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Abstract

We consider linear parabolic equations in a space-time domain with eurved boundaries and
nonhomogereous Dirichlet boundary conditions and discuss their approximations with isoparametrie
Bpace-time finite elements. A general error estimats js proved and applied to some elements of
practical interest,

1. Introduction

The fron#-tracking methods uging space-time finite elements are very effective
In solving moving boundary problems, as shown by numerical experiments
[Bonnerot and Jamet (1974, 1977, 1979, 1981);: Li (1982, 1983)]. During the
solntion process, the original problem is reduced 1o two coupled problems:
determination of the position of the moving boundary and solution of the parabolic
équation in a known space-time domain with curved boundaries.

As a first step towards the complete error analysis of the front-tracking method,
we want to obtain the error estimate of the approximation of the parabolic equation
in a known curved space—time domain. Jamet (1978) considered the case with
polygonal boundaries and homogeneous Dirichlet boundary conditions. In solving
the moving boundary problems, however, it is not an appropriate approach o
transform a problem with nonhomogeneous boundary data into a problem with
homogeneous boundary data before discretization, since the position of the moving
boundary is not known a priori, and such a transformation will greatly complicate
the problem. Moreover, in most cages, the moving boundary is not polygonal.
It is, therefors, necessary to consider the direct discretization of the parabolic
equation in a curved space-time domain with nonhomogeneous boundary conditions.
Such a discretization method will be described in section 2 of this paper. A general
error estimate of the approximation will be proved in section 3. It is then applied
o some finite elements of practical interest in section 4. We will follow Jamet’s
technique in the proof of the general error estimate. The results of this paper are
extengions of his resulis.

2. Description of the Discretization Method

Consider a time interval [0, 7']. Let 2(t) be a2 bounded domain in R™ and
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I'(%) be its boundary. Let RT={(P, ¢); P€R(),0<i<T} be a space-time domain.
2T={(P, t); PeI'(t), 0<i<<T} is ifa lateral boundary.
We consider the following problem:

-gw—ta—_?ﬂu=j in KT, (2.1)
U=q i 27, (2.2)
u =’ in Q(0), (2.3)

where f€ L2 (RT), v € L2(Q(0)) and g is a continuous funciion on X*. Vu is the
gradient of u with respect to the space variables.

Let @=G (1, t2)={(P, t); PEQ(), 0<t;<t<t.<<T} be a subdomain of RT
and @®(G) be the space of all Lipschitz—continuous functions defined on & which
vanish on the lateral boundary of G. Then a clasgical solution » of (2.1)—(2.3)
is also the weak solution defined by

Bo(w, $)=—((u, 22-)) +((Vu, V) )at+ (¥, Bavn— % Sawa=((f, $)e
(2.4)

for all ¢€P(F) and for all 0<tz<fa<<T, together with the initial-boundary
conditions (2.2)—(2.3).
Here we have used the notations
Q1) =gection {(P, ¢); pc ()}, (+,*)gwy—1inner product in L*(2(%)),

((, -)>G=i:ﬁner' product in L2 (@), ((Vu, V¢>))G=JJ Vu-Vdo dz di.

~ 'To define the approximate solution, we congider a subdivision of [0, T]: 0=
PP o Lo Lt =T, Lot Z% be a continuous and piecewise smooth approxima-
tion to 2*. Let G% be the space—time domain bounded by 27 and the hyperplanes

: N—-1 __ : :
i=t" and =11, Let RT= | ] G2. We assume that there exists a bounded domain
_ = .

R” such that RT>RT and BT R] for all small enough values of 4, the discretization
parameter, and for all subdivisions of [0, 7]. Assume also that the functions f, u°
and the exact solution % have smooth enough extensions f, u® and % to E™ which
also satisfy (2.1) and (2.8). -

Let Q7= Q2,(#*) be the section of BRI on the hyperplane #=¢" and G=G}—02}.
Let @} be a finite dimensgional subspace of @(G3), 1<ian<<N -1, and V', be the space
of all functions ¥, defined on Ri such that their regtriction fo each Q’;: coincides
with the restriction of a function ¢"™u, € @} to G}. Let also Up=wy+V 5 where wy is
a given function defined to Rj, which is Lipschitz-continuous on each G and
whose restriction to 37 is an appropriate approximation of the restriction of w to 7.

Note that the functions 24€V, and w4, €U, are in general disconfinuous at time
=1, 0<n<<N —1. We denote v;(+, ") and v (-, i**°) by ¢} and ;™ respectively.
Now we can define the discrete problem as follows:
Find w, €U, such that uf=u°| o and

. Boz(us, 1) =((F, »))et, (2.5)
for all ¢, € D} and for all O<Cn<CN —1, |



