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Abstract

To reduce the communication among processors and improve the computing time

for solving linear complementarity problems, we present a two-step modulus-based syn-

chronous multisplitting iteration method and the corresponding symmetric modulus-based

multisplitting relaxation methods. The convergence theorems are established when the

system matrix is an H+-matrix, which improve the existing convergence theory. Numeri-

cal results show that the symmetric modulus-based multisplitting relaxation methods are

effective in actual implementation.

Mathematics subject classification: 65F10, 68W10, 90C33.

Key words: Linear complementarity problem, Modulus-based method, Matrix multisplit-

ting, Convergence.

1. Introduction

Given a real matrix A ∈ R
n×n and a real vector q ∈ R

n, the linear complementarity problem

abbreviated as LCP(q, A) is to find a pair of real vectors r, z ∈ R
n such that

r := Az + q ≥ 0, z ≥ 0 and zT (Az + q) = 0.

The linear complementarity problem has extensive applications in the field of economy and

engineering; see [11,14]. The modulus method is one of the classic iteration methods for solving

linear complementarity problems; see, e.g., [13,21,24]. More recently, Hadjidimos and Tzoumas

presented the extrapolated modulus algorithms in [17,18], and Bai presented the modulus-based

matrix splitting iteration method in [3]. These two new methods are very effective and practical

in numerical computation.

For large sparse linear complementarity problems arising in the engineering applications, the

multisplitting iterative methods are powerful tools to enlarge the scale of problem and speed up

the computation; see, e.g., [1, 2, 4, 5, 7, 12, 22]. Recently, by an equivalent reformulation of the

linear complementarity problem into a system of fixed-point equations, Bai and Zhang have con-

structed the modulus-based synchronous multisplitting (MSM) iteration methods in [7], which

are suitable to be implemented parallelly on multiprocessor systems. As the communication

among processors is much more time-consuming than the computation, we intend to reduce
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the communication by making full use of the previous iteration and communication. To this

end, we present the two-step modulus-based synchronous multisplitting iteration methods as

well as their relaxed variants in this paper, which consist of two sweeps at each iteration step.

We remark that these two-step methods are different from the two-stage methods presented

in [8,27], which are inner/outer iteration methods aimed to solve the outer iteration efficiently.

The remaining part of this paper is organized as follows: In Section 2, we introduce some

notations and briefly review the MSM iteration methods. In Section 3, we propose the two-step

modulus-based synchronous multisplitting iteration methods as well as their relaxed variants.

In Section 4, we prove their convergence when the system matrix is an H+-matrix. Numerical

results are given in Section 5. Finally, we make a conclusion in Section 6.

2. Notations and Preliminaries

For A = (aij) ∈ R
m×n and B = (bij) ∈ R

m×n, we write A ≥ B (A > B) if aij ≥ bij
(aij > bij) hold for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. If O is the null matrix and A ≥ O (A > O),

we say that A is a nonnegative (positive) matrix. |A| and AT denote the absolute value and

the transpose of the matrix A, respectively.

For a square matrix A = (aij) ∈ R
n×n, we denote its spectral radius and diagonal part by

ρ(A) and diag(A), respectively. Its comparison matrix 〈A〉 = (〈aij〉) is defined by 〈aij〉 = |aij |

if i = j and 〈aij〉 = −|aij | if i 6= j. It is called an M -matrix if its off-diagonal entries are all

non-positive and A−1 ≥ O, an H-matrix if its comparison matrix 〈A〉 is an M -matrix, and an

H+-matrix if it is an H-matrix with positive diagonal entries [2, 9, 25]. Note that if A is an

H+-matrix, then ρ(D−1|B|) < 1, where D = diag(A) and B = D − A; see [9]. In this paper,

we focus on the case that A is an H+-matrix, which is a sufficient condition for LCP(q, A) to

possess a unique solution for any q.

If A is an M -matrix and Λ is a positive diagonal matrix, then A ≤ B ≤ Λ implies that B is

an M -matrix. If A is an H-matrix, then A is nonsingular and |A−1| ≤ 〈A〉−1; see, e.g., [9, 15].

The splitting A = M − N is called an H-compatible splitting if it satisfies 〈A〉 = 〈M〉 − |N |;

see, e.g., [16].

Lemma 2.1. ([19,20]). Let M = (mij) ∈ R
n×n be a strictly diagonally dominant matrix. Then

∥

∥M−1N
∥

∥

∞
≤ max

1≤i≤n

n
∑

j=1

|nij |

|mii| −
∑

j 6=i

|mij |

holds for any matrix N = (nij) ∈ R
n×n.

Lemma 2.2. ([3]). Let A = M − N be a splitting of the matrix A ∈ R
n×n, Ω be a positive

diagonal matrix, and γ be a positive constant. For the LCP (q, A), the following statements

hold true:

(i) if (z, r) is a solution of the LCP(q, A), then x = 1
2γ(z −Ω−1r), with |x| = 1

2γ(z +Ω−1r),

satisfies the implicit fixed-point equation

(Ω +M)x = Nx+ (Ω−A)|x| − γq; (2.1)


