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1. .Intmduction

The finite element method for one-dimensional singular boundary wvalue pro-
blems have been studied by several anthors (for instance, see[4], [10], [8], [11]).
The finite element method for a two—-dimensional singular boundary value problem is
proposed in[12]. Recently[9], [16], [1], [16]and [3]have given the relevant theore-
tical studies. In [9], the error of order O (A*) has been proved for the Lagrange
elements of degree % provided that the solution of the boundary value problem is in
C**1 (). [16] has proved the convergence of the linear finite eloment method
provided only that the solution of the boundary value problem belongs to a weighted
Sobolev space. For problem(1.1)in the present paper, [1]has proved that the error is
of order O(h)for a variant linear element including a logarithmic ferm. For the
ordinary linear element, [16]and[3]have also obtained the error of order O(A). In
this paper we extend the result of [156]and[8]to the elements of high degree.

We consider the following medel problem:

' 1

0. Iu=-(L 2 {rki gt )+ 5 (8 5=
Iy, u=0,

where £2 is a bounded open domain with »>0 in (r, 2)-plane, I'y=0\T,, 1=
o8N {(r, 2}, r=0},

In order to formulate the weak from of problem (1.1) we introducs some
weighted Sobolev spaces. The similar spaces have been studied in[2], [B], [18] and

(1.1)

i

[14]. ‘
2. Weighted Sobolev Spaces V7
Define V°(2) = {», v is measurable in Q, |v]yug <o},
Vi) = {‘UEVD(Q): ||‘U[ vpy <00f, m=1, 2, e,
where . 0| ooy = (J‘ﬂ virdrdz )m:

| 2] vy = (mzﬂ | 2° [ Focy) ™3,
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- m—1 jma"ﬂ 2 1/4
[olroey =( 3 [olba+ 3 | Tl )T, me3, 8, .
ldl<m j=1 or! \|vea

Sometimes we use V°, VT instead of 7°(Q), VI (Q).

Using the arguments similar to those in [13], [14] and [P] we can prove the
following propositions.

Proposition 2.1. The spaces V° V7 are Banach spaces.

Proposition 2.2. If Q has a locally Lipschitz boundary then O~ (2)is dense in
VT8,

Now we may as usual define the trace on the boundary of £2 for the elements of
VT(Q). Then we may introdvce the following spaces corresponding to problem (1.1),

Vie(@)={v€Vi(Q),v=0o0n I},

From now on we assume that 2 has a locally Lipschitz boundary, that f € V°(Q),
and that B;, B are bounded, measurable in © and there exisis a positive constant S,

such that 8,28, Ba=A..
Lemma 2.3. (Ref.[6]) There exists a constant O>0 such that

[ () +(22) Jraraz=Clottu, voEVLo@).

The proof of the following lemma is similar to that of theorem 2.2 111[5 1.
Lemma24. IfoCV7P m=2, then
o'y
ort
It is easy to prove that V2(Q)<C®(Q2). (Ref.[15]).

=0 on Iy,  j§=1, 2 «, m—1,

3. The Weak Form of the Problem and the Discrete Problem

Define the bilinear form B;(u, v)and the linear functional F (v)as follows:

B (u, fv)=J B ng gi - Ba g:: gz )frdfrdz, Yu, vEV3i(8),

F(v) =[nfwwz, Vo€ V().

The weak form of problem (1.1)is
Problem(3.1). Find «€ V1 ,(2)such that

Bi(u, v) =F(v), Vo€ Vi,(Q),

By lemma 2.8 we know that Bj (¢, v) is coercive on Vi, (Q) x¥1i, (D). So we
may easily prove the following theorem using the Lax—Milgram theorem.

Theorem 8.1. Problem(8.1)has a unique solution.

From now on we assume that Q is a polygon.

Let T= {0, +-+, C,}be a normal friangulation of Q(Ref.[6]). Denote by % and
8: respectively the size of the maximal edge and the minimal inmer angle of ;. Let
fo=max hi, #=min ;. Define the finite element spaces V" of degree m as follows:

= {9, € 0°(£D), v, is a linear function on O, 4=1, +--, n; v,=0 on Iy},

V”" *= {0, € O™ 1(2), v, is a polynomial of degree m on C;,
.:,=1: eve, 3 ¥p=0o0n I3}, m= 2, 3, s,



