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Abstract

This paper covers the review and some aspects of using Multigrid method for fluid

dynamics problems. The main development stages of multigrid technics are presented.

Some approaches for solving Navier-Stokes equations and convection- diffusion problems

are considered.
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1. Introduction

Fluid dynamics and transport phenomena, such as heat and mass transfer, play an important

role in human life. Gases and liquids surround us, flow inside our bodies have a profound

influence on the environment in which we live. Fluid flows produce winds, rains, floods, and

hurricanes. Convection and diffusion are responsible for temperature fluctuations and transport

of pollutants in air, water or soil.

The ability to understand, predict, and control transport phenomena is essential for many

industrial applications, such as aerodynamic shape design, oil recovery from an underground

reservoir, or multiphase/multicomponent flows in furnaces, heat exchangers, and chemical re-

actors. This ability offers substantial economic benefits and contributes to human well-being.

Heating, air conditioning, and weather forecast have become an integral part of our everyday

life. Most people take such things for granted and hardly ever think about the physics and

mathematics behind them [1]. In physics fluid dynamics is a subdiscipline of fluid mechanics

that deals with fluid flow-the natural science of fluids (liquids and gases) in motion. It has sev-

eral subdisciplines itself, including aerodynamics (the study of air and other gases in motion)

and hydrodynamics (the study of liquids in motion).

Before the twentieth century, hydrodynamics was synonymous with fluid dynamics. This is

still reflected in names of some fluid dynamics topics, like magnetohydrodynamics and hydro-

dynamic stability, both of which can also be applied to gases.

Fluid dynamics has a wide range of applications, including calculating forces and moments

on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather

patterns, understanding nebulae in interstellar space. Some of its principles are even used in

traffic engineering, where traffic is treated as a continuous fluid.

Computational fluid dynamics, usually abbreviated as CFD, is a branch of fluid mechanics

that uses numerical methods and algorithms to solve and analyze problems that involve fluid

flows. The fundamental basis of almost all CFD problems are the Navier-Stokes equations,

* Received September 18, 2013 / Revised version received February 27, 2014 / Accepted March 25, 2014 /

Published online May 22, 2014 /



234 G. MURATOVA AND E. ANDREEVA

which define any single-phase (gas or liquid, but not both) fluid flow. These equations can be

simplified by removing terms describing viscous actions to yield the Euler equations. Further

simplification, by removing terms describing vorticity yields the full potential equations. Finally,

for small perturbations in subsonic and supersonic flows (not transonic or hypersonic) these

equations can be linearized to yield the linearized potential equations.

The other most common equation in the computational fluid dynamics field is the convection-

diffusion equation. Mathematical models that involve a combination of convective and diffusive

processes are among the most widespread in all the sciences. Research of these processes is

especially important and difficult when convection is dominant. At the same time, convection-

diffusion equations are used as tests in researching iterative methods for solving systems of

strongly nonsymmetric linear equations.

During the simulation of some physical phenomena, in the CFD, the solution of large linear

systems is usually required. With the ongoing increase of the complexity of the problems to

treat, the solution phase may be very costly. It is not sufficient to use the latest technology of

computers. An effort should be put into algorithms for solving such systems. For such systems,

involving several millions of degrees of freedoms, direct methods [2] are not convenient, and

iterative methods [3] usually suffer from a low convergence speed. Hybrid methods, like domain

decomposition methods [4], can be considered. These methods consist to split the global sys-

tem to solve into multiple sub-systems, each subsystem being solved independently by sharing

information along so called interface conditions between neighboring sub-systems. These inter-

face conditions can be optimized for the performance of the algorithm [5]. Unfortunately, these

methods might suffer from convergence problems, and suitable preconditioning techniques lead

to an additional computational cost.

Multigrid methods (MGM) are known to be a viable alternative to the previous solution

strategies especially for elliptic dominated problems [6]. They are the fastest numerical methods

for solving boundary value problems [7]. Multigrid methods were the first to overcome the

complexity barrier connected with that the amount of work does not remain proportional to

the number of unknowns. The starting point of the multigrid and indeed also its ultimate upshot

is the following “golden” rule: The amount of computational work should be proportional to

the amount of real physical changes in the computed system.

The field of multigrid methods has become too large to review in a single article. Therefore,

in this paper, we restrict our attention to the class of problems which is actual one for fluid

dynamics: Navier-Stokes equations and convection- diffusion problems.

2. Multigrid Method: Main Development Stages

First working multigrid method was developed and analyzed by Fedorenko [8] for the Laplace

equation on the unit square. Bachvalov [9] considered the theoretically much more complex

case of variable coefficients.

The main observation of multigrid techniques is based on a Fourier analysis of the residual

(or error) vector of a sequence of iterates that are generated by a scheme such as Jacobi

or Gauss-Seidel (for instance). This means that these residual vectors are analyzed in the

eigen-basis associated with the iteration matrix M - assuming that M has a complete set of

eigenvectors. In the case of Jacobi, the observation is that the components associated with

the largest eigenvalues (in the original matrix) will decrease rapidly. However, those associated

with the smallest eigenvalues will converge much more slowly. As a result after a few steps, the


