ORTHOGONAL PROJECTIONS AND THE PERTURBATION OF THE EIGENVALUES OF SINGULAR PENCILS*

SUN JI-GUANG(孙继广)

(Computing Center, Academia Sinica)

Abstract

In this paper we obtain a Hoffman-Wielandt type theorem and a Bauer-Fike type theorem for singular pencils of matrices. These results delineate the relations between the perturbation of the eigenvalues of a singular diagonalizable pencil $A-\lambda B$ and the variation of the orthogonal projection onto the column space $\Re \begin{pmatrix} A^H \\ B^H \end{pmatrix}$.

1. Introduction

Let A and B be complex $m \times n$ matrices. A pencil of matrices $A - \lambda B$ is called singular if $m \neq n$ or m = n but $\det(A - \lambda B) \equiv 0^{(4)}$. A prevalent viewpoint is that in this case any complex number λ is an eigenvalue of $A - \lambda B$ (ref. [6]), consequently it is difficult to investigate the perturbation of the eigenvalues of singular pencils. In this paper we adopt a new definition for the eigenvalues of a singular pencil which is due to P. van Dooren²⁾, and relate the perturbation of the eigenvalues of $A - \lambda B$ and the variation of the orthogonal projection onto the column space $\Re\begin{pmatrix} A^H \\ B^H \end{pmatrix}$ to each other, thus obtain a Hoffman-Wielandt type theorem (§ 3) and a Bauer-Fike type theorem (§ 4) for singular pencils which are generalizations of the main results for regular pencils in [8] and [3].

Notation: Capital case is used for matrices and lower case Greek letters for scalars. The symbol $\mathbb{C}^{m\times n}$ denotes the set of complex $m\times n$ matrices. \overline{A} and A^T stand for conjugate and transpose of A, respectively; $A^H = \overline{A}^T$. $I^{(n)}$ is the $n\times n$ identity matrix, and 0 is the null matrix. The matrix |A| has elements $|a_{ij}|$ if $A = (a_{ij})$. A > 0 (> 0) denotes that H is a positive definite (semi-positive definite) Hermitian matrix. The column space of A is denoted by \Re (A) and the null space by N(A). \Re (A) is the orthogonal complement space of \Re (A). $G_{1,2}$ denotes the complex projective plane. The chordal distance between the points (α, β) and (γ, δ) on $G_{1,2}$ is

$$\rho((\alpha, \beta), (\gamma, \delta)) = \frac{|\alpha\delta - \beta\gamma|}{\sqrt{(|\alpha|^2 + |\beta|^2)(|\gamma|^2 + |\delta|^2)}}.$$

Received August 17, 1982.

¹⁾ This work was done while the author was visiting the University of Bielefeld (FRG) and assisted by the Alexander von Humboldt Foundation in the Federal Republic of Germany.

²⁾ P. van Dooren has advanced a new definition for the eigenvalues of a singular pencil in his lecture "A numerical method to compute reducing subspaces of a singular pencil" at "The Conference on Matrix Pencils" in March 1982, Piteå, Sweden.

The matrix pencil formed of A and B can be expressed more precisely as $\mu A - \lambda B$, $(\lambda, \mu) \in G_{1,2}$.

2. Preliminaries

In this section we give some definitions and basic results.

2.1. Eigenvalues and eigenvectors

Definition 2.1. Let A, $B \in \mathbb{C}^{m \times n}$, and $\max_{(\lambda, \mu) \in G_{1m}} \operatorname{rank}(\mu A - \lambda B) = k$. A number-pair

 $(\alpha, \beta) \in G_{1,2}$ is an eigenvalue of the pencil $\mu A - \lambda B$ if rank $(\beta A - \alpha B) < k$.

The set of all eigenvalues of $\mu A - \lambda B$ is denoted by $\lambda(A, B)$.

The following consequences of Definition 2.1 can easily be verified.

- i) If $\mu A \lambda B$ is a regular pencil (i. e. m = n and det $(\mu A \lambda B) \not\equiv 0$, $(\lambda, \mu) \in G_{1,2}$) then Definition 2.1 is coincide with the usual definition [8].
 - ii) If $P \in \mathbb{C}^{m \times m}$ and $Q \in \mathbb{C}^{n \times n}$ are non-singular, then

$$\lambda(PAQ, PBQ) = \lambda(A, B). \tag{1.1}$$

Kronecker showed that if $\mu A - \lambda B$ is a singular pencil, then there exist non-singular matrices P and Q such that [4,10,2]

$$P(\mu A - \lambda B)Q = \begin{bmatrix} L_{s_1}(\lambda, \mu) & & & \\ L_{s_p}(\lambda, \mu) & & & \\ & L_{\eta_1}^T(\lambda, \mu) & & \\ & & L_{\eta_q}^T(\lambda, \mu) & \\ & & \mu A_0 - \lambda B_0 \end{bmatrix}, (\lambda, \mu) \in G_{1, 2}. \quad (1.2)$$

Where $L_{\mathbf{s}}(\lambda, \mu) \in \mathbb{C}^{\mathbf{s} \times (\mathbf{s}+1)}$ and $L_{\eta}^{T}(\lambda, \mu) \in \mathbb{C}^{(\eta+1) \times \eta}$ are elementary Kronecker blocks, e. g. $L_{\mathbf{s}}(\lambda, \mu) = \begin{pmatrix} \mu & -\lambda & 0 \\ 0 & \mu & -\lambda \end{pmatrix}$; $\mu A_{0} - \lambda B_{0}$ is a regular pencil.

From the Kronecker's canonical form (1.2) it follows that

iii)
$$\lambda(A, B) = \lambda(A_0, B_0).$$

We say that a singular pencil $\mu A - \lambda B$ contains an r-order regular part if $\mu A_0 - \lambda B_0 \in \mathbb{C}^{r \times r}$ in the form (1.2). The symbol $\mathfrak{S}_r^{m \times n}$ is used to denote the set of all $m \times n$ singular pencils, each of which contains an r-order regular part.

Definition 2. 2. Let $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$. A non-zero vector $x \in \mathbb{C}^n$ is called an eigenvector of the singular pencil $\mu A - \lambda B$ corresponding to the eigenvalue (α, β) if

$$\beta Ax = \alpha Bx$$
, $(Ax, Bx) \neq (0, 0)$.

2.2. Singular diagonalizable pencils and singular normal pencils

Definition 2.3. A pencil $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$ is called diagonalizable if there exist r linearly independent eigenvectors x_1, \dots, x_r of $\mu A - \lambda B$ and a complement space $\Re(x_1, \dots, x_r)^c$ of $\Re(x_1, \dots, x_r)$ satisfying

$$\Re(x_1, \dots, x_r)^c \subseteq \mathcal{N}(A) \cap \mathcal{N}(B)$$
.

The set of all such pencils is denoted by $\mathcal{D}_r^{m \times n}$.

Definition 2.4. A pencil $\mu A - \lambda B \in \mathfrak{S}_r^{m \times n}$ is called normal if there exist r ortho-