THE ERROR BOUND OF THE FINITE ELEMENT METHOD FOR A TWO-DIMENSIONAL SINGULAR BOUNDARY VALUE PROBLEM*

ZHOU SHU-ZI(周叔子)
(Hunan University)

1. Introduction

The finite element method for one-dimensional singular boundary value problems have been studied by several authors (for instance, see[4], [10], [8], [11]). The finite element method for a two-dimensional singular boundary value problem is proposed in [12]. Recently [9], [16], [1], [15] and [3] have given the relevant theoretical studies. In [9], the error of order $O(h^k)$ has been proved for the Lagrange elements of degree k provided that the solution of the boundary value problem is in $C^{k+1}(\overline{\Omega})$. [16] has proved the convergence of the linear finite element method provided only that the solution of the boundary value problem belongs to a weighted Sobolev space. For problem (1.1) in the present paper, [1] has proved that the error is of order O(h) for a variant linear element including a logarithmic term. For the ordinary linear element, [15] and [3] have also obtained the error of order O(h). In this paper we extend the result of [15] and [3] to the elements of high degree.

We consider the following model problem:

$$\begin{cases}
\Omega_{:} & Lu = -\left[\frac{1}{r} \frac{\partial}{\partial r} \left(r\beta_{1} \frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z} \left(\beta_{2} \frac{\partial u}{\partial z}\right)\right] = f, \\
\Gamma_{1:} & u = 0,
\end{cases} (1.1)$$

where Ω is a bounded open domain with r>0 in (r, z)-plane, $\Gamma_1=\partial\Omega\backslash\Gamma_0$, $\Gamma_0=\partial\Omega\cap\{(r, z): r=0\}$.

In order to formulate the weak from of problem (1.1) we introduce some weighted Sobolev spaces. The similar spaces have been studied in [2], [5], [13] and [14].

2. Weighted Sobolev Spaces V₁^m

Define
$$V^0(\Omega) = \{v: v \text{ is measurable in } \Omega, \|v\|_{V^0(\Omega)} < \infty \},$$
 $V_1^m(\Omega) = \{v \in V^0(\Omega): \|v\|_{V_1^m(\Omega)} < \infty \}, m = 1, 2, \cdots,$ where
$$\|v\|_{V^0(\Omega)} = \left(\int_{\Omega} v^2 r \, dr \, dz\right)^{1/2},$$

$$\|v\|_{V_1^1(\Omega)} = \left(\sum_{|\alpha| < 1} \|\partial^{\alpha} v\|_{V^0(\Omega)}^2\right)^{1/2},$$

^{*} Received September 30, 1982.

$$||v||_{V_1^m(\Omega)} = \left(\sum_{|\alpha| \le m} ||\partial^{\alpha} v||_{V^0(\Omega)}^2 + \sum_{j=1}^{m-1} ||r^{j-m} \frac{\partial^j v}{\partial r^j}||_{V^0(\Omega)}^2\right)^{1/2}, \quad m=2, 3, \cdots.$$

Sometimes we use V^0 , V_1^m instead of $V^0(\Omega)$, $V_1^m(\Omega)$.

Using the arguments similar to those in [13], [14] and [5] we can prove the following propositions.

Proposition 2.1. The spaces V^0 , V_1^m are Banach spaces.

Proposition 2.2. If Ω has a locally Lipschitz boundary then $C^{\infty}(\overline{\Omega})$ is dense in $V_1^m(\Omega)$.

Now we may as usual define the trace on the boundary of Ω for the elements of $V_1^m(\Omega)$. Then we may introduce the following spaces corresponding to problem (1.1):

$$V_{1,0}^1(\Omega) = \{ v \in V_1^1(\Omega), v = 0 \text{ on } \Gamma_1 \}$$

From now on we assume that Ω has a locally Lipschitz boundary, that $f \in V^0(\Omega)$, and that β_1 , β_2 are bounded, measurable in Ω and there exists a positive constant β_0 such that $\beta_1 \geqslant \beta_0$, $\beta_2 \geqslant \beta_0$.

Lemma 2.3. (Ref. [6]) There exists a constant C>0 such that

$$\int_{\Omega} \left[\left(\frac{\partial v}{\partial r} \right)^{2} + \left(\frac{\partial v}{\partial z} \right)^{2} \right] r dr dz \ge C \|v\|_{V_{1}^{1}(\Omega)}^{2}, \quad \forall v \in V_{1,0}^{1}(\Omega).$$

The proof of the following lemma is similar to that of theorem 2.2 in [5]. Lemma 2.4. If $v \in V_1^m$, $m \ge 2$, then

$$\frac{\partial^{i} v}{\partial r^{i}} = 0$$
 on Γ_{0} , $j=1, 2, \dots, m-1$.

It is easy to prove that $V_1^2(\Omega) \subset C^0(\overline{\Omega})$. (Ref. [15]).

3. The Weak Form of the Problem and the Discrete Problem

Define the bilinear form $B_1(u, v)$ and the linear functional F(v) as follows:

$$B_{1}(u, v) = \int_{\Omega} \left(\beta_{1} \frac{\partial u}{\partial r} \frac{\partial v}{\partial r} + \beta_{2} \frac{\partial u}{\partial z} \frac{\partial v}{\partial z}\right) r dr dz, \quad \forall u, v \in V_{1}^{1}(\Omega),$$

$$F(v) = \int_{\Omega} fv r dr dz, \quad \forall v \in V_{1}^{1}(\Omega).$$

The weak form of problem (1.1) is

Problem (3.1). Find $u \in V_{1,0}^1(\Omega)$ such that

$$B_1(u, v) = F(v), \forall v \in V_{1,0}^1(\Omega).$$

By lemma 2.3 we know that $B_1(u, v)$ is coercive on $V_{1,0}^1(\Omega) \times V_{1,0}^1(\Omega)$. So we may easily prove the following theorem using the Lax-Milgram theorem.

Theorem 3.1. Problem (3.1) has a unique solution.

From now on we assume that Ω is a polygon.

Let $T_h = \{C_1, \dots, C_n\}$ be a normal triangulation of $\Omega(\text{Ref.}[6])$. Denote by h_i and θ_i respectively the size of the maximal edge and the minimal inner angle of C_i . Let $h = \max h_i$, $\theta = \min \theta_i$. Define the finite element spaces $V_1^{m,h}$ of degree m as follows:

$$V_1^{i,h} = \{v_h \in C^0(\overline{\Omega}): v_h \text{ is a linear function on } C_i, i=1, \cdots, n; v_h=0 \text{ on } \Gamma_1\},$$

$$V_1^{m,h} = \{v_h \in C^{m-1}(\overline{\Omega}): v_h \text{ is a linear function on } C_i, i=1, \cdots, n; v_h=0 \text{ on } \Gamma_1\},$$

$$V_1^{m,h} = \{v_h \in C^{m-1}(\overline{\Omega}): v_h \text{ is a polynomial of degree } m \text{ on } C_i,$$

$$i=1, \dots, n; v_h=0 \text{ on } \Gamma_1$$
, $m=2, 3, \dots$