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Abstract

This paper detailedly discusses the locally one-dimensional numerical methods for ef-

ficiently solving the three-dimensional fractional partial differential equations, including

fractional advection diffusion equation and Riesz fractional diffusion equation. The second

order finite difference scheme is used to discretize the space fractional derivative and the

Crank-Nicolson procedure to the time derivative. We theoretically prove and numerically

verify that the presented numerical methods are unconditionally stable and second order

convergent in both space and time directions. In particular, for the Riesz fractional dif-

fusion equation, the idea of reducing the splitting error is used to further improve the

algorithm, and the unconditional stability and convergency are also strictly proved and

numerically verified for the improved scheme.
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1. Introduction

The history of fractional calculus can goes back to more than three hundred years ago [12],

almost the same as classical calculus. Nowadays it has become more and more popular among

various scientific fields, covering anomalous diffusion, materials and mechanical, signal process-

ing and systems identification, control and robotics, rheology, fluid flow, signal processing, and

electrical networks et al. [15]. Meanwhile, the diverse fractional partial differential equations

(fractional PDEs), as models, appear naturally in the corresponding field.

There are already some important progress for numerically solving the fractional PDEs. The

methods used for classical PDEs are well extended to fractional PDEs, for example, the finite

difference method [2,18-20,22], finite element method [4,8], and spectral method [14]. However,

almost all of them concentrate on one or two dimensional problems. There have been already

some useful developments for realizing the operator splitting (locally one dimension) to solve

the classical PDEs. This paper focuses on extending the alternating direction implicit (ADI)

methods to the three-dimensional fractional PDEs, and improving their efficiency.

The Peaceman and Rachford alternating direction implicit method (PR-ADI) [16] works

well for two-dimensional problems. But it can not be extended to higher dimensional problems.

Douglas type alternating direction implicit methods (D-ADI) [5-7] are valid for any dimensional
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equations. And PR-ADI and D-ADI are equivalent in two dimensional problems. In this paper,

we consider the following three-dimensional fractional advection diffusion equation,

∂u(x, y, z, t)

∂t
= dx1 xL

Dα
xu(x, y, z, t) + dx2 xD

α
xR

u(x, y, z, t)

+ dy1 yL
Dβ

yu(x, y, z, t) + dy2 yD
β
yR

u(x, y, z, t)

+ dz1 zLD
γ
zu(x, y, z, t) + dz2 zD

γ
zRu(x, y, z, t) + κx

∂u(x, y, z, t)

∂x

+ κy
∂u(x, y, z, t)

∂y
+ κz

∂u(x, y, z, t)

∂z
+ f(x, y, z, t), (1.1)

and the Riesz fractional diffusion equation

∂u(x, y, z, t)

∂t
= dx1

(
xL
Dα

xu(x, y, z, t) + xD
α
xR

u(x, y, z, t)
)

+dy1
(
yL
Dβ

yu(x, y, z, t) + yD
β
yR

u(x, y, z, t)
)
+ dz1

(
zL
Dγ

zu(x, y, z, t)

+ zD
γ
zRu(x, y, z, t)

)
+ f(x, y, z, t),

(1.1′)

both with the initial condition

u(x, y, z, 0) = u0(x, y, z), for (x, y, z) ∈ Ω, (1.2)

and the Dirichlet boundary condition

u(x, y, z, t) = 0, for (x, y, z, t) ∈ ∂Ω× (0, T ], (1.3)

where Ω = (xL, xR)×(yL, yR)×(zL, zR) ⊂ R3, 0 < t ≤ T , and the fractional orders 1 < α, β, γ <

2; and f(x, y, z, t) is a forcing function; and all the coefficients are non-negative constants. The

fractional derivatives used in (1.1) and (1.1′) are defined as, for 1 < µ < 2,

xL
Dµ

xu(x) =
1

Γ(2− µ)

∂2

∂x2

∫ x

xL

(x− ξ)
1−µ

u(ξ)dξ, (1.4)

xD
µ
xR

u(x) =
1

Γ(2− µ)

∂2

∂x2

∫ xR

x

(ξ − x)1−µu(ξ)dξ. (1.5)

From the viewpoint of conversation law, the advection term in the advection diffusion equation

should be first order classical derivative, and the fractional derivative corresponding to the

diffusion term should be Riemann-Liouville one.

For the two-dimensional case of (1.1)-(1.3), PR-ADI and D-ADI are discussed and we show

that they are equivalent for two-dimensional equations. We use D-ADI for the three-dimensional

(1.1)-(1.3). The second order finite difference scheme is used to discretize the space fractional

derivative and the Crank-Nicolson procedure to the time direction. We theoretically prove and

numerically confirm that the given numerical schemes are unconditionally stable and second

order convergent in both space and time directions. In general, the ADI methods introduce

new error term, called the splitting error, comparing with the original discretizations. Usually

the splitting error term does not affect the convergent order, but most of the time it lowers

the accuracy seriously. For (1.1′), we use the idea in [7] to reduce the splitting error from

O(τ2) to O(τ3) at reasonable computational cost and then recover the accuracy of the original

discretization, the improved ADI will be called D-ADI-II. The fractional step (FS) method is

also simply discussed to show that, after a minor modification to reduce the splitting error from

O(τ) to O(τ3), it is equivalent to D-ADI-II.


