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SEMI-LINEAR DIFFERENCE SCHEMES®

SuN Jia—craNG (FpE#R)
(Computing Center, Academia Sinica, Betjing, Ching)

Abstract

A clags of semi~linear numerical differentiation formulas is designed for functions with stsep
gradients. A semi-linear second-order difference scheme is constructed to solve the two—point singular
perturbation problem —eu"+p(z)u'+q(@)u=7(s), u(0)=u{1) =0, I} is shown that this semi-linear
scheme has one more order of approximation precigsion than the central difference scheme for small ¢

and saves computation time for required accuracy. Numerical results agreeing with the above analysis
are included.

1. Introduction

Numerical differential formulag play a very important role in oconstructing
difference sghefhes of differential equations. However, the usual numerical differen-
tiation formulas based on polynomial approximaiions may lead to very poor results
when the functions are not emooth. Usnally there are two ways to avoid thig difficul-
ty; one is to refine the mesh, and the other is to use a higher order polynomial
Interpolation.

A different approach is introduced in this paper by considering ‘“weak’” nonlinear
numerical differentiation formulas beyond linear functional approximation. In
section 2, we derive some semi-linear numerical differentiation formulag. Such a
scheme is semi-linear as an operator; besides, the numerical differentiation formula,
chosen for a function with steep gradients, should depend on the behavior of tha
function. As an example, a detailed analysis is given in section 8 for a model
problem: —eu” +u' =0, ©(0) =0, ©(1)=1, whioh was recently discussed by other
authors™ % In section 4, we consider a more general elliptio singular perturbation
problem: —eu”+pu'+gu—=Ff, The semi—linear scheme presented there is shown to
have one more order of precision than the conventional central difference schemse
for the singular perturbation problem if A<C2¢/|p|, where % ig a uniform mesh gize
in the “singular” subdomain. In the larger “regular” subdomain the megh size can
be used as large ag one degires. While maintaining the same acouracy, the semi-linear
scheme costs less UPU time than the linear schemse. There ig a simple way t0 reduce
the resulting semi-linear system to an iteration with the corresponding linear system.
The numerical tests presented in section & match the above analysis very well. A
similar study in the two-dimensional case will appear in another separate paper.

2. Semi-linear Numerical Differentiation Formulas

Let (@) be & function defined in (a, b) with large derivatives. Without loss of
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generality, suppose () is monotonioe in the interval, and uw=Fg is a one-to—one
map.

Denote z_1=a<we<<xy=>5, and lel G‘ bo defined as an indefinite integral of ¥
suoch that

G@) =j Foda, _ 1)

By the mean value theorem, there exist two points z_; and é;'i: T_g<<2_1<Lp<21<¥1,
such that

I: 3 3 F_lﬂ‘-l:l G =u’(2—1) » [F_l'u'i: F-iu’O] G = U (Ei) ? (2)

where [#1, #,]Y denotes the divided diﬁ'ei:'enﬁe-' (@1, @] Y = Y (1) :::;(wﬂ) :

we look for an approximate formula for the ﬁrst deriva’awe at the node x=2a,, based
on the formulas (2), as follows: '

— —2:1;_1 ([F-*uy, Fug]G— [F 0, P lu_i]G). 3)

If we take F ag the identity map, and G(x)—=2?/2, then (3) is just the usual
central difference formula based on the guadratio interpolation. In general, we
assume ¥ to be an admisgible one-to—one map such that G- can be obtained from (1)
directly. For any such ¥, (8) defines a numerical formula for the first derivative at
the node z=,. As an example, let F7f =f", where s is a real parameter. Suppose
w(2)>0in (z_4, x1); from (3) and (1), we obtain |

_2‘?.: {u%w ,H%+r ‘?-If%}+ u1+r} |

(1+7) (@1—>_4) Uy — U —uly J’
where u;=u(z;), 1=—1, 0, 1,

Now

w' (2o) ~

w (@) =

(4)

When sr-——%_, mu-—%(wl—l—m_i), (4) becomes

o (@) = (U=l (P + ), h=ay a0,

Theorem 1. Let u, F CC*(ax_1, @1) where k=38 or 4, F'u is ¢ one-io—0oné map,
h=go—_1=o1— 0. Then, the remainder of the numerical differenitaiton formula (3)
equals

[Py, F gl G~ [Fuy, Fu_4]1G) —u (@)

= (
R d i g Ry (dF 1y "1} %
T {2% 42 3 ( E ) E#EH"I'O(}& ). (6)

Proof. Applying the Taylor expansion for G (y) upon 2z, one obtains
G(y) —G(2) = (y—2) G @) + (y—2)*@"(2) /2+ (y—2)*G(2) /31
+ (y—2)*@*(2) /41 +0((y—2)°).

Henoe
W (41, Yo, Y-1) = G (91) :i(@fﬂ) G(@;) _ﬁ_{y—i)
i 1—2?!—1 Q" (9f0) (41— Yo)® ‘;1(% :T)'—:L) G® (y10)+ O (g2 — ?}-1) i

By means of rules for finding the derivative function in the implioit case, it ig
easily seen that



