Vol. 2 No. 2 JOURNAL OF COMPUTATIONAL MATHEMATICS April 1984

[
—

- EXISTENCE OF RATIONAL INTERPOLATION
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Abstract

An existence thcorem of rational interpolation function for the sufficient condition has correctly
been stated by Macon-Dupree in [2], but some arguments in their proof ars not true. In this paper:(i)
A related theorem for both the sufficient and necessary conditiom ig asserted and proved by a new and
rigorous approach, namely by introducing the notion of (m/n) quasi-rational interpolant of 2 given
fanction. (i) With use of these regults thus obtained an open problem proposed by P. Torin in [4]
is completely solved.

§ 1. Introduction

»
Let f(#) be a bdunded real-valued function defined on an interval [a, ], let
m and n be non-negative integers, and let ;€ [, &] (¢=0, 1, ---, m-+n) be distinect
points. The problem of rational interpolation is that of finding a rational function
R(z)=RER(m, n) satisfying
R(z:)=y:  (@=f(w); =0, 1, -, m+n), (1.1)
where R(m, n)={R: B=N/D, N€H,, DEH,\{0}},
herein H; denotes the class of all polynomials of degree at most £.
Ag we know, while the problem of polynomial interpolation is constantly
solvable, the solution of the problem (1.1) does not always exist ([1, p. 2], [2,

p. 764]). In order to get its possible solution, one may consider the linearized infer-
polation problem satisfying, instead of condition (1.1), the following linear equations:

N () —yD{(a;) =0, 2=0, 1, -, m-+n. (1.1a)
Now, this system of m-+n-+1 homogeneous equations in m+n+2 unknowns has

always nontrivial solutions. However, the two problems (1.1) and (1.1a) are not

equivalent. From the following known thsorems one may then find their conditioned
conneoctions.

Theorem 1.1([1, p. 5], [2, p. 784], [B, p. B4]). There ewisis a rational
Junction REC B(m, n) satisfying condition (1.1) if and only if the pwir N and D,
obigined by dividing out all common factors in any nontrivial solution N E H, and
De H, of (1.1a), remains to be a solution of (1.1a). |

Another more practical and useful theorem may be stated in a convenient form
by introducing notations for the matrices

I ol s s S (1.2)

1 Tmin *** ‘-’dft-}-n Ymin Yminlmyn *°° ‘ym+ﬂm;+n
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and O;(w, v) which denotes the matrix obtained by deleting ¢—th row of O(u, »). We
note immediately that the rﬁ;ﬁonal"funﬁtiﬂn R{x) = iﬂ gt / i b', which corresponds
: = i=0{

to the nontrivial solution &= (@:@,—bo+—5,)T of the equation O(u, v) £=0,
satisfies (1.1a). Thereby, we have |

Theorem 1.2([1, p. 14], [2, p. 758]) If the rank of C; (m—1, n—1) is constant
for =0, 1, -, m+n, there ewisis a rational function RC R (m, n) satisfying the
interpolation condition (1.1).

Nevartheless, we should remark in passing that Theorem 1.2 is a frue one, but
within its proof, as given in the quoted references, some assertion concerning the
magnitude of the rank of the related matrices can not hold. A simple counter-example,
such ag, given m=n=2, N (2)=D(2) —z(az+B), B8+0, with the interpolating points
(0, 0), (1, D), (2, 1), (8, 1) and (4, 1), will do the illustration.

In the next gection we make further effort to scrutinize the existence problem
of rational interpolation functions. A new, rigorous proof is given for the existence
Theorem 1.2 in an extended sense, namely, the condition thersin given is not only
sufficient but also necessary (see Theorems 2.2—2.4).

Using thess concerned results as background we have solved an open problem in
the field of approximation theory proposed by P. Turin in 1974 ([4, p. 79], Problem
LXXXII). The problem is as follows:

Let m, = be given. For m+n-+41 variable knots @y, i, ***, Zmys, wWhat is the
maximal number M =M (m, n) such that, at least M of the relations (1.1) can be
satisfied for any choiece of #.?

§ 2. Existence of Rational Interpolation Functions

Let Ry(m, n)={R: RGR(m n) satisfying (1.1a)}.
From (1.1a), we easily get the following

Lemma 2.1, Let N/ DER,(m, n) Then N=0 &f and only if ot Isast m+1 of
the y,’s vanish.

On account of Lemma 2.1, it follows that, in oase Ic(k?m+1) of the g,’s vanish,
the problem (1.1) is solvable if and only if all of the #/’¢ vanish. Hence, unless

spema.l'ly remarked, we always assume, throughout thig section, that no more than m
of the 4,’s can be zeros. Thus, for any N/DE€ Ry(m, n), we ha.va N=0. Now, if we

define -
m'=min{2(N): N/DER;(m, n)}, 2.1y
n*e=min{d(D): N/DcRi(m, n)}, '
then m">0, n*:>0. Here 9(P) denotes the degree of polynomial P, and we define (0)
-—1.
Lemma 2.2(cf. {3, p. 295]) Let N/D and N1/Di€ Ry(m, n). Th@n ND,=N,D.
Lemma 2.8. For m" and n* defined by (2.1), there ewists the wnique (withou?
couniing the common constant factor in nwmerator and denomvingior) R'=N"/D"¢
Ro(m, n) such that | .
| - A(N*)=m’, O(D*) =n’;
and that any R=N/Dc Ry(m, n) can be reduced into B" by dividing out some common



