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Consider the initial valne problem . . = . - -
%"f @ v), ¥E)=9, (1)

where #C R, y, fE€ R". 1f the solution of the differential eqﬁa.tiﬁn is approximated by
polynomials, then general linear methods, such as linear multistep methods and
Runge—Kutta methods, can bo constructed. When one approximates the solution by

rational fractions, there are some nonlinear methods™ .
In this paper, we propose a new. olass of nonlinear methods. Set

; _ _ o
| Yo=2, fol¥o, Y1, =, Yy =1, "~ " (2)
Y = (yﬂ: Y1, ** s ’yn)T: -F= (fﬂr fir .“'!»fﬂ)r,'
Then (1) is converted to the following initial value problem .

_——‘g _F(Y), Y(E@®) =Y. T (@)

Obviously, the solution ¥ (@) is a curve in. R"+!, By means of Frenet frame and the
normal representation of curves, we construct a olass of one—step multistage
ponlinear methods. According 10 the absolute stability, a stepsize eriterion 18
obtained. It shows that the stepsize should be in inverse proportion 10 the
survature of the solution ocurve. It reflects the geometric nature of the solution
curve computed. The stepsize oriterion applies to nonstiff problems, especially to
stitt problems. Numerical experiments for a gtiff problem in reaction dynamios
have demonstrated the efficiency of this olass of nonlinear methods.

§ 1. Normal Representation of Curves

As in differential geometry, the normal representation of curves usually doed
not exceed the third order®. To obtain fourth order nonlinear methods, one must
expand the curves farther. Let the curve ¥ be parametrized by the aro length s:
Y (z) =Y (x(s)), which will be denoted as ¥ (8) too. Let the arc start from the poinb
where the Frenet frame is egtablished. Then, in the neighborhood of the starting

point of the arc, we have
¥ (5) =¥ (0 +s7 (0 + 5 ¥ () +ZF © + 27 (0) +0(#). @

By the Frenet equation
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the unit tangent vector
Sl s,

where

I_= { g-f ?}M; - (5)

= S 9f =
U - ay! fh U (u'l): U, ? u.“)'!',

) u2 1/ | n
p_{j J’} ? g"gﬂfﬂh

x=~/Pp?— g% /I3, (6)
The expresions for unit veotors e; and ¢, are not listed here ag ¥ and o do not
&ppear in the ensuing computations, Thus,

| -#Ei'f"ﬁ'ﬂaﬁﬂ'g“ —'ﬁ/?ﬂ 62""’1/# i}:

and
—Teéqy +ﬂ'ﬂi =éﬂ = 'x—:!.r— {? ""'3#?.{'51 - (Ha = ??) &q — (QFET‘F#‘E')GE}.

Substituting the above expressions into (4) we obtain the following result.
Theorem 1. ILet ¥ (s) b6 a curve in R (n>8), parameirized by arc length s.
Then, in the neighborhood of 8=0, the curve has the Jollowing normal representation

du y
Y (s) =Y (0) +[3—%xﬂ——£#ﬁ}a+[£ PN 3 ta (:J.a:-—-g-.:“—a.mﬂ)].-;-.ff

8 2 6 |
8° e . 8!
+[—6—- x'r+—§z(2ﬁs-r+xﬂ]ss+—2? xv0e,+0(s"), (7)

S 2. First to Third Order Schemes

1) Omitting s* and higher order terms in (7) and substituting & for s, one gets
the first order scheme |

" yo+4ys Tl [T T ~ fo 7l
4

{ ﬂi‘l: Y1 - !{1 I+ f. in (8)
: :—' "qu+f1+'”+f2“ 3

L watdy, | |, .

This is an analogue of the Euler polygon method, but here %, instead of being ap
increment in & as usual, ig the stepgize of movement along the tangent to the



