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Abstract

In this paper we consider the fully discrete local discontinuous Galerkin method, where

the third order explicit Runge-Kutta time marching is coupled. For the one-dimensional

time-dependent singularly perturbed problem with a boundary layer, we shall prove that

the resulted scheme is not only of good behavior at the local stability, but also has the

double-optimal local error estimate. It is to say, the convergence rate is optimal in both

space and time, and the width of the cut-off subdomain is also nearly optimal, if the bound-

ary condition at each intermediate stage is given in a proper way. Numerical experiments

are also given.
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1. Introduction

Given the final time T > 0 and the bounded domain I = (a, b), consider the singularly

perturbed problem in one-dimensional space

ut − εuxx + ux + cu = f(x, t), (x, t) ∈ I × (0, T ], (1.1a)

subject to the initial solution

u(x, 0) = u0(x), x ∈ I, (1.1b)

and the Dirichlet boundary condition

(u(a, t), u(b, t))⊤ = (ga(t), gb(t))
⊤ ≡ g(t), t ∈ (0, T ], (1.1c)

where 0 < ε ≪ 1 and c ≥ 0 are two constants. Here f(x, t), u0(x), ga(t) and gb(t) are given

functions and assumed to be smooth, such that this problem has a sufficiently smooth solution.

However, the solution often varies quickly with a huge gradient nearby the outflow boundary

point x = b, and forms a boundary layer there. This causes numerical difficulties for lots of

traditional methods. Hence, this singularly perturbed problem and its numerical study have

been paid much attention to in a long period. Till now, many successful algorithms have been

presented and developed. For example, there are the standard finite element method combined

with the layer-adapted mesh [17, 23], streamline upwinding Petrov-Galerkin method [10, 16],
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interior penalty discontinuous Galerkin (IPDG) method [8,19], the local discontinuous Galerkin

(LDG) method [3, 4, 18, 24], and so on, among finite element methods.

The LDG method considered in this paper was introduced firstly by Cockburn and Shu

[6] to solve the convection diffusion problem, motivated by the work of Bassi and Rebay [1].

As a special class of discontinuous Galerkin (DG) method, the main technique of the LDG

method is to rewrite the considered problem into an equivalent system containing only the first-

order derivatives, which can be further discretized by the standard DG method [5, 12]. Since

discontinuous finite element spaces do not require continuity at element boundaries, the LDG

method has enough flexibility to deal with the fast-varying solutions, and even the discontinuous

solutions. For a fairly complete set of references about the method and its implementation,

please refer to the review papers [7, 14] and recent book [11].

Compared with the wide applications of DG method, the theoretical conclusions are lack

in some sense. Many error estimates to the DG method of problem (1.1) are carried out in

the global regularity assumption, namely, the exact solution is assumed to be smooth enough

in the whole domain. For example, the L2-norm error estimate has been considered for the

semi-discrete LDG method in [3], and for the fully discrete third order explicit Runge-Kutta

time-marching in [18]. However, the obtained result seems useless when the diffusion parameter

ε goes to zero. Hence, the local analysis is necessary to show out the numerical advantage of

the LDG method. As far as the authors know, there are only couples of work on this issue,

for example, Johnson et al. [9] for the (space-time) DG method, and Guzmán [8] for the IPDG

method. Recently, Zhu and Zhang [24] considered the LDG method to solve the one-dimensional

steady problem. Furthermore, Cheng and Zhang [4] extended the local analysis to the time-

dependent problem, and obtained the double-optimal error estimate that the convergence rate

in the local L2-norm is optimal and the width of the cut-off region nearby the outflow boundary

is almost optimal, namely, in the order like O(h log(1/h)), where h is the size of the spatial

mesh.

The fully discrete LDG method was also considered in [4]. However, the second order explicit

total variation diminishing Runge-Kutta (TVDRK2) time-marching was discussed only. In this

paper we shall extend the above work and consider the LDGRK3 scheme where the third order

explicit total variation diminishing Runge-Kutta (TVDRK3) time discretization is adopted.

The LDGRK3 scheme is more popular in practice, owing to the good stability for piecewise

polynomials with arbitrary degree under the standard temporal-spatial condition and higher

order accuracy in time [18], in the case that ε < h. Similar as in [4], the main technique used

in this paper is the energy technique with a suitable weight function. But, the local analysis of

LDGRK3 scheme is more complex than that of LDGRK2 scheme. The reason comes from two

issues. Firstly, we have to use fully the anti-symmetry property (see Lemma 3.2) of the LDG

discretization in space direction, in order to control each term in the energy equation. Secondly,

we have to deal carefully with the boundary condition to avoid the accuracy reduction. Many

technical process can be viewed as an extension of the work in [18] and [4]. As a little highlight

of this paper, we will consider explicitly the source term f(x, t), which maybe depend on the

time explicitly. Since the problem is not autonomous, the different treatment in the TVDRK3

time-marching will lead to some difficulties in the theoretical analysis. To overcome this, we

have to modify the definition of the reference functions in [18] where the source term is equal

to zero.

The rest of this paper is organized as follows. In Section 2, we present the LDGRK3 scheme

for the singularly perturbed problem (1.1). In Section 3, we consider a general framework


