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FITTED NONEQUIDISTANT EXTRAPOLATION
METHODS FOR STIFF SYSTEMS®
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Abstract
A class of exponentially ﬁtte-:i nonoquidistant extrapolation methods based on an L-stabe linear

single-stop formuls are studied. Theorems about the extrapolation coefficients are given. Thees methods
koep good numerical stability, “quasi-L-stability”, whils raising the accuracy of the original formula.

: § 1. Introduction

In solving the initial value prubl_ei:u of O. D. K. s
" {y’ =f @),
o ly@)y=n

the stiffness Wili be_eomé a serious difficunlty when the ratio of the real part of the
eigenvalues of the J acobian J -=-2—£ is very large. Because of the importancy of this

class of problems, the research for efficient computing methods is significant.

The technique of extrapolation has been widely used, but most such methods
destroy the numerical stability when they raise the accuracy, and the amount of
work inereases as exponential of 2. J. R. Cash™ introduced exponential fitted
extrapolation methods to improve the gtability of local extrapolation, but the
eigenvalues of the Jacobian must be caleulated, and this costs a lot of machine time.

In this paper, a class of exponentially fitted nonequidistant exirapolation
(EFNE) methods are discussed, and the ozlculation of eigenvalues is no longer
needed. With the use of the strategy of nonequidistant extrapolation, the amount of
work increages linearly. Another advantage is that the new methods have quasi—I—

stability, which is analogous to L—stability.

§ 2. The Construction of EFNE Methods
Oonsider the linear single-step formula of order 3:
Jurr=Yat 3 h(2fua ) =G B @

When it is applied to the test equaiion
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u VRN =T L . o o (2)
the characteristio funection is s | e SRS " B |

e R Lo E |

where ¢=2A. It is well known that (8) is I—acceptable and therefore (1) is T-stable.
Now we try to construct new methods of higher 'aiéﬂuraﬁy_baﬁéﬂ 011"(1). Assume that
Y1, ***, Ya have been calculated and the (n+1)th main step is to compute g,.:. Let &
be the step-length of this siep, choose real mumbers Myl (§=1, +-, 'm), and
caloulate g,y for m times (each calonlation denoted as yal1): .
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QGenerally, lot my=1, m,%m,, i« 7. Then take the linear combination
yﬁ+1=§ﬂﬂﬁ1-' A - - (B)

Connect (4), (B) using (8), and we have the characteristic function of the EFNE
methods: # *_ P

 R(g) =X 0B} (-%—) By (U2 g). - (6)

fml ™My
Choose , so that R(g) can approximate to e? as closely as pdésibla, ie. _
- @t § Qe PUOSEEOERS, ., 0 LT )
where p (positive integer) should be as large as possible, WL
Definition 1. An EFNE method is of order p if
R(g) = e+ 0y 197+ O(g*), , (8)
where Cor1% 0 is the error constant of the method. | | -_ | |
The following theorems show how u/s are chosen and how m is confined.
These theorems are generally true for exponentially fitted nonequidistant

extrapolation methods based on formmulae different from (1). |
Theorem 2. Let m>1,i=2, ., m, and myemy, i<, Denole

o {i+4 . . ;
Qy= 1+(mi+fl) r By J=2, =y, m<4, (9)
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Then the coefficients u; in (8) can be determined by N
Ayu=¢y. o - (10)
Proof. Let -
= p1{_9 \ p1{ m—1
'Rj RE ( m,) RE( m;" g)
- (1+g/3my) (1+ (m;—1)g/3m,)

(1~2¢/3m;+ (¢/ms)?/6) (1 —2(m;~1)gq/3m,+ ((my—1)g/m;) /6) *



