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Abstract

For Sobolev equation, we present a new numerical scheme based on a modified weak

Galerkin finite element method, in which differential operators are approximated by weak

forms through the usual integration by parts. In particular, the numerical method allows

the use of discontinuous finite element functions and arbitrary shape of element. Optimal

order error estimates in discrete H
1 and L

2 norms are established for the corresponding

modified weak Galerkin finite element solutions. Finally, some numerical results are given

to verify theoretical results.
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1. Introduction

Sobolev equation is a classical partial differential equation, which includes a third order

mixed derivative with respect to time and space. It is used to describe wave motion in media

with nonlinear wave steepening and balancing with dispersion and diffusion, which are impor-

tant not only in hydrodynamics but also in many other disciplines of engineering and science.

We consider the following Sobolev equation

Ut −∇ · (µ∇Ut + ε∇U) = f(x, t), x ∈ Ω, t ∈ (0, T ],

U = u(x), x ∈ Ω, t = 0, (1.1)

with homogenous Dirichlet boundary condition, where U(x, t) is the unknown solution in Ω,

which is a bounded domain in R2 with boundary ∂Ω. u(x), f(x, t) are given sufficiently smooth

scalar functions. ε ≥ 0 and µ ≥ µ0 > 0, for fixed constant µ0, are diffusion constant coefficient

and dispersion constant coefficient.

A large number of works on finite element methods (FEMs) have been done for Sobolev

equations, for example, standard FEMs [1,6,7,15,17], mixed FEMs [12,16], and Petrov-Galerkin

methods [2, 5]. Recently, we proposed semi-discrete LDG scheme, as well as fully-discrete
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LDG scheme with the second and/or third order explicitly total variation diminishing Runge-

Kutta (TVDRK2) time-marching in [8] and [22] for the model problem (1.1), respectively. We

obtained quasi-optimal and optimal a priori error estimates for both considered schemes. We

also proposed for Sobolev equation with convection term split least-squares characteristic mixed

finite element method in which primal variable and flux introduced can be solved, separately [9].

Theoretical result shows that the method yields approximate solutions with optimal order

accuracy in L2(Ω) norm for primal variable and in H(div; Ω) norm for flux, respectively.

Our purpose here is to propose and analyze semi-discrete and fully-discrete finite element

procedures for Sobolev equation (1.1) using a modified weak Galerkin finite element method

(MWG-FEM). The weak Galerkin finite element method (WG-FEM) was introduced by Wang

and Ye [19], and was developed in [10, 14, 20]. The key idea lies in the approximation of

differential operators by weak forms for discontinuous finite element functions defined on a

partition of the domain. Comparing with traditional Galerkin FEMs, the WG-FEMs allow the

use of a new class of discontinuous finite element functions in the algorithm design, similar to

discontinuous Galerkin finite element method (DG-FEM) [4], but remove the need for picking

some “large enough” parameters. However, in the WG-FEM [10, 19], each function has two

components, interior and boundary, which adds the degree of freedom. We introduce a new

definition of weak gradient in [11], which does not need artificial boundary component of a

function and adopt a new stabilization term which are different from those of [10, 19].

The remainder of this paper is organized as follows. In section 2, we give the detailed imple-

mentation and the stability theorems for the semi-discrete and fully-discrete MWG method with

the backward Euler time-marching and some lemmas. In section 3, we present error equation

and some main theorems for the MWG discretization. Finally, some numerical experiments are

given in section 4.

2. The MWG-FEM and Some Lemmas

In this section, we present semi- and fully-discrete MWG schemes for the model problem

(1.1), where the time is updated by the backward Euler time-marching.

The variational weak form of (1.1) is: Find U = U(x, t) ∈ H1
0 (Ω) (0 6 t 6 T ), such that

(Ut, v) + µA(Ut, v) + εA(U, v) = (f, v), ∀v ∈ H1
0 (Ω), t > 0, (2.1a)

U(x, 0) = u(x), x ∈ Ω, (2.1b)

where (·, ·) denotes inner product of L2(Ω) and the bilinear form A(·, ·) is defined by

A(U, v) :=

∫

Ω

∇U · ∇vdx. (2.2)

2.1. MWG finite element space

First, we use the standard definition for the Sobolev space Hs(D) and their associated inner

products (·, ·)s,D, norms ‖·‖s,D and seminorms | · |s,D for any s ≥ 0. We shall drop the subscript

D when D = Ω and s as s = 0 in the norm and inner product notation.

Let Th be a quasi-uniform partition of the domain Ω consisting of polygons satisfying a set

of conditions specified in [13, 19]. Please note that Th does not have to be conforming. Denote

by Eh the set of all edges in Th, and let E0
h = Eh\∂Ω be the set of all interior edges. For every

element K ∈ Th, we denote by hK its diameter and mesh size h = maxK∈Th
hK for Th.


