventional mixed FEM
and the two-grid method (TGM) in Tables 4.7-4.11 for the same partition (h = ;%) at different
time levels with different § values. It clearly shows that the CPU time required for the latter
one is only less than a half of the former one, which indicates that the proposed method herein
is indeed a very effective algorithm for solving the nonlinear time-dependent Bi-wave problem.
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Table 4.7: Errors and CPU cost of mixed FEM and TGM for ¢ and ¢ at t = 0.1 with different d.

6 |Tenn = ¢lln CPUs (FEM) [ 155 Wp — ¢|ln CPUs (TGM) [[¢n — ¢[ln CPUs (FEM)[[®4 — ¢||n CPUs (TGM)

1074 7.2266e-02 45.73 6.8663e-02 20.90 8.0528e-03 7.24 4.0304e-03 3.61
1073 7.0720e-02 50.71 6.8590e-02 22.06 1.1964e-02 6.37 1.1884e-02 3.35
1072 6.8398e-02 47.82 6.8386e-02 24.34 1.6909e-02 6.64 3.6924e-02 3.47
1071 6.8009e-02 54.04 6.8031e-02 23.27 8.1362e-02 6.66 1.1182e-01 3.37
1.0 6.7965e-02 53.66 6.7965e-02 23.23 3.2950e-01 6.75 3.4289e-01 3.49

Table 4.8: Errors and CPU cost of mixed FEM and TGM for ¢ and ¢ at t = 0.3 with different 4.

6 |Tenn — ¢lln CPUs (FEM) [ 155 Wp — ¢||n CPUs (TGM) [[¢n — ¢[ln CPUs (FEM) || — ¢||n CPUs (TGM)

107* 6.0376e-02 137.73 6.1407e-02 56.41 4.2711e-03 25.56 4.3471e-03 10.97
1073 6.0491e-02 140.19 6.1306e-02 60.50 1.1662e-02 27.75 1.3217e-02 11.45
1072 6.0394e-02 136.69 6.0700e-02 54.73 3.7962e-02 27.10 4.0948e-02 11.18
1071 5.9192e-02 136.49 5.9236e-02 61.79 1.2186e-01 26.47 1.2229e-01 11.06
1.0 5.8648e-02 136.84 5.8655e-02 55.51 3.7619e-01 25.13 3.7623e-01 11.89

Table 4.9: Errors and CPU cost of mixed FEM and TGM for ¢ and ¢ at ¢t = 0.5 with different 4.

6 |2nt¥n — ¥lln CPUs (FEM) |[I2p ¥4 — ¢[|n CPUs (TGM) ||¢n — ¢lln CPUs (FEM) || ), — ¢l CPUs (TGM)

1074 4.6021e-02 230.50 4.6081e-02 98.15 1.0713e-03 48.20 1.0670e-03 20.00
1073 4.5974e-02 217.78 4.6029e-02 100.16 1.4904e-03 52.46 1.5464e-03 22.13
1072 4.5826e-02 229.63 4.6029e-02 94.52 2.8325e-03 53.24 2.9732e-03 22.35
1071 4.5597e-02 232.82 4.5600e-02 90.30 3.1026e-03 53.34 3.1433e-03 23.05
1.0 4.5558e-02 236.06 4.5558e-02 97.28 2.3557e-03 54.09 2.3600e-03 24.47

Table 4.10: Errors and CPU cost of mixed FEM and TGM for ¥ and ¢ at t = 0.7 with different §.

6 |2ntn — ¥lln CPUs (FEM) |[I2p ¥4 — || CPUs (TGM) ||¢n — ¢[ln CPUs (FEM) || ), — ¢||» CPUs (TGM)

107%  4.0985e-02 295.55 4.1094e-02 133.04 1.2078e-03 73.34 1.2163e-03 28.22
1073 4.0921e-02 297.17 4.1025e-02 135.85 2.9043e-03 72.26 2.9395e-03 30.44
1072 4.0567e-02 290.01 4.0635e-02 133.75 8.3514e-03 67.23 8.4132e-03 30.90
1071 3.9679e-02 288.39 3.9694e-02 132.35 2.1835e-02 65.65 2.1863e-02 32.03
1.0 3.9312e-02 291.94 3.9316e-02 132.21 6.2504e-02 68.65 6.2511e-02 33.25

Table 4.11: Errors and CPU cost of mixed FEM and TGM for ¥ and ¢ at t = 1.0 with different §.

6 |H2ntn — ¥|[n CPUs (FEM) |[I2p ¥4 — || CPUs (TGM) ||¢n, — ¢[ln CPUs (FEM) || ), — ¢||» CPUs (TGM)

107%  2.7923e-02 433.61 2.7936e-02 207.35 6.4724e-04 105.30 6.4644e-04 35.72
1073 2.7893e-02 425.83 2.7905e-02 214.07 9.2535e-04 103.45 9.2919e-04 36.37
1072 2.7798e-02 451.50 2.7805e-02 197.20 1.7552e-03 100.78 1.7714e-03 37.76
1071 2.7656e-02 492.35 2.7657e-02 191.78 1.8715e-03 105.07 1.8771e-03 40.22
1.0 2.7632e-02 475.67 2.7633e-02 199.25 1.4257e-03 100.90 1.4257e-03 39.57

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (Grant Nos.12201640; 12071443).

References

[1] V.L. Ginzburg, L.D. Landau, On the theory of superconductivity, Men of Physics: L.D. Landau,
D. ter Haar, ed., Pergamon, Oxford. (1965) 138-167.



