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Abstract

In this paper, we estimate the constants in the inverse inequalities for the finite ele-

ment functions. Furthermore, we obtain the least upper bounds of the constants in inverse

inequalities for the low-order finite element functions. Such explicit estimates of the con-

stants can be used as computable error bounds for the finite element method.
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1. Introduction

As a very effective numerical method of partial differential equations, the finite element

method (FEM) is widely applied to the engineering and scientific computation. In the process

of analysis and solving by the finite element method, the inverse inequalities are frequently

used to bound the high-order (semi-)norms in terms of the low-order ones for the finite element

functions, cf. [1, 3]. However, it is well known to prove the inverse inequalities by functional

analysis [3], which can not explicitly give the constants on the right and brings troubles into

practical error analysis and numerical computation such as a posteriori error estimation and

adaptive refinement algorithms. Therefore, for both error analysis and numerical computation,

it is very significant to estimate the constants in the inverse inequalities.

We consider the following inverse inequality

|v|1,Ω ≤ Ch−1‖v‖Ω, (1.1)

where h is the diameter of the domain Ω and v is a finite element function. The other kinds of

inverse inequalities are considered in [4, 5, 7, 10].

For the 1-D and 2-D cases, the constant C in (1.1) is given for the linear finite element

in [2]. For any dimension n and order k, The estimation on the constant C in (1.1) is translated

into a conditional extremum problem in [9]. However, it needs to solve a system of nonlinear

equations with the help of the software Matlab, which is not suitable for theoretic analysis.

In this paper, we explicitly give the inverse inequalities for the finite element functions by

different methods. In section 2, due to the recursion relation and orthogonality of Legendre

polynomials [8], the constant C in (1.1) is estimated for the 1-D case, which may be extended

to general rectangular domains. Especially, we obtained the optimal constants for k = 1, 2.

In section 3, the constant C in (1.1) is estimated for the reference triangular and tetrahedron

finite elements, respectively, which can be ordinarily extended to general bounded domains.
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Furthermore, we obtain the least upper bound of the constant for the linear triangular and

tetrahedron finite elements, respectively. In addition, we get an explicit relation between the

inverse inequality (1.1) and the geometric characters of the general triangle T . Finally, from

the inverse inequality (1.1) we explicitly obtain general inverse inequalities as follows

|v|m,Ω ≤ Chl−m|v|l,Ω, (1.2)

where |v|m,Ω =
(

∑

|α|=m

|α|!
α! ‖Dαv‖2Ω

)
1

2 , α = (α1, α2, . . . , αn), |α| = α1+α2+ . . .+αn and m ≥ 1.

2. Inverse Inequalities for the 1-D Case

In this paper, we denote a polynomial space of order ≤ k on Ω by Pk(Ω). Let Lk be the

k-th Legendre polynomial, that is,

Li(x) =
1

2ii!

di

dxi
(x2 − 1)i, i = 0, 1, . . . , k, (2.1)

with the following orthogonality

(Li, Lj) ,

∫ 1

−1

Li(x)Lj(x)dx =

{

0, i 6= j,
2

2i+1 , i = j.
(2.2)

For 1 ≤ i ≤ k, according to (2.1) we have the following recursion formula

L′
i(x) =

1

2ii!

di

dxi

(

2ix(x2 − 1)i−1
)

=
1

2(i−1)(i− 1)!

di−1

dxi−1

(

(x2 − 1)i−1 + 2(i− 1)x2(x2 − 1)i−2
)

=
1

2(i−1)(i− 1)!

di−1

dxi−1

(

(2i− 1)(x2 − 1)i−1 + 2(i− 1)(x2 − 1)i−2
)

= (2i− 1)Li−1(x) + L′
i−2(x).

Then there holds

L′
i(x) =

i−1
∑

j=0

dijLj(x) =
k−1
∑

j=0

dijLj(x), (2.3)

where

dij =

{

2j + 1, if i− j is odd and positive,

0, otherwise.
(2.4)

From (2.3) and (2.4), we have the following orthogonality relation

(L′
2i, L

′
2j−1) = 0. (2.5)

For any p(x) ∈ Pk(−1, 1), there exist k + 1 real numbers c0, c1, . . . , ck such that

p(x) =
k

∑

i=0

ciLi(x), (2.6)

‖p‖2L2(−1,1) =
(

k
∑

i=0

ciLi,

k
∑

i=0

ciLi

)

=

k
∑

i=0

c2i (Li, Li) =

k
∑

i=0

2c2i
2i+ 1

. (2.7)


