LOCAL EXPLICIT MANY-KNOT SPLINE HERMITE APPROXIMATION SCHEMES*

QI Dong-xu (齐东旭)

ZHOU SHU-ZI (周叔子)

(Jilin University, Changchun, China) (Hunan University, Changsha, China)

Abstract

If $f^{(i)}(a)$ $(a=a, b, i=0, 1, \dots, k-2)$ are given, then we get a class of the Hermite approximation operator Qf = F satisfying $F^{(i)}(a) = f^{(i)}(a)$, where F is the many-knot spline function whose knots are at points $y_i : a = y_0 < y_1 < \dots < y_{k-1} = b$, and $F \in P_k$ on $[y_{i-1}, y_i]$. The operator is of the form $Qf := \sum_{i=0}^{k-2} [f^{(i)}(a)\phi_i + f^{(i)}(b)\psi_i]$. We give an explicit representation of ϕ_i and ψ_i in terms of B-splines $N_{i,k}$. We show that Q reproduces appropriate classes of polynomials.

1. Introduction

Some authors considered operators of the form $Qf = \sum \lambda_i f N_{i,k}$, where $\{N_{i,k}\}$ is a sequence of B-splines and $\{\lambda_i\}$ is a sequence of linear functionals. The variation diminishing method of Schoenberg ([9], [5], [6]) and the quasi-interpolant of de Boor and Fix are well-known. Such approximation schemes have several important advantages over spline interpolation. They can be constructed directly without matrix inversion, and local error bounds can be obtained naturally. Qi considered the so-called many-knot splines which have many more knots than degrees of freedom and constructed the cardinal spline $Qf = \sum f(x_i)q_{i,k}$, where $q_{i,k}$ is made up of B-splines on a uniform partition, has small support and satisfies $q_{i,k}(x_i) = \delta_{ij}$. Such an approximation operator reproduces appropriate classes of polynomials.

The purpose of this paper is to construct a class of many-knot explicit local polynomial spline approximation operators for Hermite interpolation of real-valued functions defined on some interval [a, b].

Let P_k be a set of polynomials of degree less than k, and let

$$a = y_0 < y_1 < \dots < y_{k-1} = b.$$
 (1.0)

We define

$$\hat{S}_{k} := \{g : g \mid_{(y_{i}, y_{i+1})} \in P_{k}, \quad i = 0, 1, \dots, k-2\}.$$

 \hat{S}_k is the familiar class of polynomial splines of order k with knots at the points $y_i (i=0, 1, \dots, k-1)$.

Let \mathscr{F} be a linear space of real valued functions on [a, b], and suppose \mathscr{F} contains the class of polynomials P_k . Given $f \in \mathscr{F}$, we construct an approximation $F(\cdot) = Qf(\cdot)$ such that

$$\mathscr{F}^{(l)}(a) = f^{(l)}(a), \mathscr{F}^{(l)}(b) = f^{(l)}(b), \quad l = 0, 1, \dots, k-2.$$
 (1.1)

^{*} Received September 28, 1982.

In other words, set

$$Qf := \sum_{i=0}^{k-2} f^{(i)}(a)\phi_i(x) + \sum_{j=0}^{k-2} f^{(j)}(b)\psi_j(x); \qquad (1.2)$$

suppose ϕ_j , ψ_j satisfying

$$\phi_i^{(i)}(a) = \delta_{ii}, \quad \phi_i^{(i)}(b) = 0,$$
 (1.3)

$$\psi_{j}^{(i)}(a) = 0$$
, $\psi_{j}^{(i)}(b) = \delta_{ij}$, $i, j = 0, 1, \dots, k-2$. (1.4)

If ϕ_j and ψ_j are chosen in P_{2k-2} , then the problem above has been considered (see, for instance, [1], [3], [4]), and in this case $F \in P_{2k-2}$ on [a, b].

We will find a many-knot spline $F \in \hat{S}_k$ satisfying (1.1). Such many-knot cardinal splines $\{\phi_j\}$ and $\{\psi_j\}$ are of degree less than k; therefore F is also of degree less than k. We present ϕ_j and ψ_j as explicit representations.

This paper proves that the many-knot spline Hermite approximation operator Q reproduces appropriate classes of polynomials on [a, b].

2. Construction of ϕ_j and ψ_j

Without loss of generality, we assume a=0 and b=1. First of all we set k=3 as an example.

Let ϕ_0 , ϕ_1 , ψ_0 , ψ_1 be piecewise polynomials of degree 2 with knots 0, $\frac{1}{2}$, 1 satisfying the following conditions

$$\phi_0(0) = 1, \qquad \phi_1'(0) = 1,$$

$$\phi_0'(0) = \phi_0(1) = \phi_0'(1) = 0, \ \phi_1(0) = \phi_1(1) = \phi_1'(1) = 0,$$

$$\phi_0\left(\frac{1}{2} + 0\right) = \phi_0\left(\frac{1}{2} - 0\right), \quad \phi_1\left(\frac{1}{2} + 0\right) = \phi_1\left(\frac{1}{2} - 0\right),$$

$$\phi_0'\left(\frac{1}{2} + 0\right) = \phi_0'\left(\frac{1}{2} - 0\right), \quad \phi_1'\left(\frac{1}{2} + 0\right) = \phi_1'\left(\frac{1}{2} - 0\right),$$

and $\psi_0(x) := \phi_0(1-x), \ \psi_1(x) := -\phi_1(1-x).$

Easily one gets

$$\phi_0(x) = \begin{cases} -2x^2 + 1, & x \in \left[0, \frac{1}{2}\right], \\ 2(x-1)^2, & x \in \left[\frac{1}{2}, 1\right]; \end{cases}$$

$$\phi_1(x) = \begin{cases} -\frac{3}{2}x^2 + x, & x \in \left[0, \frac{1}{2}\right], \\ \frac{1}{2}(x-1)^2, & x \in \left[\frac{1}{2}, 1\right]. \end{cases}$$

Their graphs are sketched as follows