Uniform Superconvergence Analysis of A Two-Grid Mixed Finite Element Method 15

2]

3]

R. Joynt, Upward curvature of H.2 in high-T, superconductors: Possible evidence for s+d pairing,
Phys. Rev. B. 41 (1990) 4271-4277.

S. Chapman, G. Richardson, Motion and homogenization of vortices in anisotropic Type-I1 su-
perconductors, STAM J. Appl. Math. 58 (1998) 587-606.

Y. Ren, J.H. Xu, C.S. Ting, Ginzburg-Landau equations for mixed s + d symmetry superconduc-
tors, Phys. Rev. B. 53 (1996) 2249-2252.

J.H. Xu, Y. Ren, C.S. Ting, Ginzburg-Landau equations for a d-wave superconductor with non-
magnetic impurities, Phys. Rev. B. 53 (1996) 12481-12495.

D.J. Van Harlingen, Phase-sensitive tests of the symmetry of the pairing state in the high-
_,2 symmetry, Rev. Mod. Phys. 67 (1995) 515.

Z. D. Wang, Q. Wang, Simulating the time-dependent d,2_,2 Ginzburg-Landau equations using
the finite-element method, Phys. Rev. B. 54 (1996) 15645-15648.

Q. Du, Studies of Ginzburg-Landau model for d-wave superconductors, SIAM J. Appl. Math. 59
(1999) 1225-1250.

J.H. Xu, Y. Ren, C.S. Ting, Structures of single vortex and vortex lattice in a d-wave supercon-
ductor, Phys. Rev. B. 53 (1996) 2991-2993.

X.B. Feng, M. Neilan, Finite element methods for a Bi-wave equation modeling d-wave supercon-
ductors, J. Comput. Math. 28 (2010) 331-353.

X.B. Feng, M. Neilan, Discontinuous finite element methods for a Bi-wave equation modeling
d-wave superconductors, Math. Comput. 80 (2010) 1303-1333.

D.Y. Shi, Y.M. Wu, Uniform superconvergence analysis of Ciarlet-Raviart scheme for Bi-wave
singular perturbation problem, Math. Method. Appl. Sci. 41 (2018) 7906-7914.

D.Y. Shi, Y.M. Wu, Uniform superconvergent analysis of a new mixed finite element method for
nonlinear Bi-wave singular perturbation problem, Appl. Math. Lett. 93 (2019) 131-138.

D.Y. Shi, Y.M. Wu, Uniformly superconvergent analysis of an efficient two-grid method for non-

temperature superconductors-evidence for d,»

linear Bi-wave singular perturbation problem, Appl. Math. Comput. 367 (2020) 1-9.

J.C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput. 15
(1994) 231-237.

J.C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal.
33 (1996) 1759-1778.

D.Y. Shi, H.J. Yang, Unconditional optimal error estimates of a two-grid method for semilinear
parabolic equation, Appl. Math. Comput. 310 (2017) 40-47.

D.Y. Shi, P.C. Mu, Superconvergence analysis of a two-grid method for semilinear parabolic
equations, Appl. Math. Lett. 84 (2018) 34-41.

D.Y. Shi, R. Wang, Unconditional superconvergence analysis of a two-grid finite element method
for nonlinear wave equations, Appl. Numer. Math. 150 (2020) 38-50.

D.Y. Shi, Q. Liu, Superconvergence analysis of a two grid finite element method for Ginzburg-
Landau equation, Appl. Math. Comput. 365 (2020) 124691.

D.Y. Shi, X. Jia, Superconvergence analysis of two-grid fifinite element method for nonlinear
Benjamin-Bona-Mahony equation, Appl. Numer. Math. 148 (2020) 45-60.

Q. Lin, L. Tobiska, A.H. Zhou, Superconvergence and extrapolation of nonconforming low order
finite elements applied to the Poisson equation, IMA. J. Numer. Anal. 25 (2005) 160-181.

D.Y. Shi, H.H. Wang, Y.P. Du, An anisotropic nonconforming finite element for approximating a
class of nonlinear Sobolev equations, J. Comput. Math. 72 (2009) 299-314.

Q. Lin, J.F. Lin, Finite element methods: accuracy and improvement, Science Press, Beijing,
2006.

H.C. Zhang, D.Y. Shi, Superconvergence analysisfor time-fractional diffision equations with non-
conforming mixed finite method, J. Comput. Math. 37 (2019) 527-544.

D.Y. Shi, J.C. Ren, Nonconforming mixed finite element approximation to the stationary Navier-
Stokes equations on anistropic meshes, Nonliear. Anal. TMA. 71 (2009) 3842-3852.



Y.M. WU AND D.Y. SHI

Y.M. Wu, D.Y. Shi, Quasi-uniform and unconditional superconvergence analysis of Ciar-
letCRaviart scheme for the fourth order singularly perturbed Bi-wave problem modeling -wave
superconductors, Appl. Math. Comput. 397 (2021) 125924.

D.Y Shi, Y.D. Zhang, Approximation of nonconforming quasi-Wilson element for sine-Gordon
equations, J. Comput. Math. 31 (2013) 271-282.

D.Y. Shi, L.F. Pei, Nonconforming quadrilateral finite element method for a class of nonlinear
sine-Gordon equations, Appl. Math. Comput. 219 (2013) 9447-9460.

C. Park, D. Sheen, P; nonconforming quadrilateral finite element methods for second-order ellipitic
problems, SIAM J. Numer. Anal. 41 (2003) 624-640.

R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods
Partial Differential Equations 8 (1992) 97-111.

J. Hu, H. Man, Z. Shi, Constrained nonconforming rotated @1 element for Stokes flow and planar
elasticity, Math. Numer. Sin. 27 (2005) 311-324.



