ON THE CONVERGENCE OF DIAGONAL ELEMENTS AND ASYMPTOTIC CONVERGENCE RATES FOR THE SHIFTED TRIDIAGONAL QL ALGORITHM*

JIANG ER-XIONG (蔣尔雄)
(Fudan University, Shanghai, China)

Abstract

The convergence of diagonal elements of an irreducible symmetric tridiagonal matrix under QL algorithm with some kinds of shift is discussed. It is proved that if $\alpha_1 - \sigma \to 0$ and $\beta_j \to 0$, $j=1, 2, \cdots$, m, then $\alpha_j \to \lambda_j$, $j=1, 2, \cdots$, m, where λ_j ($j=1, 2, \cdots$, m) are m eigenvalues of the matrix, and σ is the origin shift. The asymptotic convergence rates of three kinds of shift, Rayleigh quotient shift. Wilkinson's shift and RW shift, are analysed.

§ 1. Introduction

The shifted QL algorithm is a very efficient algorithm for finding all eigenvalues of a symmetric tridiagonal matrix. The global convergence of the QL algorithm with Wilkinson's shift is proved in [1], [2]. The asymptotic convergence rate of this case is at least quadratic^[1], and is often cubic or better than cubic except for special bizarre matrices if they exist^[2]. The RW shift is proposed in [3]. The global convergence and at least cubic aymptotic convergence rate for the case of RW shift are proved in [3].

We apply the shifted QL algorithm to a symmetric tridiagonal matrix $T = T^{(1)}$. Let the k-th iteration matrix be

The global convergence means that $\beta_1^{(k)} \rightarrow 0$. Does $\alpha_1^{(k)}$ converge at the same time? Although we know there is an eigenvalue $\lambda_1^{(k)}$ of $T^{(k)}$ such that

$$|\alpha_1^{(k)} - \lambda_1^{(k)}| < |\beta_1^{(k)}|,$$
 (1)

it seems that no one has proved that for large enough k, $\lambda_1^{(k)}$ is independent of k.

Furthermore, if $\beta_i^{(k)} \rightarrow 0$ $(i=1, 2, \dots, j)$ can we say $\alpha_i^{(k)}$ $(i=1, 2, \dots, j)$ are convergent?

In this paper the following theorem is proved:

Theorem. Let $T = T^{(1)}$ be an irreducible symmetric tridiagonal matrix. The QL algorithm with shift $\{\sigma_k\}$ is applied to $T^{(1)}$. If $\alpha_1^{(k)} - \sigma_k \to 0$ and $\beta_i^{(k)} \to 0$ $(i = 1, 2, \dots, j)$,

^{*} Received September 28, 1984.

then $\alpha_s^{(k)} \rightarrow \lambda_s$ (s=1, 2, ..., j), where $\lambda_1, \lambda_2, \dots, \lambda_j$ are j different eigenvalues of T.

Using the above theorem, we can give an improvement on Theorem 8.11 of [4] as follows:

Theorem. Let the QL algorithm with Wilkinson's shift be applied to an unreduced tridiagonal matrix T. Then as $k\to\infty$, $\beta_1\to 0$. If, in addition, $\beta_2\to 0$, $\beta_3\to 0$, then as $k\to\infty$,

$$|\hat{\beta}_1/\beta_1^3\beta_2^2| \rightarrow |\lambda_2-\lambda_1|^{-8}|\lambda_3-\lambda_1|^{-1} \neq 0$$
,

where λ_1 , λ_2 , λ_3 are the limits of α_1 , α_2 , α_3 .

There is also a dicussion on the asymptotic convergence rate in the case of the Rayleigh quotient shift and the RW shift.

§ 2. Some Basic Theorems

Let

be a real tridiagonal symmetric matrix. Given a scalar σ , called the shift, consider the orthogonal-lower triangular factorization

$$T - \sigma I = QL, \tag{2}$$

where I is the identity matrix, Q is an $n \times n$ orthogonal matrix

$$Q = (q_1, q_2, \dots, q_n),$$

$$q_i = (q_{1i}, q_{2i}, \dots, q_{ni})^T,$$

and L is a lower triangular matrix

 $L=(l_{ij}), l_{ij}=0 \text{ when } j>i.$ $\hat{T}=LQ+\sigma I. \tag{3}$

Let

Obviously \hat{T} is a symmetric tridiagonal matrix too. Denote

and there is a relationship between T and \hat{T} , namely

$$\hat{T} = Q^T T Q. \tag{4}$$

The transformation from T to \hat{T} is a QL transformation with shift σ .

Given a symmetric tridiagonal matrix T, let $T^{(1)} = T$. We do QL transformation with shift σ_k to $T^{(k)}$ successively and get a matrix-sequence $\{T^{(k)}\}$, such that

$$T^{(k)} - \sigma_k I = Q_k L_k,$$