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Abstract

In the Ritz-Galerkin method the linear subspace of the trial solution is extended to a closed
subset. SBome results, such as orthogonalization and minimum property of the error funciion, are
obtained. A second order scheme is developed for solving & linear singular perturbation elliptic problem
and error estimates are given for a uniform mesh size. Numerical results for linear and semilinear
singular perturbation problems are included.

§ 1. Introduction

The development of finite eloment methods has been successful in various
fields. From & mathematical point of view, the methods are an extension of the
Rayleigh-Rifz—(falerkin technique ([1], [11]—/[18]). Usnal finite element schemes,
choosing piecewise polynomials as irial functions, are very efficient when there are
no steep gradienis in the true solution. Otherwise, poor results might ocour. In
order t0 get accurate numerical data, one may use the adaptive mesh technique
or a higher precision scheme such as A-version or p—version™, Besides usual
polynomials, rational elements™™ and exponential elements" have been introduced
10 enrich the trial subspace to reduce a number of parameters for a given precision.
One thing in common among these techniques is that they are all reduced 10 &
discrete linear system if the original differential equation is linear.

This paper proposes finite element methods of Ritz and Galerkin types for
linear elliptic equations where the shape functions depend nonlinearly on a finite
set of parameters. So the arising minimization problem is solved on a subsed
instead of a linear subspace (as it would be the cagse for piecewise linear shape
functions). This approach allows for instance the use of exponential shape
functions with the parameters occurring in the exponent. So in this case one
probably obtaing & significantly better approximation which justifies the additional
labonr. |

In Sections 2 and 3, we generalize respectively the Rifz and the Galerkin
methods from linear trial subspaces t0 subsets, and derive some results such as
orthogonalization and error estimates. In Section 4, the semilinear finite element
technique ig applied to solve singular perturbation problems in one dimension:
—eu'' +pu'+qu=Ff, u(0) =u(1) =0, which bas been studied by various anthors™
Our analysis shows an improvement over the scheme of using the piscewise
linear subspace by one higher order of precision. Moreover, the constraint of mesh
gize h ig relaxed from O(e?) to O(s). The numerical tests including a linear and a
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semilinear fest singular perturbation problems are given in Section 5. Computa-
tional results show good agreement with the above theoretical analysis.
Qome Tesearch resulis on the same topic in two—dimensions will be reported

separately®,

§ 2. A Ritz Method on Subsets

First we consider a self-adjoint elliptic linear differential equation
Lu=f, 1)
Suppose a(u, v) =(Lu, ») is a positive gquadratic form in a real Hilbert space H
with an inner product (», ») and a norm [ «|:
Oslu|?<a(u, v)<O;|u|® forallucH, (2)
where O, and 0. are positive constants. u is defined as a weak solution of (1) if it
satisties

a(u, v)=(f, ») forall vCH. (3)

It is well-known that u is a weak solution of (1) if and only if it is the unique
minimum solution of & quadratic functional Z, i.e.,

I(w)=inf I(0) =int {a(, v)=2(f, 0)}. (4)

In dealing with the variational problem (4), a well-known discretization is
nsed $o replace the space H with a sequence of finite-dimensional subspaces V*
contained in H such that

I(u*) =inf I(v),

vEVH
which is equivalent to the following weak solntion
a(u?, v*)=(f, »*) for all 2*CV™. (5)
Now we try to replace H in (4) with a sequence of closed subsets §* with the
same number of finite-dimensional parameters. Let T be a one—to—one differentiable
map™® from an open convex set '} of V* onto §*: TVi=8" In particular, 77"=7 if

T is a linear map.
Clonsider a Testricted variational problem on the closed subset S*:

I (u,) = infI(v). (6)

pE R

Since S* is closed, there exists a solution of (6) in §*. If u, minimizes I over S*,
u,=Tw, then for any n&EV; and small a, I () <I{T(w+an)) as wtanCVi. Let
T (w+an) =Tw+alPn+x(a), where T’ ig positively homogeneous and

x(a) =T (w+an) —Tw—aoTn.

We see that
I(T(w+om)) =I(u) +2ala(u, Tn)—(f, Tm)]+2[a(u, x(a)) = (f, #())]
+a2a(Tn, Tn) +2aa(Ty, x(e)) +a(x(e), x(a))=I(a).
For u, to minimize I over 8% it requires thak 1111;1 I’'(a)=0. Observing that

%{(0)=0, ' (0)=T" (T *u,) —T)mn, and



